Edit model card

speller-example__

This model is a fine-tuned version of sberbank-ai/ruT5-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1437
  • Rouge1: 19.7034
  • Rouge2: 8.7571
  • Rougel: 19.4209
  • Rougelsum: 19.774
  • Gen Len: 41.2542

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
0.3549 0.1 1500 0.1935 19.7034 8.7571 19.4209 19.774 41.1356
0.3863 0.2 3000 0.1830 19.7034 8.7571 19.4209 19.774 41.1864
0.3164 0.31 4500 0.1746 19.5621 8.4746 19.2797 19.5621 41.2966
0.367 0.41 6000 0.1690 19.7034 8.7571 19.4209 19.774 41.161
0.3002 0.51 7500 0.1578 19.7034 8.7571 19.4209 19.774 41.2458
0.3352 0.61 9000 0.1541 19.7034 8.7571 19.4209 19.774 41.3475
0.2462 0.72 10500 0.1519 19.7034 8.7571 19.4209 19.774 41.3475
0.2736 0.82 12000 0.1510 19.7034 8.7571 19.4209 19.774 41.2797
0.2618 0.92 13500 0.1437 19.7034 8.7571 19.4209 19.774 41.2542

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.13.1+cu116
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.