Llama3.1-8B-QA_CoT-MEDICAL-Instruct-r64

This model is a fine-tuned version of meta-llama/Llama-3.1-8B on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5788

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3.6e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.8399 0.0064 200 0.9350
0.9024 0.0128 400 0.8735
0.7805 0.0192 600 0.8382
0.905 0.0256 800 0.8193
0.762 0.032 1000 0.8070
0.5496 0.0384 1200 0.7964
0.1024 0.0448 1400 0.7896
0.5931 0.0512 1600 0.7859
0.6966 0.0576 1800 0.7791
0.7713 0.064 2000 0.7753
0.7055 0.0704 2200 0.7715
0.9559 0.0768 2400 0.7681
0.5054 0.0832 2600 0.7646
0.7603 0.0896 2800 0.7622
0.9815 0.096 3000 0.7593
0.6948 0.1024 3200 0.7569
1.1539 0.1088 3400 0.7535
0.9092 0.1152 3600 0.7504
0.4105 0.1216 3800 0.7478
0.8514 0.128 4000 0.7464
0.6902 0.1344 4200 0.7431
0.5141 0.1408 4400 0.7408
0.5374 0.1472 4600 0.7393
0.9075 0.1536 4800 0.7382
0.4641 0.16 5000 0.7352
0.9326 0.1664 5200 0.7327
0.9203 0.1728 5400 0.7315
0.9802 0.1792 5600 0.7294
0.8411 0.1856 5800 0.7262
0.8436 0.192 6000 0.7234
0.9267 0.1984 6200 0.7220
0.8866 0.2048 6400 0.7203
0.4686 0.2112 6600 0.7188
1.1163 0.2176 6800 0.7171
0.8547 0.224 7000 0.7152
0.6537 0.2304 7200 0.7132
0.562 0.2368 7400 0.7117
0.0866 0.2432 7600 0.7111
1.259 0.2496 7800 0.7083
0.5031 0.256 8000 0.7078
0.6377 0.2624 8200 0.7054
0.664 0.2688 8400 0.7039
0.7615 0.2752 8600 0.7023
0.9197 0.2816 8800 0.7009
0.9291 0.288 9000 0.6991
0.6651 0.2944 9200 0.6972
0.9469 0.3008 9400 0.6965
0.9489 0.3072 9600 0.6940
0.4859 0.3136 9800 0.6931
0.8835 0.32 10000 0.6911
0.5059 0.3264 10200 0.6899
0.9658 0.3328 10400 0.6886
0.4364 0.3392 10600 0.6866
0.8759 0.3456 10800 0.6856
0.6947 0.352 11000 0.6834
0.9081 0.3584 11200 0.6818
0.6082 0.3648 11400 0.6805
0.7717 0.3712 11600 0.6789
0.8324 0.3776 11800 0.6777
0.6286 0.384 12000 0.6762
0.8363 0.3904 12200 0.6741
0.5502 0.3968 12400 0.6734
0.4254 0.4032 12600 0.6720
0.8676 0.4096 12800 0.6708
0.8529 0.416 13000 0.6693
0.8278 0.4224 13200 0.6679
0.561 0.4288 13400 0.6665
0.8632 0.4352 13600 0.6646
0.5054 0.4416 13800 0.6633
0.7296 0.448 14000 0.6614
0.4644 0.4544 14200 0.6610
0.851 0.4608 14400 0.6586
0.8565 0.4672 14600 0.6577
0.5205 0.4736 14800 0.6569
0.8272 0.48 15000 0.6550
0.9689 0.4864 15200 0.6533
0.7433 0.4928 15400 0.6525
0.4175 0.4992 15600 0.6515
0.8158 0.5056 15800 0.6500
0.0571 0.512 16000 0.6486
0.3766 0.5184 16200 0.6474
0.546 0.5248 16400 0.6457
0.7811 0.5312 16600 0.6439
0.6592 0.5376 16800 0.6427
0.7379 0.544 17000 0.6413
0.8019 0.5504 17200 0.6403
0.6117 0.5568 17400 0.6386
0.9152 0.5632 17600 0.6373
0.8364 0.5696 17800 0.6359
0.6807 0.576 18000 0.6346
0.3434 0.5824 18200 0.6337
0.6248 0.5888 18400 0.6331
0.4177 0.5952 18600 0.6320
0.9378 0.6016 18800 0.6305
0.5745 0.608 19000 0.6288
0.5786 0.6144 19200 0.6268
0.6503 0.6208 19400 0.6260
0.3875 0.6272 19600 0.6250
0.3826 0.6336 19800 0.6244
0.5301 0.64 20000 0.6231
0.5212 0.6464 20200 0.6228
0.2531 0.6528 20400 0.6210
0.514 0.6592 20600 0.6198
0.7908 0.6656 20800 0.6188
0.7131 0.672 21000 0.6174
0.8612 0.6784 21200 0.6166
0.5492 0.6848 21400 0.6153
0.2713 0.6912 21600 0.6137
0.3661 0.6976 21800 0.6122
0.6265 0.704 22000 0.6114
0.7062 0.7104 22200 0.6104
0.2984 0.7168 22400 0.6094
0.6959 0.7232 22600 0.6079
0.8605 0.7296 22800 0.6066
0.5706 0.736 23000 0.6059
0.5996 0.7424 23200 0.6044
0.6127 0.7488 23400 0.6039
0.3297 0.7552 23600 0.6034
0.8156 0.7616 23800 0.6024
0.5316 0.768 24000 0.6011
0.6661 0.7744 24200 0.6005
0.8805 0.7808 24400 0.5997
0.676 0.7872 24600 0.5981
0.25 0.7936 24800 0.5972
0.3684 0.8 25000 0.5959
0.5218 0.8064 25200 0.5951
0.6316 0.8128 25400 0.5945
0.2007 0.8192 25600 0.5936
0.272 0.8256 25800 0.5929
0.4253 0.832 26000 0.5920
0.4194 0.8384 26200 0.5908
0.7739 0.8448 26400 0.5905
0.4304 0.8512 26600 0.5895
0.2536 0.8576 26800 0.5887
0.794 0.864 27000 0.5880
0.3571 0.8704 27200 0.5872
0.7102 0.8768 27400 0.5866
0.3415 0.8832 27600 0.5858
0.5687 0.8896 27800 0.5853
0.6717 0.896 28000 0.5846
0.6736 0.9024 28200 0.5841
0.4328 0.9088 28400 0.5837
0.5114 0.9152 28600 0.5830
0.6912 0.9216 28800 0.5825
0.6255 0.928 29000 0.5820
0.4711 0.9344 29200 0.5815
0.6466 0.9408 29400 0.5810
0.5242 0.9472 29600 0.5806
0.5089 0.9536 29800 0.5802
0.366 0.96 30000 0.5798
0.6565 0.9664 30200 0.5796
0.7487 0.9728 30400 0.5794
0.8204 0.9792 30600 0.5792
0.8001 0.9856 30800 0.5790
0.582 0.992 31000 0.5789
0.4883 0.9984 31200 0.5788

Framework versions

  • PEFT 0.12.0
  • Transformers 4.47.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.0.0
  • Tokenizers 0.21.0
Downloads last month
5
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for strongpear/Llama3.1-8B-QA_CoT-MEDICAL-Instruct-r64

Adapter
(133)
this model