Flux-Super-Capybara-HF
The model is still in the training phase. This is not the final version and may contain artifacts and perform poorly in some cases.
Model description
prithivMLmods/Flux-Super-Capybara-HF
Image Processing Parameters
Parameter | Value | Parameter | Value |
---|---|---|---|
LR Scheduler | constant | Noise Offset | 0.03 |
Optimizer | AdamW | Multires Noise Discount | 0.1 |
Network Dim | 64 | Multires Noise Iterations | 10 |
Network Alpha | 32 | Repeat & Steps | 22 & 2900 |
Epoch | 15 | Save Every N Epochs | 1 |
Labeling: florence2-en(natural language & English)
Total Images Used for Training : 20
Best Dimensions
- 768 x 1024 (Best)
- 1024 x 1024 (Default)
Setting Up
import torch
from pipelines import DiffusionPipeline
base_model = "black-forest-labs/FLUX.1-dev"
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
lora_repo = "strangerzonehf/Flux-Super-Capybara-HF"
trigger_word = "capybara hf"
pipe.load_lora_weights(lora_repo)
device = torch.device("cuda")
pipe.to(device)
Trigger words
You should use capybara hf
to trigger the image generation.
Download model
Weights for this model are available in Safetensors format.
Download them in the Files & versions tab.
- Downloads last month
- 8
Model tree for strangerzonehf/Flux-Super-Capybara-HF
Base model
black-forest-labs/FLUX.1-dev