fine_tune_output_llama_3.2_3B_Instruct
This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.8439
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
5.3098 | 0.0170 | 10 | 4.6081 |
3.4781 | 0.0340 | 20 | 3.3873 |
2.7865 | 0.0510 | 30 | 2.4973 |
1.3726 | 0.0679 | 40 | 1.5682 |
1.2072 | 0.0849 | 50 | 0.9569 |
1.258 | 0.1019 | 60 | 0.8688 |
1.3057 | 0.1189 | 70 | 0.8637 |
0.7572 | 0.1359 | 80 | 0.8554 |
1.212 | 0.1529 | 90 | 0.8531 |
0.5833 | 0.1699 | 100 | 0.8439 |
Framework versions
- PEFT 0.10.0
- Transformers 4.44.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.19.1
- Downloads last month
- 20
Model tree for stlee9048/fine_tune_output_llama_3.2_3B_Instruct
Base model
meta-llama/Llama-3.2-3B-Instruct