table-transformer-structure-recognition-v1.1-all-finetuned

This model is a fine-tuned version of sumitD/table-transformer-structure-recognition-v1.1-all-finetuned on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1419
  • Map: 0.9219
  • Map 50: 0.966
  • Map 75: 0.9496
  • Map Small: -1.0
  • Map Medium: 0.8782
  • Map Large: 0.921
  • Mar 1: 0.5537
  • Mar 10: 0.9407
  • Mar 100: 0.9694
  • Mar Small: -1.0
  • Mar Medium: 0.9079
  • Mar Large: 0.9693
  • Map Table: 0.9882
  • Mar 100 Table: 0.9964
  • Map Table column: 0.9732
  • Mar 100 Table column: 0.9892
  • Map Table column header: 0.9543
  • Mar 100 Table column header: 0.9847
  • Map Table projected row header: 0.8673
  • Mar 100 Table projected row header: 0.964
  • Map Table row: 0.9584
  • Mar 100 Table row: 0.9838
  • Map Table spanning cell: 0.7903
  • Mar 100 Table spanning cell: 0.8983

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Table Mar 100 Table Map Table column Mar 100 Table column Map Table column header Mar 100 Table column header Map Table projected row header Mar 100 Table projected row header Map Table row Mar 100 Table row Map Table spanning cell Mar 100 Table spanning cell
0.2338 1.0 23715 0.1991 0.8756 0.9505 0.9307 -1.0 0.7912 0.8748 0.5395 0.9175 0.9471 -1.0 0.8518 0.947 0.9844 0.9935 0.9582 0.981 0.9111 0.9647 0.7701 0.9364 0.9147 0.9577 0.7149 0.8496
0.2048 2.0 47430 0.1915 0.8827 0.9567 0.9384 -1.0 0.8103 0.8823 0.54 0.9197 0.9498 -1.0 0.8538 0.9499 0.9855 0.9944 0.9564 0.9819 0.9047 0.9527 0.7905 0.9437 0.9222 0.9651 0.7371 0.8607
0.1841 3.0 71145 0.1605 0.9087 0.9636 0.9467 -1.0 0.8373 0.9077 0.548 0.933 0.9616 -1.0 0.8868 0.9613 0.9836 0.9935 0.9703 0.9888 0.94 0.9771 0.8468 0.9545 0.9466 0.9781 0.765 0.8778
0.1914 4.0 94860 0.1496 0.9181 0.9652 0.9496 -1.0 0.8741 0.917 0.552 0.9387 0.9678 -1.0 0.9024 0.9676 0.9886 0.9968 0.9724 0.9886 0.9508 0.9824 0.8561 0.9628 0.9574 0.9829 0.7836 0.8934
0.1739 5.0 118575 0.1419 0.9219 0.966 0.9496 -1.0 0.8782 0.921 0.5537 0.9407 0.9694 -1.0 0.9079 0.9693 0.9882 0.9964 0.9732 0.9892 0.9543 0.9847 0.8673 0.964 0.9584 0.9838 0.7903 0.8983

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
10
Safetensors
Model size
28.8M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for sumitD/table-transformer-structure-recognition-v1.1-all-finetuned

Unable to build the model tree, the base model loops to the model itself. Learn more.