File size: 24,035 Bytes
9e33766
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
2023-10-25 21:31:24,935 ----------------------------------------------------------------------------------------------------
2023-10-25 21:31:24,936 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(64001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=17, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-25 21:31:24,936 ----------------------------------------------------------------------------------------------------
2023-10-25 21:31:24,936 MultiCorpus: 1085 train + 148 dev + 364 test sentences
 - NER_HIPE_2022 Corpus: 1085 train + 148 dev + 364 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/sv/with_doc_seperator
2023-10-25 21:31:24,936 ----------------------------------------------------------------------------------------------------
2023-10-25 21:31:24,937 Train:  1085 sentences
2023-10-25 21:31:24,937         (train_with_dev=False, train_with_test=False)
2023-10-25 21:31:24,937 ----------------------------------------------------------------------------------------------------
2023-10-25 21:31:24,937 Training Params:
2023-10-25 21:31:24,937  - learning_rate: "3e-05" 
2023-10-25 21:31:24,937  - mini_batch_size: "8"
2023-10-25 21:31:24,937  - max_epochs: "10"
2023-10-25 21:31:24,937  - shuffle: "True"
2023-10-25 21:31:24,937 ----------------------------------------------------------------------------------------------------
2023-10-25 21:31:24,937 Plugins:
2023-10-25 21:31:24,937  - TensorboardLogger
2023-10-25 21:31:24,937  - LinearScheduler | warmup_fraction: '0.1'
2023-10-25 21:31:24,937 ----------------------------------------------------------------------------------------------------
2023-10-25 21:31:24,937 Final evaluation on model from best epoch (best-model.pt)
2023-10-25 21:31:24,937  - metric: "('micro avg', 'f1-score')"
2023-10-25 21:31:24,937 ----------------------------------------------------------------------------------------------------
2023-10-25 21:31:24,937 Computation:
2023-10-25 21:31:24,937  - compute on device: cuda:0
2023-10-25 21:31:24,937  - embedding storage: none
2023-10-25 21:31:24,937 ----------------------------------------------------------------------------------------------------
2023-10-25 21:31:24,937 Model training base path: "hmbench-newseye/sv-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5"
2023-10-25 21:31:24,937 ----------------------------------------------------------------------------------------------------
2023-10-25 21:31:24,937 ----------------------------------------------------------------------------------------------------
2023-10-25 21:31:24,937 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-25 21:31:25,855 epoch 1 - iter 13/136 - loss 2.67862976 - time (sec): 0.92 - samples/sec: 5455.64 - lr: 0.000003 - momentum: 0.000000
2023-10-25 21:31:26,870 epoch 1 - iter 26/136 - loss 2.31862643 - time (sec): 1.93 - samples/sec: 5241.39 - lr: 0.000006 - momentum: 0.000000
2023-10-25 21:31:27,857 epoch 1 - iter 39/136 - loss 1.79659135 - time (sec): 2.92 - samples/sec: 5245.24 - lr: 0.000008 - momentum: 0.000000
2023-10-25 21:31:28,918 epoch 1 - iter 52/136 - loss 1.46309717 - time (sec): 3.98 - samples/sec: 5273.26 - lr: 0.000011 - momentum: 0.000000
2023-10-25 21:31:29,964 epoch 1 - iter 65/136 - loss 1.28129944 - time (sec): 5.03 - samples/sec: 5140.43 - lr: 0.000014 - momentum: 0.000000
2023-10-25 21:31:31,013 epoch 1 - iter 78/136 - loss 1.14224358 - time (sec): 6.07 - samples/sec: 5077.33 - lr: 0.000017 - momentum: 0.000000
2023-10-25 21:31:32,039 epoch 1 - iter 91/136 - loss 1.02123046 - time (sec): 7.10 - samples/sec: 5116.90 - lr: 0.000020 - momentum: 0.000000
2023-10-25 21:31:33,016 epoch 1 - iter 104/136 - loss 0.93704629 - time (sec): 8.08 - samples/sec: 5082.36 - lr: 0.000023 - momentum: 0.000000
2023-10-25 21:31:34,048 epoch 1 - iter 117/136 - loss 0.86134920 - time (sec): 9.11 - samples/sec: 5049.79 - lr: 0.000026 - momentum: 0.000000
2023-10-25 21:31:34,972 epoch 1 - iter 130/136 - loss 0.81315635 - time (sec): 10.03 - samples/sec: 4978.28 - lr: 0.000028 - momentum: 0.000000
2023-10-25 21:31:35,395 ----------------------------------------------------------------------------------------------------
2023-10-25 21:31:35,395 EPOCH 1 done: loss 0.7886 - lr: 0.000028
2023-10-25 21:31:36,496 DEV : loss 0.15381869673728943 - f1-score (micro avg)  0.6475
2023-10-25 21:31:36,503 saving best model
2023-10-25 21:31:37,020 ----------------------------------------------------------------------------------------------------
2023-10-25 21:31:38,009 epoch 2 - iter 13/136 - loss 0.14729279 - time (sec): 0.99 - samples/sec: 5174.73 - lr: 0.000030 - momentum: 0.000000
2023-10-25 21:31:38,993 epoch 2 - iter 26/136 - loss 0.17121608 - time (sec): 1.97 - samples/sec: 5363.99 - lr: 0.000029 - momentum: 0.000000
2023-10-25 21:31:40,025 epoch 2 - iter 39/136 - loss 0.16370443 - time (sec): 3.00 - samples/sec: 4965.75 - lr: 0.000029 - momentum: 0.000000
2023-10-25 21:31:41,014 epoch 2 - iter 52/136 - loss 0.15904671 - time (sec): 3.99 - samples/sec: 4935.00 - lr: 0.000029 - momentum: 0.000000
2023-10-25 21:31:41,969 epoch 2 - iter 65/136 - loss 0.15169814 - time (sec): 4.95 - samples/sec: 4959.65 - lr: 0.000028 - momentum: 0.000000
2023-10-25 21:31:42,925 epoch 2 - iter 78/136 - loss 0.15515706 - time (sec): 5.90 - samples/sec: 5047.51 - lr: 0.000028 - momentum: 0.000000
2023-10-25 21:31:43,922 epoch 2 - iter 91/136 - loss 0.15141408 - time (sec): 6.90 - samples/sec: 5069.46 - lr: 0.000028 - momentum: 0.000000
2023-10-25 21:31:44,959 epoch 2 - iter 104/136 - loss 0.15001351 - time (sec): 7.94 - samples/sec: 4974.03 - lr: 0.000027 - momentum: 0.000000
2023-10-25 21:31:45,937 epoch 2 - iter 117/136 - loss 0.14937968 - time (sec): 8.92 - samples/sec: 5053.65 - lr: 0.000027 - momentum: 0.000000
2023-10-25 21:31:46,900 epoch 2 - iter 130/136 - loss 0.14671523 - time (sec): 9.88 - samples/sec: 5019.57 - lr: 0.000027 - momentum: 0.000000
2023-10-25 21:31:47,358 ----------------------------------------------------------------------------------------------------
2023-10-25 21:31:47,359 EPOCH 2 done: loss 0.1457 - lr: 0.000027
2023-10-25 21:31:48,659 DEV : loss 0.10822859406471252 - f1-score (micro avg)  0.7601
2023-10-25 21:31:48,666 saving best model
2023-10-25 21:31:49,411 ----------------------------------------------------------------------------------------------------
2023-10-25 21:31:50,343 epoch 3 - iter 13/136 - loss 0.09159492 - time (sec): 0.93 - samples/sec: 4581.24 - lr: 0.000026 - momentum: 0.000000
2023-10-25 21:31:51,270 epoch 3 - iter 26/136 - loss 0.09188390 - time (sec): 1.86 - samples/sec: 4829.89 - lr: 0.000026 - momentum: 0.000000
2023-10-25 21:31:52,317 epoch 3 - iter 39/136 - loss 0.07817653 - time (sec): 2.90 - samples/sec: 4913.41 - lr: 0.000026 - momentum: 0.000000
2023-10-25 21:31:53,237 epoch 3 - iter 52/136 - loss 0.07930223 - time (sec): 3.82 - samples/sec: 4985.05 - lr: 0.000025 - momentum: 0.000000
2023-10-25 21:31:54,301 epoch 3 - iter 65/136 - loss 0.07711853 - time (sec): 4.89 - samples/sec: 4930.78 - lr: 0.000025 - momentum: 0.000000
2023-10-25 21:31:55,353 epoch 3 - iter 78/136 - loss 0.07404006 - time (sec): 5.94 - samples/sec: 5104.97 - lr: 0.000025 - momentum: 0.000000
2023-10-25 21:31:56,460 epoch 3 - iter 91/136 - loss 0.07528584 - time (sec): 7.05 - samples/sec: 5062.43 - lr: 0.000024 - momentum: 0.000000
2023-10-25 21:31:57,382 epoch 3 - iter 104/136 - loss 0.07545838 - time (sec): 7.97 - samples/sec: 5024.83 - lr: 0.000024 - momentum: 0.000000
2023-10-25 21:31:58,355 epoch 3 - iter 117/136 - loss 0.07590779 - time (sec): 8.94 - samples/sec: 4957.33 - lr: 0.000024 - momentum: 0.000000
2023-10-25 21:31:59,312 epoch 3 - iter 130/136 - loss 0.07606308 - time (sec): 9.90 - samples/sec: 4978.39 - lr: 0.000024 - momentum: 0.000000
2023-10-25 21:31:59,829 ----------------------------------------------------------------------------------------------------
2023-10-25 21:31:59,830 EPOCH 3 done: loss 0.0758 - lr: 0.000024
2023-10-25 21:32:01,578 DEV : loss 0.10140043497085571 - f1-score (micro avg)  0.7633
2023-10-25 21:32:01,585 saving best model
2023-10-25 21:32:02,308 ----------------------------------------------------------------------------------------------------
2023-10-25 21:32:03,306 epoch 4 - iter 13/136 - loss 0.04720147 - time (sec): 1.00 - samples/sec: 5398.05 - lr: 0.000023 - momentum: 0.000000
2023-10-25 21:32:04,364 epoch 4 - iter 26/136 - loss 0.04723812 - time (sec): 2.05 - samples/sec: 5475.58 - lr: 0.000023 - momentum: 0.000000
2023-10-25 21:32:05,451 epoch 4 - iter 39/136 - loss 0.04375497 - time (sec): 3.14 - samples/sec: 5265.04 - lr: 0.000022 - momentum: 0.000000
2023-10-25 21:32:06,345 epoch 4 - iter 52/136 - loss 0.04366552 - time (sec): 4.04 - samples/sec: 5215.14 - lr: 0.000022 - momentum: 0.000000
2023-10-25 21:32:07,242 epoch 4 - iter 65/136 - loss 0.04276438 - time (sec): 4.93 - samples/sec: 5140.59 - lr: 0.000022 - momentum: 0.000000
2023-10-25 21:32:08,243 epoch 4 - iter 78/136 - loss 0.04392016 - time (sec): 5.93 - samples/sec: 5061.38 - lr: 0.000021 - momentum: 0.000000
2023-10-25 21:32:09,338 epoch 4 - iter 91/136 - loss 0.04355417 - time (sec): 7.03 - samples/sec: 5010.34 - lr: 0.000021 - momentum: 0.000000
2023-10-25 21:32:10,401 epoch 4 - iter 104/136 - loss 0.04553449 - time (sec): 8.09 - samples/sec: 5030.91 - lr: 0.000021 - momentum: 0.000000
2023-10-25 21:32:11,297 epoch 4 - iter 117/136 - loss 0.04613281 - time (sec): 8.99 - samples/sec: 5012.27 - lr: 0.000021 - momentum: 0.000000
2023-10-25 21:32:12,347 epoch 4 - iter 130/136 - loss 0.04531020 - time (sec): 10.04 - samples/sec: 4970.93 - lr: 0.000020 - momentum: 0.000000
2023-10-25 21:32:12,767 ----------------------------------------------------------------------------------------------------
2023-10-25 21:32:12,767 EPOCH 4 done: loss 0.0456 - lr: 0.000020
2023-10-25 21:32:14,146 DEV : loss 0.10330618172883987 - f1-score (micro avg)  0.8
2023-10-25 21:32:14,152 saving best model
2023-10-25 21:32:14,883 ----------------------------------------------------------------------------------------------------
2023-10-25 21:32:15,913 epoch 5 - iter 13/136 - loss 0.02499789 - time (sec): 1.03 - samples/sec: 4912.36 - lr: 0.000020 - momentum: 0.000000
2023-10-25 21:32:16,874 epoch 5 - iter 26/136 - loss 0.01992048 - time (sec): 1.99 - samples/sec: 4736.67 - lr: 0.000019 - momentum: 0.000000
2023-10-25 21:32:17,823 epoch 5 - iter 39/136 - loss 0.02764478 - time (sec): 2.94 - samples/sec: 4782.33 - lr: 0.000019 - momentum: 0.000000
2023-10-25 21:32:18,798 epoch 5 - iter 52/136 - loss 0.02728486 - time (sec): 3.91 - samples/sec: 4825.41 - lr: 0.000019 - momentum: 0.000000
2023-10-25 21:32:19,695 epoch 5 - iter 65/136 - loss 0.03034797 - time (sec): 4.81 - samples/sec: 4828.95 - lr: 0.000018 - momentum: 0.000000
2023-10-25 21:32:20,826 epoch 5 - iter 78/136 - loss 0.03063707 - time (sec): 5.94 - samples/sec: 4901.53 - lr: 0.000018 - momentum: 0.000000
2023-10-25 21:32:22,099 epoch 5 - iter 91/136 - loss 0.03029661 - time (sec): 7.21 - samples/sec: 4867.24 - lr: 0.000018 - momentum: 0.000000
2023-10-25 21:32:23,087 epoch 5 - iter 104/136 - loss 0.03057002 - time (sec): 8.20 - samples/sec: 4899.67 - lr: 0.000018 - momentum: 0.000000
2023-10-25 21:32:23,977 epoch 5 - iter 117/136 - loss 0.03238794 - time (sec): 9.09 - samples/sec: 4905.19 - lr: 0.000017 - momentum: 0.000000
2023-10-25 21:32:24,939 epoch 5 - iter 130/136 - loss 0.03113197 - time (sec): 10.05 - samples/sec: 4943.76 - lr: 0.000017 - momentum: 0.000000
2023-10-25 21:32:25,365 ----------------------------------------------------------------------------------------------------
2023-10-25 21:32:25,366 EPOCH 5 done: loss 0.0304 - lr: 0.000017
2023-10-25 21:32:27,025 DEV : loss 0.1195770800113678 - f1-score (micro avg)  0.8037
2023-10-25 21:32:27,032 saving best model
2023-10-25 21:32:27,749 ----------------------------------------------------------------------------------------------------
2023-10-25 21:32:28,803 epoch 6 - iter 13/136 - loss 0.01756530 - time (sec): 1.05 - samples/sec: 5366.79 - lr: 0.000016 - momentum: 0.000000
2023-10-25 21:32:29,850 epoch 6 - iter 26/136 - loss 0.02348632 - time (sec): 2.10 - samples/sec: 5058.44 - lr: 0.000016 - momentum: 0.000000
2023-10-25 21:32:30,796 epoch 6 - iter 39/136 - loss 0.02052357 - time (sec): 3.05 - samples/sec: 5110.69 - lr: 0.000016 - momentum: 0.000000
2023-10-25 21:32:31,849 epoch 6 - iter 52/136 - loss 0.02138897 - time (sec): 4.10 - samples/sec: 4940.68 - lr: 0.000015 - momentum: 0.000000
2023-10-25 21:32:32,811 epoch 6 - iter 65/136 - loss 0.02488717 - time (sec): 5.06 - samples/sec: 4853.29 - lr: 0.000015 - momentum: 0.000000
2023-10-25 21:32:33,815 epoch 6 - iter 78/136 - loss 0.02260196 - time (sec): 6.06 - samples/sec: 4945.45 - lr: 0.000015 - momentum: 0.000000
2023-10-25 21:32:34,799 epoch 6 - iter 91/136 - loss 0.02378811 - time (sec): 7.05 - samples/sec: 4971.81 - lr: 0.000015 - momentum: 0.000000
2023-10-25 21:32:35,887 epoch 6 - iter 104/136 - loss 0.02407465 - time (sec): 8.14 - samples/sec: 5025.23 - lr: 0.000014 - momentum: 0.000000
2023-10-25 21:32:36,916 epoch 6 - iter 117/136 - loss 0.02377918 - time (sec): 9.17 - samples/sec: 4953.62 - lr: 0.000014 - momentum: 0.000000
2023-10-25 21:32:37,826 epoch 6 - iter 130/136 - loss 0.02268322 - time (sec): 10.08 - samples/sec: 5001.50 - lr: 0.000014 - momentum: 0.000000
2023-10-25 21:32:38,197 ----------------------------------------------------------------------------------------------------
2023-10-25 21:32:38,197 EPOCH 6 done: loss 0.0222 - lr: 0.000014
2023-10-25 21:32:39,383 DEV : loss 0.1351010650396347 - f1-score (micro avg)  0.7927
2023-10-25 21:32:39,390 ----------------------------------------------------------------------------------------------------
2023-10-25 21:32:40,439 epoch 7 - iter 13/136 - loss 0.01667780 - time (sec): 1.05 - samples/sec: 4199.34 - lr: 0.000013 - momentum: 0.000000
2023-10-25 21:32:41,346 epoch 7 - iter 26/136 - loss 0.01388388 - time (sec): 1.95 - samples/sec: 4535.34 - lr: 0.000013 - momentum: 0.000000
2023-10-25 21:32:42,346 epoch 7 - iter 39/136 - loss 0.01450612 - time (sec): 2.95 - samples/sec: 4460.74 - lr: 0.000012 - momentum: 0.000000
2023-10-25 21:32:43,416 epoch 7 - iter 52/136 - loss 0.01658526 - time (sec): 4.03 - samples/sec: 4680.42 - lr: 0.000012 - momentum: 0.000000
2023-10-25 21:32:44,330 epoch 7 - iter 65/136 - loss 0.01539127 - time (sec): 4.94 - samples/sec: 4724.57 - lr: 0.000012 - momentum: 0.000000
2023-10-25 21:32:45,264 epoch 7 - iter 78/136 - loss 0.01885348 - time (sec): 5.87 - samples/sec: 4879.61 - lr: 0.000012 - momentum: 0.000000
2023-10-25 21:32:46,287 epoch 7 - iter 91/136 - loss 0.01876729 - time (sec): 6.90 - samples/sec: 4938.69 - lr: 0.000011 - momentum: 0.000000
2023-10-25 21:32:47,232 epoch 7 - iter 104/136 - loss 0.01819473 - time (sec): 7.84 - samples/sec: 4961.39 - lr: 0.000011 - momentum: 0.000000
2023-10-25 21:32:48,233 epoch 7 - iter 117/136 - loss 0.01693316 - time (sec): 8.84 - samples/sec: 5000.54 - lr: 0.000011 - momentum: 0.000000
2023-10-25 21:32:49,163 epoch 7 - iter 130/136 - loss 0.01647128 - time (sec): 9.77 - samples/sec: 5032.42 - lr: 0.000010 - momentum: 0.000000
2023-10-25 21:32:49,680 ----------------------------------------------------------------------------------------------------
2023-10-25 21:32:49,681 EPOCH 7 done: loss 0.0166 - lr: 0.000010
2023-10-25 21:32:50,858 DEV : loss 0.1340150088071823 - f1-score (micro avg)  0.8
2023-10-25 21:32:50,865 ----------------------------------------------------------------------------------------------------
2023-10-25 21:32:52,199 epoch 8 - iter 13/136 - loss 0.00560534 - time (sec): 1.33 - samples/sec: 3356.32 - lr: 0.000010 - momentum: 0.000000
2023-10-25 21:32:53,265 epoch 8 - iter 26/136 - loss 0.00976307 - time (sec): 2.40 - samples/sec: 4207.42 - lr: 0.000009 - momentum: 0.000000
2023-10-25 21:32:54,304 epoch 8 - iter 39/136 - loss 0.01070634 - time (sec): 3.44 - samples/sec: 4583.64 - lr: 0.000009 - momentum: 0.000000
2023-10-25 21:32:55,296 epoch 8 - iter 52/136 - loss 0.01208915 - time (sec): 4.43 - samples/sec: 4643.84 - lr: 0.000009 - momentum: 0.000000
2023-10-25 21:32:56,323 epoch 8 - iter 65/136 - loss 0.01109595 - time (sec): 5.46 - samples/sec: 4568.73 - lr: 0.000009 - momentum: 0.000000
2023-10-25 21:32:57,330 epoch 8 - iter 78/136 - loss 0.01173631 - time (sec): 6.46 - samples/sec: 4733.52 - lr: 0.000008 - momentum: 0.000000
2023-10-25 21:32:58,296 epoch 8 - iter 91/136 - loss 0.01105965 - time (sec): 7.43 - samples/sec: 4775.36 - lr: 0.000008 - momentum: 0.000000
2023-10-25 21:32:59,316 epoch 8 - iter 104/136 - loss 0.01148285 - time (sec): 8.45 - samples/sec: 4777.31 - lr: 0.000008 - momentum: 0.000000
2023-10-25 21:33:00,234 epoch 8 - iter 117/136 - loss 0.01174659 - time (sec): 9.37 - samples/sec: 4800.88 - lr: 0.000007 - momentum: 0.000000
2023-10-25 21:33:01,265 epoch 8 - iter 130/136 - loss 0.01071709 - time (sec): 10.40 - samples/sec: 4801.33 - lr: 0.000007 - momentum: 0.000000
2023-10-25 21:33:01,692 ----------------------------------------------------------------------------------------------------
2023-10-25 21:33:01,693 EPOCH 8 done: loss 0.0121 - lr: 0.000007
2023-10-25 21:33:02,845 DEV : loss 0.16605901718139648 - f1-score (micro avg)  0.8051
2023-10-25 21:33:02,852 saving best model
2023-10-25 21:33:03,579 ----------------------------------------------------------------------------------------------------
2023-10-25 21:33:04,564 epoch 9 - iter 13/136 - loss 0.00519371 - time (sec): 0.98 - samples/sec: 4935.82 - lr: 0.000006 - momentum: 0.000000
2023-10-25 21:33:05,403 epoch 9 - iter 26/136 - loss 0.00741030 - time (sec): 1.81 - samples/sec: 4742.54 - lr: 0.000006 - momentum: 0.000000
2023-10-25 21:33:06,394 epoch 9 - iter 39/136 - loss 0.00860202 - time (sec): 2.81 - samples/sec: 4879.48 - lr: 0.000006 - momentum: 0.000000
2023-10-25 21:33:07,354 epoch 9 - iter 52/136 - loss 0.00994720 - time (sec): 3.76 - samples/sec: 4840.00 - lr: 0.000006 - momentum: 0.000000
2023-10-25 21:33:08,435 epoch 9 - iter 65/136 - loss 0.00914803 - time (sec): 4.85 - samples/sec: 4892.40 - lr: 0.000005 - momentum: 0.000000
2023-10-25 21:33:09,545 epoch 9 - iter 78/136 - loss 0.00869169 - time (sec): 5.96 - samples/sec: 4949.71 - lr: 0.000005 - momentum: 0.000000
2023-10-25 21:33:10,573 epoch 9 - iter 91/136 - loss 0.00816170 - time (sec): 6.98 - samples/sec: 5004.09 - lr: 0.000005 - momentum: 0.000000
2023-10-25 21:33:11,706 epoch 9 - iter 104/136 - loss 0.00799395 - time (sec): 8.12 - samples/sec: 5036.45 - lr: 0.000004 - momentum: 0.000000
2023-10-25 21:33:12,646 epoch 9 - iter 117/136 - loss 0.00901235 - time (sec): 9.06 - samples/sec: 5069.49 - lr: 0.000004 - momentum: 0.000000
2023-10-25 21:33:13,534 epoch 9 - iter 130/136 - loss 0.00901908 - time (sec): 9.95 - samples/sec: 5056.08 - lr: 0.000004 - momentum: 0.000000
2023-10-25 21:33:13,901 ----------------------------------------------------------------------------------------------------
2023-10-25 21:33:13,901 EPOCH 9 done: loss 0.0090 - lr: 0.000004
2023-10-25 21:33:15,092 DEV : loss 0.17188507318496704 - f1-score (micro avg)  0.8124
2023-10-25 21:33:15,098 saving best model
2023-10-25 21:33:15,802 ----------------------------------------------------------------------------------------------------
2023-10-25 21:33:16,783 epoch 10 - iter 13/136 - loss 0.00872606 - time (sec): 0.97 - samples/sec: 4629.98 - lr: 0.000003 - momentum: 0.000000
2023-10-25 21:33:17,714 epoch 10 - iter 26/136 - loss 0.01279988 - time (sec): 1.91 - samples/sec: 4849.49 - lr: 0.000003 - momentum: 0.000000
2023-10-25 21:33:19,030 epoch 10 - iter 39/136 - loss 0.00977020 - time (sec): 3.22 - samples/sec: 4685.56 - lr: 0.000003 - momentum: 0.000000
2023-10-25 21:33:19,887 epoch 10 - iter 52/136 - loss 0.00929420 - time (sec): 4.08 - samples/sec: 4725.22 - lr: 0.000002 - momentum: 0.000000
2023-10-25 21:33:20,819 epoch 10 - iter 65/136 - loss 0.00906255 - time (sec): 5.01 - samples/sec: 4785.44 - lr: 0.000002 - momentum: 0.000000
2023-10-25 21:33:21,900 epoch 10 - iter 78/136 - loss 0.00778176 - time (sec): 6.09 - samples/sec: 4778.21 - lr: 0.000002 - momentum: 0.000000
2023-10-25 21:33:22,977 epoch 10 - iter 91/136 - loss 0.00714978 - time (sec): 7.17 - samples/sec: 4762.80 - lr: 0.000001 - momentum: 0.000000
2023-10-25 21:33:23,940 epoch 10 - iter 104/136 - loss 0.00657170 - time (sec): 8.13 - samples/sec: 4838.79 - lr: 0.000001 - momentum: 0.000000
2023-10-25 21:33:24,878 epoch 10 - iter 117/136 - loss 0.00701785 - time (sec): 9.07 - samples/sec: 4910.58 - lr: 0.000001 - momentum: 0.000000
2023-10-25 21:33:25,928 epoch 10 - iter 130/136 - loss 0.00745080 - time (sec): 10.12 - samples/sec: 4919.23 - lr: 0.000000 - momentum: 0.000000
2023-10-25 21:33:26,456 ----------------------------------------------------------------------------------------------------
2023-10-25 21:33:26,457 EPOCH 10 done: loss 0.0077 - lr: 0.000000
2023-10-25 21:33:27,624 DEV : loss 0.16700904071331024 - f1-score (micro avg)  0.8145
2023-10-25 21:33:27,630 saving best model
2023-10-25 21:33:28,840 ----------------------------------------------------------------------------------------------------
2023-10-25 21:33:28,841 Loading model from best epoch ...
2023-10-25 21:33:30,739 SequenceTagger predicts: Dictionary with 17 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd, S-ORG, B-ORG, E-ORG, I-ORG
2023-10-25 21:33:32,729 
Results:
- F-score (micro) 0.7818
- F-score (macro) 0.7411
- Accuracy 0.657

By class:
              precision    recall  f1-score   support

         LOC     0.7959    0.8622    0.8277       312
         PER     0.6894    0.8750    0.7712       208
         ORG     0.5400    0.4909    0.5143        55
   HumanProd     0.8000    0.9091    0.8511        22

   micro avg     0.7356    0.8342    0.7818       597
   macro avg     0.7063    0.7843    0.7411       597
weighted avg     0.7353    0.8342    0.7800       597

2023-10-25 21:33:32,729 ----------------------------------------------------------------------------------------------------