Edit model card

xlsr-nm-nomi

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3324
  • Wer: 0.3245

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0004
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 132
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.9773 6.0606 200 3.0522 1.0
2.8875 12.1212 400 2.3569 0.9959
1.5131 18.1818 600 0.5795 0.6024
0.4675 24.2424 800 0.4022 0.4523
0.2474 30.3030 1000 0.3396 0.4422
0.1573 36.3636 1200 0.3188 0.3611
0.1162 42.4242 1400 0.3450 0.3570
0.0858 48.4848 1600 0.3162 0.3469
0.0675 54.5455 1800 0.2832 0.3327
0.058 60.6061 2000 0.2904 0.3266
0.0415 66.6667 2200 0.3555 0.3306
0.0348 72.7273 2400 0.3116 0.3327
0.0234 78.7879 2600 0.2944 0.3245
0.0215 84.8485 2800 0.3259 0.3266
0.0208 90.9091 3000 0.3312 0.3185
0.0168 96.9697 3200 0.3324 0.3245

Framework versions

  • Transformers 4.47.0.dev0
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
14
Safetensors
Model size
315M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for susmitabhatt/xlsr-nm-nomi

Finetuned
(194)
this model