Model description

[More Information Needed]

Intended uses & limitations

[More Information Needed]

Training Procedure

[More Information Needed]

Hyperparameters

Click to expand
Hyperparameter Value
memory
steps [('columntransformer', ColumnTransformer(transformers=[('standardscaler', StandardScaler(),
['location_found_elevation']),
('onehotencoder', OneHotEncoder(),
['situation'])])), ('randomforestclassifier', RandomForestClassifier(class_weight={False: 1.9217032967032968,
True: 0.6758454106280193},
random_state=42))]
verbose False
columntransformer ColumnTransformer(transformers=[('standardscaler', StandardScaler(),
['location_found_elevation']),
('onehotencoder', OneHotEncoder(),
['situation'])])
randomforestclassifier RandomForestClassifier(class_weight={False: 1.9217032967032968,
True: 0.6758454106280193},
random_state=42)
columntransformer__n_jobs
columntransformer__remainder drop
columntransformer__sparse_threshold 0.3
columntransformer__transformer_weights
columntransformer__transformers [('standardscaler', StandardScaler(), ['location_found_elevation']), ('onehotencoder', OneHotEncoder(), ['situation'])]
columntransformer__verbose False
columntransformer__verbose_feature_names_out True
columntransformer__standardscaler StandardScaler()
columntransformer__onehotencoder OneHotEncoder()
columntransformer__standardscaler__copy True
columntransformer__standardscaler__with_mean True
columntransformer__standardscaler__with_std True
columntransformer__onehotencoder__categories auto
columntransformer__onehotencoder__drop
columntransformer__onehotencoder__dtype <class 'numpy.float64'>
columntransformer__onehotencoder__feature_name_combiner concat
columntransformer__onehotencoder__handle_unknown error
columntransformer__onehotencoder__max_categories
columntransformer__onehotencoder__min_frequency
columntransformer__onehotencoder__sparse deprecated
columntransformer__onehotencoder__sparse_output True
randomforestclassifier__bootstrap True
randomforestclassifier__ccp_alpha 0.0
randomforestclassifier__class_weight {False: 1.9217032967032968, True: 0.6758454106280193}
randomforestclassifier__criterion gini
randomforestclassifier__max_depth
randomforestclassifier__max_features sqrt
randomforestclassifier__max_leaf_nodes
randomforestclassifier__max_samples
randomforestclassifier__min_impurity_decrease 0.0
randomforestclassifier__min_samples_leaf 1
randomforestclassifier__min_samples_split 2
randomforestclassifier__min_weight_fraction_leaf 0.0
randomforestclassifier__n_estimators 100
randomforestclassifier__n_jobs
randomforestclassifier__oob_score False
randomforestclassifier__random_state 42
randomforestclassifier__verbose 0
randomforestclassifier__warm_start False

Model Plot

Pipeline(steps=[('columntransformer',ColumnTransformer(transformers=[('standardscaler',StandardScaler(),['location_found_elevation']),('onehotencoder',OneHotEncoder(),['situation'])])),('randomforestclassifier',RandomForestClassifier(class_weight={False: 1.9217032967032968,True: 0.6758454106280193},random_state=42))])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Evaluation Results

Metric Value
accuracy 0.698333
f1_score 0.698018

How to Get Started with the Model

[More Information Needed]

Model Card Authors

This model card is written by following authors:

[More Information Needed]

Model Card Contact

You can contact the model card authors through following channels: [More Information Needed]

Citation

Below you can find information related to citation.

BibTeX:

[More Information Needed]

model_description

RandomForestClassifier model for tabular classification.

eval_method

Evaluated using test split.

confusion_matrix

confusion_matrix

Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using stummala521/AI4SAR 1