Inference
import time
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("suriya7/Gpt-Neo-SQL")
model = AutoModelForCausalLM.from_pretrained("suriya7/Gpt-Neo-SQL")
BOS_TOKEN = "<sos>"
alpaca_prompt = BOS_TOKEN + """You are an intelligent AI specialized in generating SQL queries.Your task is to assist handling Sql query in to retrieve specific information from a database Please provide the SQL query corresponding to the given instruction and input.
### Instruction:
CREATE TABLE temp_scan(
id SERIAL PRIMARY KEY,
email TEXT,
frequency TEXT,
status TEXT,
n_lines BIGINT,
n_files BIGINT,
vulns INT
);
The schema for the temp_scan table is as follows:
email: Email address of the user who initiated the scan.
frequency: How often the scan is run (e.g., Once, Daily, Weekly,Monthly).
status: The current status of the scan (e.g., COMPLETED, RUNNING, SCANNING, FAILED,STARTED,CLONING,CLOCING).
n_lines: The number of lines of code scanned.
n_files: The number of files scanned.
vulns: The number of vulnerabilities found.
### Input:
{}
### Response:
"""
input_ques = "give me the scan that are running without vulnerability."
s = time.time()
prompt = alpaca_prompt.format(input_ques)
encodeds = tokenizer(prompt, return_tensors="pt",truncation=True).input_ids
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
inputs = encodeds.to(device)
# Increase max_new_tokens if needed
generated_ids = model.generate(inputs, max_new_tokens=256,temperature=0.1, top_p=0.90, do_sample=True,pad_token_id=50259,eos_token_id=50259,num_return_sequences=1)
print(tokenizer.decode(generated_ids[0]).replace(prompt,'').split('<eos>')[0])
e = time.time()
print(f'time taken:{e-s}')
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.