Gemma 2B Fine-Tuned SQL Generator

Introduction

The Gemma 2B SQL Generator is a specialized version of the Gemma 2B model, fine-tuned to generate SQL queries based on a given SQL context. This model has been tailored to assist developers and analysts in generating accurate SQL queries automatically, enhancing productivity and reducing the scope for errors.

Model Details

  • Model Type: Gemma 2B
  • Fine-Tuning Details: The model was fine-tuned specifically for generating SQL queries.
  • Training Loss: Achieved a training loss of 0.3, indicating a high level of accuracy in SQL query generation.

Installation

To set up the necessary environment for using the SQL Generator, run the following commands:

pip install torch torch
pip install transformers

how to Fine Tune

here is the github link click here

Inference


# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("suriya7/Gemma2B-Finetuned-Sql-Generator")
model = AutoModelForCausalLM.from_pretrained("suriya7/Gemma2B-Finetuned-Sql-Generator")

prompt_template = """
<start_of_turn>user
You are an intelligent AI specialized in generating SQL queries.
Your task is to assist users in formulating SQL queries to retrieve specific information from a database.
Please provide the SQL query corresponding to the given prompt and context:

Prompt:
find the price of laptop

Context:
CREATE TABLE products (
    product_id INT,
    product_name VARCHAR(100),
    category VARCHAR(50),
    price DECIMAL(10, 2),
    stock_quantity INT
);

INSERT INTO products (product_id, product_name, category, price, stock_quantity) 
VALUES 
    (1, 'Smartphone', 'Electronics', 599.99, 100),
    (2, 'Laptop', 'Electronics', 999.99, 50),
    (3, 'Headphones', 'Electronics', 99.99, 200),
    (4, 'T-shirt', 'Apparel', 19.99, 300),
    (5, 'Jeans', 'Apparel', 49.99, 150);<end_of_turn>
<start_of_turn>model
"""

prompt = prompt_template
encodeds = tokenizer(prompt, return_tensors="pt", add_special_tokens=True).input_ids

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
inputs = encodeds.to(device)


# Increase max_new_tokens if needed
generated_ids = model.generate(inputs, max_new_tokens=1000, do_sample=True, temperature = 0.7,pad_token_id=tokenizer.eos_token_id)
ans = ''
for i in tokenizer.decode(generated_ids[0], skip_special_tokens=True).split('<end_of_turn>')[:2]:
    ans += i

# Extract only the model's answer
model_answer = ans.split("model")[1].strip()
print(model_answer)
Downloads last month
59
Safetensors
Model size
2.51B params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train suriya7/Gemma2B-Finetuned-Sql-Generator