Edit model card

wav2vec2-large-xls-r-300m-hi-colab

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice_13_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7522
  • Wer: 1.0223

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Wer
5.9636 0.95 400 2.2746 1.0338
0.9533 1.89 800 0.8338 1.0699
0.5378 2.84 1200 0.7781 1.0159
0.4041 3.79 1600 0.7267 1.0191
0.3308 4.73 2000 0.6780 1.0237
0.2728 5.68 2400 0.6862 1.0203
0.2272 6.63 2800 0.6658 1.0266
0.198 7.57 3200 0.6819 1.0306
0.1787 8.52 3600 0.6930 1.0257
0.158 9.47 4000 0.7278 1.0318
0.1391 10.41 4400 0.7102 1.0319
0.1249 11.36 4800 0.7726 1.0190
0.1131 12.31 5200 0.7325 1.0253
0.1049 13.25 5600 0.7512 1.0227
0.095 14.2 6000 0.7580 1.0222
0.0835 15.15 6400 0.7161 1.0204
0.0817 16.09 6800 0.7530 1.0239
0.0707 17.04 7200 0.7613 1.0250
0.0682 17.99 7600 0.7412 1.0196
0.0599 18.93 8000 0.7700 1.0214
0.0593 19.88 8400 0.7522 1.0223

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.2.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for surchand/wav2vec2-large-xls-r-300m-hi-colab

Finetuned
(440)
this model

Evaluation results