speller-example__
This model is a fine-tuned version of sberbank-ai/ruT5-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1437
- Rouge1: 19.7034
- Rouge2: 8.7571
- Rougel: 19.4209
- Rougelsum: 19.774
- Gen Len: 41.2542
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
0.3549 | 0.1 | 1500 | 0.1935 | 19.7034 | 8.7571 | 19.4209 | 19.774 | 41.1356 |
0.3863 | 0.2 | 3000 | 0.1830 | 19.7034 | 8.7571 | 19.4209 | 19.774 | 41.1864 |
0.3164 | 0.31 | 4500 | 0.1746 | 19.5621 | 8.4746 | 19.2797 | 19.5621 | 41.2966 |
0.367 | 0.41 | 6000 | 0.1690 | 19.7034 | 8.7571 | 19.4209 | 19.774 | 41.161 |
0.3002 | 0.51 | 7500 | 0.1578 | 19.7034 | 8.7571 | 19.4209 | 19.774 | 41.2458 |
0.3352 | 0.61 | 9000 | 0.1541 | 19.7034 | 8.7571 | 19.4209 | 19.774 | 41.3475 |
0.2462 | 0.72 | 10500 | 0.1519 | 19.7034 | 8.7571 | 19.4209 | 19.774 | 41.3475 |
0.2736 | 0.82 | 12000 | 0.1510 | 19.7034 | 8.7571 | 19.4209 | 19.774 | 41.2797 |
0.2618 | 0.92 | 13500 | 0.1437 | 19.7034 | 8.7571 | 19.4209 | 19.774 | 41.2542 |
Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.