File size: 25,329 Bytes
a0a4edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
2023-10-10 21:12:02,183 ----------------------------------------------------------------------------------------------------
2023-10-10 21:12:02,186 Model: "SequenceTagger(
  (embeddings): ByT5Embeddings(
    (model): T5EncoderModel(
      (shared): Embedding(384, 1472)
      (encoder): T5Stack(
        (embed_tokens): Embedding(384, 1472)
        (block): ModuleList(
          (0): T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                  (relative_attention_bias): Embedding(32, 6)
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
          (1-11): 11 x T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
        )
        (final_layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=1472, out_features=17, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-10 21:12:02,186 ----------------------------------------------------------------------------------------------------
2023-10-10 21:12:02,186 MultiCorpus: 7142 train + 698 dev + 2570 test sentences
 - NER_HIPE_2022 Corpus: 7142 train + 698 dev + 2570 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/fr/with_doc_seperator
2023-10-10 21:12:02,186 ----------------------------------------------------------------------------------------------------
2023-10-10 21:12:02,186 Train:  7142 sentences
2023-10-10 21:12:02,186         (train_with_dev=False, train_with_test=False)
2023-10-10 21:12:02,186 ----------------------------------------------------------------------------------------------------
2023-10-10 21:12:02,186 Training Params:
2023-10-10 21:12:02,187  - learning_rate: "0.00016" 
2023-10-10 21:12:02,187  - mini_batch_size: "8"
2023-10-10 21:12:02,187  - max_epochs: "10"
2023-10-10 21:12:02,187  - shuffle: "True"
2023-10-10 21:12:02,187 ----------------------------------------------------------------------------------------------------
2023-10-10 21:12:02,187 Plugins:
2023-10-10 21:12:02,187  - TensorboardLogger
2023-10-10 21:12:02,187  - LinearScheduler | warmup_fraction: '0.1'
2023-10-10 21:12:02,187 ----------------------------------------------------------------------------------------------------
2023-10-10 21:12:02,187 Final evaluation on model from best epoch (best-model.pt)
2023-10-10 21:12:02,187  - metric: "('micro avg', 'f1-score')"
2023-10-10 21:12:02,187 ----------------------------------------------------------------------------------------------------
2023-10-10 21:12:02,187 Computation:
2023-10-10 21:12:02,187  - compute on device: cuda:0
2023-10-10 21:12:02,188  - embedding storage: none
2023-10-10 21:12:02,188 ----------------------------------------------------------------------------------------------------
2023-10-10 21:12:02,188 Model training base path: "hmbench-newseye/fr-hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax-bs8-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-1"
2023-10-10 21:12:02,188 ----------------------------------------------------------------------------------------------------
2023-10-10 21:12:02,188 ----------------------------------------------------------------------------------------------------
2023-10-10 21:12:02,188 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-10 21:12:55,812 epoch 1 - iter 89/893 - loss 2.82831623 - time (sec): 53.62 - samples/sec: 475.14 - lr: 0.000016 - momentum: 0.000000
2023-10-10 21:13:49,028 epoch 1 - iter 178/893 - loss 2.77409191 - time (sec): 106.84 - samples/sec: 471.84 - lr: 0.000032 - momentum: 0.000000
2023-10-10 21:14:41,947 epoch 1 - iter 267/893 - loss 2.58893902 - time (sec): 159.76 - samples/sec: 469.74 - lr: 0.000048 - momentum: 0.000000
2023-10-10 21:15:34,481 epoch 1 - iter 356/893 - loss 2.35977449 - time (sec): 212.29 - samples/sec: 468.65 - lr: 0.000064 - momentum: 0.000000
2023-10-10 21:16:29,178 epoch 1 - iter 445/893 - loss 2.09834694 - time (sec): 266.99 - samples/sec: 470.82 - lr: 0.000080 - momentum: 0.000000
2023-10-10 21:17:21,664 epoch 1 - iter 534/893 - loss 1.88678651 - time (sec): 319.47 - samples/sec: 465.84 - lr: 0.000095 - momentum: 0.000000
2023-10-10 21:18:14,012 epoch 1 - iter 623/893 - loss 1.70594199 - time (sec): 371.82 - samples/sec: 463.66 - lr: 0.000111 - momentum: 0.000000
2023-10-10 21:19:05,643 epoch 1 - iter 712/893 - loss 1.54482663 - time (sec): 423.45 - samples/sec: 466.76 - lr: 0.000127 - momentum: 0.000000
2023-10-10 21:19:56,253 epoch 1 - iter 801/893 - loss 1.41640141 - time (sec): 474.06 - samples/sec: 471.26 - lr: 0.000143 - momentum: 0.000000
2023-10-10 21:20:46,274 epoch 1 - iter 890/893 - loss 1.31458924 - time (sec): 524.08 - samples/sec: 473.16 - lr: 0.000159 - momentum: 0.000000
2023-10-10 21:20:47,807 ----------------------------------------------------------------------------------------------------
2023-10-10 21:20:47,807 EPOCH 1 done: loss 1.3116 - lr: 0.000159
2023-10-10 21:21:07,697 DEV : loss 0.283738374710083 - f1-score (micro avg)  0.2694
2023-10-10 21:21:07,728 saving best model
2023-10-10 21:21:08,577 ----------------------------------------------------------------------------------------------------
2023-10-10 21:22:00,389 epoch 2 - iter 89/893 - loss 0.31517413 - time (sec): 51.81 - samples/sec: 510.50 - lr: 0.000158 - momentum: 0.000000
2023-10-10 21:22:49,744 epoch 2 - iter 178/893 - loss 0.30864388 - time (sec): 101.16 - samples/sec: 498.63 - lr: 0.000156 - momentum: 0.000000
2023-10-10 21:23:41,490 epoch 2 - iter 267/893 - loss 0.29140884 - time (sec): 152.91 - samples/sec: 485.83 - lr: 0.000155 - momentum: 0.000000
2023-10-10 21:24:33,788 epoch 2 - iter 356/893 - loss 0.27172420 - time (sec): 205.21 - samples/sec: 484.09 - lr: 0.000153 - momentum: 0.000000
2023-10-10 21:25:26,569 epoch 2 - iter 445/893 - loss 0.25547354 - time (sec): 257.99 - samples/sec: 481.26 - lr: 0.000151 - momentum: 0.000000
2023-10-10 21:26:18,173 epoch 2 - iter 534/893 - loss 0.24503363 - time (sec): 309.59 - samples/sec: 478.48 - lr: 0.000149 - momentum: 0.000000
2023-10-10 21:27:10,956 epoch 2 - iter 623/893 - loss 0.23162160 - time (sec): 362.38 - samples/sec: 478.84 - lr: 0.000148 - momentum: 0.000000
2023-10-10 21:28:04,603 epoch 2 - iter 712/893 - loss 0.22016367 - time (sec): 416.02 - samples/sec: 479.91 - lr: 0.000146 - momentum: 0.000000
2023-10-10 21:28:55,788 epoch 2 - iter 801/893 - loss 0.21046665 - time (sec): 467.21 - samples/sec: 478.78 - lr: 0.000144 - momentum: 0.000000
2023-10-10 21:29:46,943 epoch 2 - iter 890/893 - loss 0.20217199 - time (sec): 518.36 - samples/sec: 478.66 - lr: 0.000142 - momentum: 0.000000
2023-10-10 21:29:48,400 ----------------------------------------------------------------------------------------------------
2023-10-10 21:29:48,400 EPOCH 2 done: loss 0.2019 - lr: 0.000142
2023-10-10 21:30:10,827 DEV : loss 0.11071376502513885 - f1-score (micro avg)  0.7305
2023-10-10 21:30:10,860 saving best model
2023-10-10 21:30:19,632 ----------------------------------------------------------------------------------------------------
2023-10-10 21:31:11,573 epoch 3 - iter 89/893 - loss 0.09192063 - time (sec): 51.94 - samples/sec: 459.99 - lr: 0.000140 - momentum: 0.000000
2023-10-10 21:32:03,261 epoch 3 - iter 178/893 - loss 0.08757251 - time (sec): 103.62 - samples/sec: 476.56 - lr: 0.000139 - momentum: 0.000000
2023-10-10 21:32:55,633 epoch 3 - iter 267/893 - loss 0.08958475 - time (sec): 156.00 - samples/sec: 474.65 - lr: 0.000137 - momentum: 0.000000
2023-10-10 21:33:46,581 epoch 3 - iter 356/893 - loss 0.09204390 - time (sec): 206.94 - samples/sec: 470.62 - lr: 0.000135 - momentum: 0.000000
2023-10-10 21:34:40,061 epoch 3 - iter 445/893 - loss 0.09030135 - time (sec): 260.42 - samples/sec: 473.36 - lr: 0.000133 - momentum: 0.000000
2023-10-10 21:35:33,000 epoch 3 - iter 534/893 - loss 0.08756515 - time (sec): 313.36 - samples/sec: 472.67 - lr: 0.000132 - momentum: 0.000000
2023-10-10 21:36:28,115 epoch 3 - iter 623/893 - loss 0.08431353 - time (sec): 368.48 - samples/sec: 469.26 - lr: 0.000130 - momentum: 0.000000
2023-10-10 21:37:19,051 epoch 3 - iter 712/893 - loss 0.08334354 - time (sec): 419.41 - samples/sec: 473.01 - lr: 0.000128 - momentum: 0.000000
2023-10-10 21:38:10,924 epoch 3 - iter 801/893 - loss 0.08188831 - time (sec): 471.29 - samples/sec: 477.66 - lr: 0.000126 - momentum: 0.000000
2023-10-10 21:38:59,366 epoch 3 - iter 890/893 - loss 0.08186637 - time (sec): 519.73 - samples/sec: 477.20 - lr: 0.000125 - momentum: 0.000000
2023-10-10 21:39:00,986 ----------------------------------------------------------------------------------------------------
2023-10-10 21:39:00,986 EPOCH 3 done: loss 0.0818 - lr: 0.000125
2023-10-10 21:39:23,280 DEV : loss 0.1093674823641777 - f1-score (micro avg)  0.7573
2023-10-10 21:39:23,310 saving best model
2023-10-10 21:39:29,432 ----------------------------------------------------------------------------------------------------
2023-10-10 21:40:20,072 epoch 4 - iter 89/893 - loss 0.04796913 - time (sec): 50.64 - samples/sec: 492.08 - lr: 0.000123 - momentum: 0.000000
2023-10-10 21:41:10,758 epoch 4 - iter 178/893 - loss 0.05118746 - time (sec): 101.32 - samples/sec: 485.71 - lr: 0.000121 - momentum: 0.000000
2023-10-10 21:42:02,462 epoch 4 - iter 267/893 - loss 0.05230464 - time (sec): 153.03 - samples/sec: 482.23 - lr: 0.000119 - momentum: 0.000000
2023-10-10 21:42:54,950 epoch 4 - iter 356/893 - loss 0.05482020 - time (sec): 205.51 - samples/sec: 482.78 - lr: 0.000117 - momentum: 0.000000
2023-10-10 21:43:49,144 epoch 4 - iter 445/893 - loss 0.05300902 - time (sec): 259.71 - samples/sec: 483.40 - lr: 0.000116 - momentum: 0.000000
2023-10-10 21:44:41,491 epoch 4 - iter 534/893 - loss 0.05241872 - time (sec): 312.05 - samples/sec: 483.03 - lr: 0.000114 - momentum: 0.000000
2023-10-10 21:45:34,715 epoch 4 - iter 623/893 - loss 0.05109125 - time (sec): 365.28 - samples/sec: 484.73 - lr: 0.000112 - momentum: 0.000000
2023-10-10 21:46:26,148 epoch 4 - iter 712/893 - loss 0.05123523 - time (sec): 416.71 - samples/sec: 483.62 - lr: 0.000110 - momentum: 0.000000
2023-10-10 21:47:16,467 epoch 4 - iter 801/893 - loss 0.05153884 - time (sec): 467.03 - samples/sec: 481.68 - lr: 0.000109 - momentum: 0.000000
2023-10-10 21:48:05,530 epoch 4 - iter 890/893 - loss 0.05165032 - time (sec): 516.09 - samples/sec: 480.77 - lr: 0.000107 - momentum: 0.000000
2023-10-10 21:48:06,971 ----------------------------------------------------------------------------------------------------
2023-10-10 21:48:06,972 EPOCH 4 done: loss 0.0518 - lr: 0.000107
2023-10-10 21:48:29,692 DEV : loss 0.11296474188566208 - f1-score (micro avg)  0.782
2023-10-10 21:48:29,723 saving best model
2023-10-10 21:48:35,782 ----------------------------------------------------------------------------------------------------
2023-10-10 21:49:28,784 epoch 5 - iter 89/893 - loss 0.03597354 - time (sec): 53.00 - samples/sec: 479.80 - lr: 0.000105 - momentum: 0.000000
2023-10-10 21:50:20,053 epoch 5 - iter 178/893 - loss 0.03649107 - time (sec): 104.27 - samples/sec: 466.65 - lr: 0.000103 - momentum: 0.000000
2023-10-10 21:51:12,981 epoch 5 - iter 267/893 - loss 0.03580546 - time (sec): 157.19 - samples/sec: 473.76 - lr: 0.000101 - momentum: 0.000000
2023-10-10 21:52:06,072 epoch 5 - iter 356/893 - loss 0.03754465 - time (sec): 210.29 - samples/sec: 478.75 - lr: 0.000100 - momentum: 0.000000
2023-10-10 21:52:56,908 epoch 5 - iter 445/893 - loss 0.03813979 - time (sec): 261.12 - samples/sec: 472.86 - lr: 0.000098 - momentum: 0.000000
2023-10-10 21:53:47,123 epoch 5 - iter 534/893 - loss 0.03795036 - time (sec): 311.34 - samples/sec: 473.37 - lr: 0.000096 - momentum: 0.000000
2023-10-10 21:54:40,551 epoch 5 - iter 623/893 - loss 0.03843597 - time (sec): 364.76 - samples/sec: 472.83 - lr: 0.000094 - momentum: 0.000000
2023-10-10 21:55:32,349 epoch 5 - iter 712/893 - loss 0.03898741 - time (sec): 416.56 - samples/sec: 475.76 - lr: 0.000093 - momentum: 0.000000
2023-10-10 21:56:23,023 epoch 5 - iter 801/893 - loss 0.03832088 - time (sec): 467.24 - samples/sec: 477.46 - lr: 0.000091 - momentum: 0.000000
2023-10-10 21:57:12,653 epoch 5 - iter 890/893 - loss 0.03812875 - time (sec): 516.87 - samples/sec: 479.88 - lr: 0.000089 - momentum: 0.000000
2023-10-10 21:57:14,185 ----------------------------------------------------------------------------------------------------
2023-10-10 21:57:14,186 EPOCH 5 done: loss 0.0382 - lr: 0.000089
2023-10-10 21:57:36,202 DEV : loss 0.13481374084949493 - f1-score (micro avg)  0.7888
2023-10-10 21:57:36,234 saving best model
2023-10-10 21:57:45,079 ----------------------------------------------------------------------------------------------------
2023-10-10 21:58:34,561 epoch 6 - iter 89/893 - loss 0.02499157 - time (sec): 49.48 - samples/sec: 503.84 - lr: 0.000087 - momentum: 0.000000
2023-10-10 21:59:24,317 epoch 6 - iter 178/893 - loss 0.02831728 - time (sec): 99.23 - samples/sec: 499.20 - lr: 0.000085 - momentum: 0.000000
2023-10-10 22:00:14,930 epoch 6 - iter 267/893 - loss 0.02752569 - time (sec): 149.85 - samples/sec: 501.57 - lr: 0.000084 - momentum: 0.000000
2023-10-10 22:01:06,016 epoch 6 - iter 356/893 - loss 0.02810037 - time (sec): 200.93 - samples/sec: 493.70 - lr: 0.000082 - momentum: 0.000000
2023-10-10 22:01:56,477 epoch 6 - iter 445/893 - loss 0.02752164 - time (sec): 251.39 - samples/sec: 489.39 - lr: 0.000080 - momentum: 0.000000
2023-10-10 22:02:47,904 epoch 6 - iter 534/893 - loss 0.02786169 - time (sec): 302.82 - samples/sec: 488.32 - lr: 0.000078 - momentum: 0.000000
2023-10-10 22:03:40,128 epoch 6 - iter 623/893 - loss 0.02761400 - time (sec): 355.05 - samples/sec: 490.71 - lr: 0.000077 - momentum: 0.000000
2023-10-10 22:04:30,228 epoch 6 - iter 712/893 - loss 0.02792058 - time (sec): 405.15 - samples/sec: 491.45 - lr: 0.000075 - momentum: 0.000000
2023-10-10 22:05:21,277 epoch 6 - iter 801/893 - loss 0.02858658 - time (sec): 456.19 - samples/sec: 492.50 - lr: 0.000073 - momentum: 0.000000
2023-10-10 22:06:11,127 epoch 6 - iter 890/893 - loss 0.02899685 - time (sec): 506.04 - samples/sec: 490.13 - lr: 0.000071 - momentum: 0.000000
2023-10-10 22:06:12,768 ----------------------------------------------------------------------------------------------------
2023-10-10 22:06:12,769 EPOCH 6 done: loss 0.0289 - lr: 0.000071
2023-10-10 22:06:34,365 DEV : loss 0.16970570385456085 - f1-score (micro avg)  0.7684
2023-10-10 22:06:34,396 ----------------------------------------------------------------------------------------------------
2023-10-10 22:07:25,120 epoch 7 - iter 89/893 - loss 0.01834186 - time (sec): 50.72 - samples/sec: 500.26 - lr: 0.000069 - momentum: 0.000000
2023-10-10 22:08:14,621 epoch 7 - iter 178/893 - loss 0.02010496 - time (sec): 100.22 - samples/sec: 486.08 - lr: 0.000068 - momentum: 0.000000
2023-10-10 22:09:05,764 epoch 7 - iter 267/893 - loss 0.02031563 - time (sec): 151.37 - samples/sec: 490.13 - lr: 0.000066 - momentum: 0.000000
2023-10-10 22:09:56,686 epoch 7 - iter 356/893 - loss 0.02131291 - time (sec): 202.29 - samples/sec: 489.17 - lr: 0.000064 - momentum: 0.000000
2023-10-10 22:10:46,378 epoch 7 - iter 445/893 - loss 0.02126158 - time (sec): 251.98 - samples/sec: 487.98 - lr: 0.000062 - momentum: 0.000000
2023-10-10 22:11:36,949 epoch 7 - iter 534/893 - loss 0.02104177 - time (sec): 302.55 - samples/sec: 490.11 - lr: 0.000061 - momentum: 0.000000
2023-10-10 22:12:28,625 epoch 7 - iter 623/893 - loss 0.02189809 - time (sec): 354.23 - samples/sec: 488.81 - lr: 0.000059 - momentum: 0.000000
2023-10-10 22:13:19,313 epoch 7 - iter 712/893 - loss 0.02158960 - time (sec): 404.91 - samples/sec: 485.19 - lr: 0.000057 - momentum: 0.000000
2023-10-10 22:14:11,525 epoch 7 - iter 801/893 - loss 0.02192818 - time (sec): 457.13 - samples/sec: 487.63 - lr: 0.000055 - momentum: 0.000000
2023-10-10 22:15:02,258 epoch 7 - iter 890/893 - loss 0.02245709 - time (sec): 507.86 - samples/sec: 488.52 - lr: 0.000053 - momentum: 0.000000
2023-10-10 22:15:03,904 ----------------------------------------------------------------------------------------------------
2023-10-10 22:15:03,904 EPOCH 7 done: loss 0.0224 - lr: 0.000053
2023-10-10 22:15:27,246 DEV : loss 0.16878585517406464 - f1-score (micro avg)  0.781
2023-10-10 22:15:27,280 ----------------------------------------------------------------------------------------------------
2023-10-10 22:16:19,605 epoch 8 - iter 89/893 - loss 0.01907382 - time (sec): 52.32 - samples/sec: 469.29 - lr: 0.000052 - momentum: 0.000000
2023-10-10 22:17:10,982 epoch 8 - iter 178/893 - loss 0.01745040 - time (sec): 103.70 - samples/sec: 467.76 - lr: 0.000050 - momentum: 0.000000
2023-10-10 22:18:02,971 epoch 8 - iter 267/893 - loss 0.01934552 - time (sec): 155.69 - samples/sec: 462.81 - lr: 0.000048 - momentum: 0.000000
2023-10-10 22:18:55,894 epoch 8 - iter 356/893 - loss 0.01839673 - time (sec): 208.61 - samples/sec: 470.60 - lr: 0.000046 - momentum: 0.000000
2023-10-10 22:19:49,404 epoch 8 - iter 445/893 - loss 0.01773640 - time (sec): 262.12 - samples/sec: 468.09 - lr: 0.000045 - momentum: 0.000000
2023-10-10 22:20:42,717 epoch 8 - iter 534/893 - loss 0.01726269 - time (sec): 315.44 - samples/sec: 462.59 - lr: 0.000043 - momentum: 0.000000
2023-10-10 22:21:35,308 epoch 8 - iter 623/893 - loss 0.01741947 - time (sec): 368.03 - samples/sec: 464.14 - lr: 0.000041 - momentum: 0.000000
2023-10-10 22:22:26,901 epoch 8 - iter 712/893 - loss 0.01689766 - time (sec): 419.62 - samples/sec: 465.07 - lr: 0.000039 - momentum: 0.000000
2023-10-10 22:23:20,021 epoch 8 - iter 801/893 - loss 0.01726890 - time (sec): 472.74 - samples/sec: 467.86 - lr: 0.000037 - momentum: 0.000000
2023-10-10 22:24:13,002 epoch 8 - iter 890/893 - loss 0.01701346 - time (sec): 525.72 - samples/sec: 471.25 - lr: 0.000036 - momentum: 0.000000
2023-10-10 22:24:14,799 ----------------------------------------------------------------------------------------------------
2023-10-10 22:24:14,799 EPOCH 8 done: loss 0.0171 - lr: 0.000036
2023-10-10 22:24:38,300 DEV : loss 0.183110311627388 - f1-score (micro avg)  0.7858
2023-10-10 22:24:38,331 ----------------------------------------------------------------------------------------------------
2023-10-10 22:25:29,529 epoch 9 - iter 89/893 - loss 0.01593252 - time (sec): 51.20 - samples/sec: 486.33 - lr: 0.000034 - momentum: 0.000000
2023-10-10 22:26:22,330 epoch 9 - iter 178/893 - loss 0.01574775 - time (sec): 104.00 - samples/sec: 469.56 - lr: 0.000032 - momentum: 0.000000
2023-10-10 22:27:13,972 epoch 9 - iter 267/893 - loss 0.01645156 - time (sec): 155.64 - samples/sec: 480.85 - lr: 0.000030 - momentum: 0.000000
2023-10-10 22:28:04,643 epoch 9 - iter 356/893 - loss 0.01555361 - time (sec): 206.31 - samples/sec: 473.98 - lr: 0.000029 - momentum: 0.000000
2023-10-10 22:28:57,093 epoch 9 - iter 445/893 - loss 0.01523364 - time (sec): 258.76 - samples/sec: 470.80 - lr: 0.000027 - momentum: 0.000000
2023-10-10 22:29:48,190 epoch 9 - iter 534/893 - loss 0.01528624 - time (sec): 309.86 - samples/sec: 471.86 - lr: 0.000025 - momentum: 0.000000
2023-10-10 22:30:38,406 epoch 9 - iter 623/893 - loss 0.01463531 - time (sec): 360.07 - samples/sec: 473.08 - lr: 0.000023 - momentum: 0.000000
2023-10-10 22:31:30,450 epoch 9 - iter 712/893 - loss 0.01411081 - time (sec): 412.12 - samples/sec: 475.02 - lr: 0.000022 - momentum: 0.000000
2023-10-10 22:32:22,181 epoch 9 - iter 801/893 - loss 0.01404007 - time (sec): 463.85 - samples/sec: 476.81 - lr: 0.000020 - momentum: 0.000000
2023-10-10 22:33:14,754 epoch 9 - iter 890/893 - loss 0.01366814 - time (sec): 516.42 - samples/sec: 480.08 - lr: 0.000018 - momentum: 0.000000
2023-10-10 22:33:16,429 ----------------------------------------------------------------------------------------------------
2023-10-10 22:33:16,430 EPOCH 9 done: loss 0.0137 - lr: 0.000018
2023-10-10 22:33:39,324 DEV : loss 0.19475506246089935 - f1-score (micro avg)  0.7882
2023-10-10 22:33:39,354 ----------------------------------------------------------------------------------------------------
2023-10-10 22:34:30,591 epoch 10 - iter 89/893 - loss 0.01252786 - time (sec): 51.23 - samples/sec: 492.58 - lr: 0.000016 - momentum: 0.000000
2023-10-10 22:35:22,707 epoch 10 - iter 178/893 - loss 0.01292130 - time (sec): 103.35 - samples/sec: 476.58 - lr: 0.000014 - momentum: 0.000000
2023-10-10 22:36:14,189 epoch 10 - iter 267/893 - loss 0.01258759 - time (sec): 154.83 - samples/sec: 466.66 - lr: 0.000013 - momentum: 0.000000
2023-10-10 22:37:09,377 epoch 10 - iter 356/893 - loss 0.01217698 - time (sec): 210.02 - samples/sec: 469.59 - lr: 0.000011 - momentum: 0.000000
2023-10-10 22:38:01,970 epoch 10 - iter 445/893 - loss 0.01170757 - time (sec): 262.61 - samples/sec: 475.29 - lr: 0.000009 - momentum: 0.000000
2023-10-10 22:38:54,782 epoch 10 - iter 534/893 - loss 0.01179636 - time (sec): 315.43 - samples/sec: 471.41 - lr: 0.000007 - momentum: 0.000000
2023-10-10 22:39:47,080 epoch 10 - iter 623/893 - loss 0.01205257 - time (sec): 367.72 - samples/sec: 476.23 - lr: 0.000006 - momentum: 0.000000
2023-10-10 22:40:38,533 epoch 10 - iter 712/893 - loss 0.01244404 - time (sec): 419.18 - samples/sec: 473.93 - lr: 0.000004 - momentum: 0.000000
2023-10-10 22:41:28,980 epoch 10 - iter 801/893 - loss 0.01197188 - time (sec): 469.62 - samples/sec: 473.93 - lr: 0.000002 - momentum: 0.000000
2023-10-10 22:42:22,734 epoch 10 - iter 890/893 - loss 0.01189933 - time (sec): 523.38 - samples/sec: 473.94 - lr: 0.000000 - momentum: 0.000000
2023-10-10 22:42:24,281 ----------------------------------------------------------------------------------------------------
2023-10-10 22:42:24,282 EPOCH 10 done: loss 0.0119 - lr: 0.000000
2023-10-10 22:42:46,904 DEV : loss 0.20220361649990082 - f1-score (micro avg)  0.7859
2023-10-10 22:42:47,805 ----------------------------------------------------------------------------------------------------
2023-10-10 22:42:47,807 Loading model from best epoch ...
2023-10-10 22:42:52,366 SequenceTagger predicts: Dictionary with 17 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd
2023-10-10 22:44:04,150 
Results:
- F-score (micro) 0.6943
- F-score (macro) 0.6066
- Accuracy 0.5472

By class:
              precision    recall  f1-score   support

         LOC     0.7046    0.7014    0.7030      1095
         PER     0.7580    0.7737    0.7658      1012
         ORG     0.4698    0.5658    0.5133       357
   HumanProd     0.3509    0.6061    0.4444        33

   micro avg     0.6793    0.7101    0.6943      2497
   macro avg     0.5708    0.6617    0.6066      2497
weighted avg     0.6880    0.7101    0.6979      2497

2023-10-10 22:44:04,150 ----------------------------------------------------------------------------------------------------