File size: 24,359 Bytes
565bafc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
2023-10-19 20:58:16,394 ----------------------------------------------------------------------------------------------------
2023-10-19 20:58:16,394 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 128)
        (position_embeddings): Embedding(512, 128)
        (token_type_embeddings): Embedding(2, 128)
        (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-1): 2 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=128, out_features=128, bias=True)
                (key): Linear(in_features=128, out_features=128, bias=True)
                (value): Linear(in_features=128, out_features=128, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=128, out_features=128, bias=True)
                (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=128, out_features=512, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=512, out_features=128, bias=True)
              (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=128, out_features=128, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=128, out_features=17, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-19 20:58:16,394 ----------------------------------------------------------------------------------------------------
2023-10-19 20:58:16,394 MultiCorpus: 7142 train + 698 dev + 2570 test sentences
 - NER_HIPE_2022 Corpus: 7142 train + 698 dev + 2570 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/fr/with_doc_seperator
2023-10-19 20:58:16,394 ----------------------------------------------------------------------------------------------------
2023-10-19 20:58:16,394 Train:  7142 sentences
2023-10-19 20:58:16,394         (train_with_dev=False, train_with_test=False)
2023-10-19 20:58:16,394 ----------------------------------------------------------------------------------------------------
2023-10-19 20:58:16,395 Training Params:
2023-10-19 20:58:16,395  - learning_rate: "5e-05" 
2023-10-19 20:58:16,395  - mini_batch_size: "4"
2023-10-19 20:58:16,395  - max_epochs: "10"
2023-10-19 20:58:16,395  - shuffle: "True"
2023-10-19 20:58:16,395 ----------------------------------------------------------------------------------------------------
2023-10-19 20:58:16,395 Plugins:
2023-10-19 20:58:16,395  - TensorboardLogger
2023-10-19 20:58:16,395  - LinearScheduler | warmup_fraction: '0.1'
2023-10-19 20:58:16,395 ----------------------------------------------------------------------------------------------------
2023-10-19 20:58:16,395 Final evaluation on model from best epoch (best-model.pt)
2023-10-19 20:58:16,395  - metric: "('micro avg', 'f1-score')"
2023-10-19 20:58:16,395 ----------------------------------------------------------------------------------------------------
2023-10-19 20:58:16,395 Computation:
2023-10-19 20:58:16,395  - compute on device: cuda:0
2023-10-19 20:58:16,395  - embedding storage: none
2023-10-19 20:58:16,395 ----------------------------------------------------------------------------------------------------
2023-10-19 20:58:16,395 Model training base path: "hmbench-newseye/fr-dbmdz/bert-tiny-historic-multilingual-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5"
2023-10-19 20:58:16,395 ----------------------------------------------------------------------------------------------------
2023-10-19 20:58:16,395 ----------------------------------------------------------------------------------------------------
2023-10-19 20:58:16,395 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-19 20:58:19,025 epoch 1 - iter 178/1786 - loss 3.39433925 - time (sec): 2.63 - samples/sec: 9379.21 - lr: 0.000005 - momentum: 0.000000
2023-10-19 20:58:21,707 epoch 1 - iter 356/1786 - loss 2.91442988 - time (sec): 5.31 - samples/sec: 9619.01 - lr: 0.000010 - momentum: 0.000000
2023-10-19 20:58:24,768 epoch 1 - iter 534/1786 - loss 2.29912039 - time (sec): 8.37 - samples/sec: 9185.83 - lr: 0.000015 - momentum: 0.000000
2023-10-19 20:58:27,960 epoch 1 - iter 712/1786 - loss 1.91163547 - time (sec): 11.56 - samples/sec: 8856.81 - lr: 0.000020 - momentum: 0.000000
2023-10-19 20:58:31,072 epoch 1 - iter 890/1786 - loss 1.69293519 - time (sec): 14.68 - samples/sec: 8590.79 - lr: 0.000025 - momentum: 0.000000
2023-10-19 20:58:34,159 epoch 1 - iter 1068/1786 - loss 1.52968510 - time (sec): 17.76 - samples/sec: 8452.84 - lr: 0.000030 - momentum: 0.000000
2023-10-19 20:58:37,316 epoch 1 - iter 1246/1786 - loss 1.39348187 - time (sec): 20.92 - samples/sec: 8397.32 - lr: 0.000035 - momentum: 0.000000
2023-10-19 20:58:40,371 epoch 1 - iter 1424/1786 - loss 1.28507688 - time (sec): 23.98 - samples/sec: 8375.29 - lr: 0.000040 - momentum: 0.000000
2023-10-19 20:58:43,370 epoch 1 - iter 1602/1786 - loss 1.19861795 - time (sec): 26.97 - samples/sec: 8325.77 - lr: 0.000045 - momentum: 0.000000
2023-10-19 20:58:46,435 epoch 1 - iter 1780/1786 - loss 1.13141747 - time (sec): 30.04 - samples/sec: 8257.10 - lr: 0.000050 - momentum: 0.000000
2023-10-19 20:58:46,527 ----------------------------------------------------------------------------------------------------
2023-10-19 20:58:46,527 EPOCH 1 done: loss 1.1299 - lr: 0.000050
2023-10-19 20:58:47,918 DEV : loss 0.3072870969772339 - f1-score (micro avg)  0.2262
2023-10-19 20:58:47,932 saving best model
2023-10-19 20:58:47,966 ----------------------------------------------------------------------------------------------------
2023-10-19 20:58:51,058 epoch 2 - iter 178/1786 - loss 0.46644868 - time (sec): 3.09 - samples/sec: 7639.57 - lr: 0.000049 - momentum: 0.000000
2023-10-19 20:58:54,074 epoch 2 - iter 356/1786 - loss 0.46322785 - time (sec): 6.11 - samples/sec: 7992.93 - lr: 0.000049 - momentum: 0.000000
2023-10-19 20:58:57,117 epoch 2 - iter 534/1786 - loss 0.45211784 - time (sec): 9.15 - samples/sec: 8006.32 - lr: 0.000048 - momentum: 0.000000
2023-10-19 20:59:00,061 epoch 2 - iter 712/1786 - loss 0.44022463 - time (sec): 12.09 - samples/sec: 8050.83 - lr: 0.000048 - momentum: 0.000000
2023-10-19 20:59:03,120 epoch 2 - iter 890/1786 - loss 0.42492323 - time (sec): 15.15 - samples/sec: 8078.68 - lr: 0.000047 - momentum: 0.000000
2023-10-19 20:59:06,209 epoch 2 - iter 1068/1786 - loss 0.41906923 - time (sec): 18.24 - samples/sec: 8122.04 - lr: 0.000047 - momentum: 0.000000
2023-10-19 20:59:09,470 epoch 2 - iter 1246/1786 - loss 0.41285425 - time (sec): 21.50 - samples/sec: 8094.77 - lr: 0.000046 - momentum: 0.000000
2023-10-19 20:59:12,467 epoch 2 - iter 1424/1786 - loss 0.41328103 - time (sec): 24.50 - samples/sec: 8047.76 - lr: 0.000046 - momentum: 0.000000
2023-10-19 20:59:15,495 epoch 2 - iter 1602/1786 - loss 0.40602105 - time (sec): 27.53 - samples/sec: 8059.81 - lr: 0.000045 - momentum: 0.000000
2023-10-19 20:59:18,579 epoch 2 - iter 1780/1786 - loss 0.40352887 - time (sec): 30.61 - samples/sec: 8101.49 - lr: 0.000044 - momentum: 0.000000
2023-10-19 20:59:18,683 ----------------------------------------------------------------------------------------------------
2023-10-19 20:59:18,683 EPOCH 2 done: loss 0.4037 - lr: 0.000044
2023-10-19 20:59:21,544 DEV : loss 0.23947705328464508 - f1-score (micro avg)  0.3628
2023-10-19 20:59:21,558 saving best model
2023-10-19 20:59:21,594 ----------------------------------------------------------------------------------------------------
2023-10-19 20:59:24,722 epoch 3 - iter 178/1786 - loss 0.30638540 - time (sec): 3.13 - samples/sec: 8248.30 - lr: 0.000044 - momentum: 0.000000
2023-10-19 20:59:27,738 epoch 3 - iter 356/1786 - loss 0.32648450 - time (sec): 6.14 - samples/sec: 8067.28 - lr: 0.000043 - momentum: 0.000000
2023-10-19 20:59:30,745 epoch 3 - iter 534/1786 - loss 0.33121133 - time (sec): 9.15 - samples/sec: 8004.37 - lr: 0.000043 - momentum: 0.000000
2023-10-19 20:59:33,798 epoch 3 - iter 712/1786 - loss 0.32647076 - time (sec): 12.20 - samples/sec: 8063.71 - lr: 0.000042 - momentum: 0.000000
2023-10-19 20:59:36,949 epoch 3 - iter 890/1786 - loss 0.32878218 - time (sec): 15.35 - samples/sec: 8065.26 - lr: 0.000042 - momentum: 0.000000
2023-10-19 20:59:40,305 epoch 3 - iter 1068/1786 - loss 0.33069697 - time (sec): 18.71 - samples/sec: 7989.44 - lr: 0.000041 - momentum: 0.000000
2023-10-19 20:59:43,433 epoch 3 - iter 1246/1786 - loss 0.32906811 - time (sec): 21.84 - samples/sec: 7995.43 - lr: 0.000041 - momentum: 0.000000
2023-10-19 20:59:46,484 epoch 3 - iter 1424/1786 - loss 0.32966262 - time (sec): 24.89 - samples/sec: 7989.64 - lr: 0.000040 - momentum: 0.000000
2023-10-19 20:59:49,454 epoch 3 - iter 1602/1786 - loss 0.32998018 - time (sec): 27.86 - samples/sec: 7989.40 - lr: 0.000039 - momentum: 0.000000
2023-10-19 20:59:52,398 epoch 3 - iter 1780/1786 - loss 0.32830930 - time (sec): 30.80 - samples/sec: 8052.42 - lr: 0.000039 - momentum: 0.000000
2023-10-19 20:59:52,479 ----------------------------------------------------------------------------------------------------
2023-10-19 20:59:52,479 EPOCH 3 done: loss 0.3291 - lr: 0.000039
2023-10-19 20:59:54,832 DEV : loss 0.21711337566375732 - f1-score (micro avg)  0.4412
2023-10-19 20:59:54,845 saving best model
2023-10-19 20:59:54,880 ----------------------------------------------------------------------------------------------------
2023-10-19 20:59:58,253 epoch 4 - iter 178/1786 - loss 0.28910294 - time (sec): 3.37 - samples/sec: 7599.18 - lr: 0.000038 - momentum: 0.000000
2023-10-19 21:00:01,330 epoch 4 - iter 356/1786 - loss 0.28554259 - time (sec): 6.45 - samples/sec: 7654.04 - lr: 0.000038 - momentum: 0.000000
2023-10-19 21:00:04,474 epoch 4 - iter 534/1786 - loss 0.28752177 - time (sec): 9.59 - samples/sec: 7716.32 - lr: 0.000037 - momentum: 0.000000
2023-10-19 21:00:07,494 epoch 4 - iter 712/1786 - loss 0.29481804 - time (sec): 12.61 - samples/sec: 7746.74 - lr: 0.000037 - momentum: 0.000000
2023-10-19 21:00:10,542 epoch 4 - iter 890/1786 - loss 0.29209292 - time (sec): 15.66 - samples/sec: 7825.10 - lr: 0.000036 - momentum: 0.000000
2023-10-19 21:00:13,639 epoch 4 - iter 1068/1786 - loss 0.29321400 - time (sec): 18.76 - samples/sec: 7799.47 - lr: 0.000036 - momentum: 0.000000
2023-10-19 21:00:16,855 epoch 4 - iter 1246/1786 - loss 0.29088719 - time (sec): 21.97 - samples/sec: 7788.31 - lr: 0.000035 - momentum: 0.000000
2023-10-19 21:00:20,030 epoch 4 - iter 1424/1786 - loss 0.28877714 - time (sec): 25.15 - samples/sec: 7893.11 - lr: 0.000034 - momentum: 0.000000
2023-10-19 21:00:23,060 epoch 4 - iter 1602/1786 - loss 0.28795049 - time (sec): 28.18 - samples/sec: 7909.66 - lr: 0.000034 - momentum: 0.000000
2023-10-19 21:00:26,192 epoch 4 - iter 1780/1786 - loss 0.28608450 - time (sec): 31.31 - samples/sec: 7908.48 - lr: 0.000033 - momentum: 0.000000
2023-10-19 21:00:26,298 ----------------------------------------------------------------------------------------------------
2023-10-19 21:00:26,298 EPOCH 4 done: loss 0.2856 - lr: 0.000033
2023-10-19 21:00:29,109 DEV : loss 0.21065032482147217 - f1-score (micro avg)  0.4851
2023-10-19 21:00:29,122 saving best model
2023-10-19 21:00:29,158 ----------------------------------------------------------------------------------------------------
2023-10-19 21:00:32,181 epoch 5 - iter 178/1786 - loss 0.26936022 - time (sec): 3.02 - samples/sec: 7810.87 - lr: 0.000033 - momentum: 0.000000
2023-10-19 21:00:35,233 epoch 5 - iter 356/1786 - loss 0.25893596 - time (sec): 6.07 - samples/sec: 8113.38 - lr: 0.000032 - momentum: 0.000000
2023-10-19 21:00:38,268 epoch 5 - iter 534/1786 - loss 0.26522534 - time (sec): 9.11 - samples/sec: 8061.37 - lr: 0.000032 - momentum: 0.000000
2023-10-19 21:00:41,439 epoch 5 - iter 712/1786 - loss 0.26176498 - time (sec): 12.28 - samples/sec: 8024.11 - lr: 0.000031 - momentum: 0.000000
2023-10-19 21:00:44,487 epoch 5 - iter 890/1786 - loss 0.26297763 - time (sec): 15.33 - samples/sec: 8044.77 - lr: 0.000031 - momentum: 0.000000
2023-10-19 21:00:47,482 epoch 5 - iter 1068/1786 - loss 0.25919324 - time (sec): 18.32 - samples/sec: 8016.32 - lr: 0.000030 - momentum: 0.000000
2023-10-19 21:00:50,611 epoch 5 - iter 1246/1786 - loss 0.25806711 - time (sec): 21.45 - samples/sec: 8119.10 - lr: 0.000029 - momentum: 0.000000
2023-10-19 21:00:53,748 epoch 5 - iter 1424/1786 - loss 0.25466980 - time (sec): 24.59 - samples/sec: 8072.99 - lr: 0.000029 - momentum: 0.000000
2023-10-19 21:00:56,856 epoch 5 - iter 1602/1786 - loss 0.25598645 - time (sec): 27.70 - samples/sec: 8070.63 - lr: 0.000028 - momentum: 0.000000
2023-10-19 21:00:59,939 epoch 5 - iter 1780/1786 - loss 0.25465192 - time (sec): 30.78 - samples/sec: 8048.62 - lr: 0.000028 - momentum: 0.000000
2023-10-19 21:01:00,052 ----------------------------------------------------------------------------------------------------
2023-10-19 21:01:00,052 EPOCH 5 done: loss 0.2543 - lr: 0.000028
2023-10-19 21:01:02,433 DEV : loss 0.20281952619552612 - f1-score (micro avg)  0.4948
2023-10-19 21:01:02,448 saving best model
2023-10-19 21:01:02,483 ----------------------------------------------------------------------------------------------------
2023-10-19 21:01:05,510 epoch 6 - iter 178/1786 - loss 0.23393227 - time (sec): 3.03 - samples/sec: 7808.95 - lr: 0.000027 - momentum: 0.000000
2023-10-19 21:01:08,545 epoch 6 - iter 356/1786 - loss 0.23081599 - time (sec): 6.06 - samples/sec: 8163.67 - lr: 0.000027 - momentum: 0.000000
2023-10-19 21:01:11,648 epoch 6 - iter 534/1786 - loss 0.23479214 - time (sec): 9.16 - samples/sec: 8155.13 - lr: 0.000026 - momentum: 0.000000
2023-10-19 21:01:14,701 epoch 6 - iter 712/1786 - loss 0.23298850 - time (sec): 12.22 - samples/sec: 8207.54 - lr: 0.000026 - momentum: 0.000000
2023-10-19 21:01:17,670 epoch 6 - iter 890/1786 - loss 0.23743133 - time (sec): 15.19 - samples/sec: 8100.39 - lr: 0.000025 - momentum: 0.000000
2023-10-19 21:01:20,467 epoch 6 - iter 1068/1786 - loss 0.23775517 - time (sec): 17.98 - samples/sec: 8153.61 - lr: 0.000024 - momentum: 0.000000
2023-10-19 21:01:23,606 epoch 6 - iter 1246/1786 - loss 0.23641985 - time (sec): 21.12 - samples/sec: 8149.38 - lr: 0.000024 - momentum: 0.000000
2023-10-19 21:01:26,829 epoch 6 - iter 1424/1786 - loss 0.23416317 - time (sec): 24.35 - samples/sec: 8123.71 - lr: 0.000023 - momentum: 0.000000
2023-10-19 21:01:29,978 epoch 6 - iter 1602/1786 - loss 0.23280312 - time (sec): 27.49 - samples/sec: 8121.44 - lr: 0.000023 - momentum: 0.000000
2023-10-19 21:01:33,180 epoch 6 - iter 1780/1786 - loss 0.23351653 - time (sec): 30.70 - samples/sec: 8085.38 - lr: 0.000022 - momentum: 0.000000
2023-10-19 21:01:33,290 ----------------------------------------------------------------------------------------------------
2023-10-19 21:01:33,291 EPOCH 6 done: loss 0.2338 - lr: 0.000022
2023-10-19 21:01:36,137 DEV : loss 0.2004702240228653 - f1-score (micro avg)  0.5138
2023-10-19 21:01:36,151 saving best model
2023-10-19 21:01:36,187 ----------------------------------------------------------------------------------------------------
2023-10-19 21:01:39,079 epoch 7 - iter 178/1786 - loss 0.23612974 - time (sec): 2.89 - samples/sec: 8198.00 - lr: 0.000022 - momentum: 0.000000
2023-10-19 21:01:42,193 epoch 7 - iter 356/1786 - loss 0.21613429 - time (sec): 6.01 - samples/sec: 8097.03 - lr: 0.000021 - momentum: 0.000000
2023-10-19 21:01:45,222 epoch 7 - iter 534/1786 - loss 0.21090820 - time (sec): 9.03 - samples/sec: 8043.86 - lr: 0.000021 - momentum: 0.000000
2023-10-19 21:01:48,279 epoch 7 - iter 712/1786 - loss 0.21151190 - time (sec): 12.09 - samples/sec: 8048.66 - lr: 0.000020 - momentum: 0.000000
2023-10-19 21:01:51,326 epoch 7 - iter 890/1786 - loss 0.21415014 - time (sec): 15.14 - samples/sec: 8097.58 - lr: 0.000019 - momentum: 0.000000
2023-10-19 21:01:54,448 epoch 7 - iter 1068/1786 - loss 0.22230949 - time (sec): 18.26 - samples/sec: 8094.44 - lr: 0.000019 - momentum: 0.000000
2023-10-19 21:01:57,518 epoch 7 - iter 1246/1786 - loss 0.22203000 - time (sec): 21.33 - samples/sec: 8038.74 - lr: 0.000018 - momentum: 0.000000
2023-10-19 21:02:00,602 epoch 7 - iter 1424/1786 - loss 0.22048490 - time (sec): 24.41 - samples/sec: 8093.24 - lr: 0.000018 - momentum: 0.000000
2023-10-19 21:02:03,686 epoch 7 - iter 1602/1786 - loss 0.21897496 - time (sec): 27.50 - samples/sec: 8107.85 - lr: 0.000017 - momentum: 0.000000
2023-10-19 21:02:06,657 epoch 7 - iter 1780/1786 - loss 0.21764711 - time (sec): 30.47 - samples/sec: 8128.14 - lr: 0.000017 - momentum: 0.000000
2023-10-19 21:02:06,760 ----------------------------------------------------------------------------------------------------
2023-10-19 21:02:06,761 EPOCH 7 done: loss 0.2174 - lr: 0.000017
2023-10-19 21:02:09,120 DEV : loss 0.20184864103794098 - f1-score (micro avg)  0.5363
2023-10-19 21:02:09,133 saving best model
2023-10-19 21:02:09,167 ----------------------------------------------------------------------------------------------------
2023-10-19 21:02:12,237 epoch 8 - iter 178/1786 - loss 0.19631205 - time (sec): 3.07 - samples/sec: 8420.53 - lr: 0.000016 - momentum: 0.000000
2023-10-19 21:02:15,400 epoch 8 - iter 356/1786 - loss 0.20351488 - time (sec): 6.23 - samples/sec: 8448.43 - lr: 0.000016 - momentum: 0.000000
2023-10-19 21:02:18,524 epoch 8 - iter 534/1786 - loss 0.19623338 - time (sec): 9.36 - samples/sec: 8444.47 - lr: 0.000015 - momentum: 0.000000
2023-10-19 21:02:21,610 epoch 8 - iter 712/1786 - loss 0.20086781 - time (sec): 12.44 - samples/sec: 8326.28 - lr: 0.000014 - momentum: 0.000000
2023-10-19 21:02:24,651 epoch 8 - iter 890/1786 - loss 0.20639441 - time (sec): 15.48 - samples/sec: 8245.95 - lr: 0.000014 - momentum: 0.000000
2023-10-19 21:02:27,907 epoch 8 - iter 1068/1786 - loss 0.20336709 - time (sec): 18.74 - samples/sec: 8209.92 - lr: 0.000013 - momentum: 0.000000
2023-10-19 21:02:30,983 epoch 8 - iter 1246/1786 - loss 0.20354696 - time (sec): 21.81 - samples/sec: 8112.38 - lr: 0.000013 - momentum: 0.000000
2023-10-19 21:02:34,043 epoch 8 - iter 1424/1786 - loss 0.20314656 - time (sec): 24.88 - samples/sec: 8074.10 - lr: 0.000012 - momentum: 0.000000
2023-10-19 21:02:37,160 epoch 8 - iter 1602/1786 - loss 0.20316820 - time (sec): 27.99 - samples/sec: 8039.11 - lr: 0.000012 - momentum: 0.000000
2023-10-19 21:02:40,110 epoch 8 - iter 1780/1786 - loss 0.20620940 - time (sec): 30.94 - samples/sec: 8015.46 - lr: 0.000011 - momentum: 0.000000
2023-10-19 21:02:40,204 ----------------------------------------------------------------------------------------------------
2023-10-19 21:02:40,205 EPOCH 8 done: loss 0.2060 - lr: 0.000011
2023-10-19 21:02:43,005 DEV : loss 0.19445763528347015 - f1-score (micro avg)  0.5412
2023-10-19 21:02:43,020 saving best model
2023-10-19 21:02:43,054 ----------------------------------------------------------------------------------------------------
2023-10-19 21:02:46,193 epoch 9 - iter 178/1786 - loss 0.20595102 - time (sec): 3.14 - samples/sec: 8098.61 - lr: 0.000011 - momentum: 0.000000
2023-10-19 21:02:49,523 epoch 9 - iter 356/1786 - loss 0.20915004 - time (sec): 6.47 - samples/sec: 7781.12 - lr: 0.000010 - momentum: 0.000000
2023-10-19 21:02:52,616 epoch 9 - iter 534/1786 - loss 0.21073170 - time (sec): 9.56 - samples/sec: 7757.88 - lr: 0.000009 - momentum: 0.000000
2023-10-19 21:02:55,656 epoch 9 - iter 712/1786 - loss 0.21153248 - time (sec): 12.60 - samples/sec: 7796.02 - lr: 0.000009 - momentum: 0.000000
2023-10-19 21:02:58,639 epoch 9 - iter 890/1786 - loss 0.20761614 - time (sec): 15.58 - samples/sec: 7833.49 - lr: 0.000008 - momentum: 0.000000
2023-10-19 21:03:01,755 epoch 9 - iter 1068/1786 - loss 0.20308539 - time (sec): 18.70 - samples/sec: 7955.21 - lr: 0.000008 - momentum: 0.000000
2023-10-19 21:03:04,756 epoch 9 - iter 1246/1786 - loss 0.20231833 - time (sec): 21.70 - samples/sec: 7957.84 - lr: 0.000007 - momentum: 0.000000
2023-10-19 21:03:08,025 epoch 9 - iter 1424/1786 - loss 0.20265135 - time (sec): 24.97 - samples/sec: 7928.87 - lr: 0.000007 - momentum: 0.000000
2023-10-19 21:03:11,119 epoch 9 - iter 1602/1786 - loss 0.20136577 - time (sec): 28.06 - samples/sec: 7934.50 - lr: 0.000006 - momentum: 0.000000
2023-10-19 21:03:14,180 epoch 9 - iter 1780/1786 - loss 0.19963572 - time (sec): 31.12 - samples/sec: 7968.46 - lr: 0.000006 - momentum: 0.000000
2023-10-19 21:03:14,278 ----------------------------------------------------------------------------------------------------
2023-10-19 21:03:14,279 EPOCH 9 done: loss 0.1998 - lr: 0.000006
2023-10-19 21:03:16,670 DEV : loss 0.19829225540161133 - f1-score (micro avg)  0.5422
2023-10-19 21:03:16,685 saving best model
2023-10-19 21:03:16,720 ----------------------------------------------------------------------------------------------------
2023-10-19 21:03:19,410 epoch 10 - iter 178/1786 - loss 0.18647044 - time (sec): 2.69 - samples/sec: 8782.65 - lr: 0.000005 - momentum: 0.000000
2023-10-19 21:03:22,378 epoch 10 - iter 356/1786 - loss 0.18609814 - time (sec): 5.66 - samples/sec: 8421.25 - lr: 0.000004 - momentum: 0.000000
2023-10-19 21:03:25,553 epoch 10 - iter 534/1786 - loss 0.18905060 - time (sec): 8.83 - samples/sec: 8418.27 - lr: 0.000004 - momentum: 0.000000
2023-10-19 21:03:28,473 epoch 10 - iter 712/1786 - loss 0.18325220 - time (sec): 11.75 - samples/sec: 8332.62 - lr: 0.000003 - momentum: 0.000000
2023-10-19 21:03:31,603 epoch 10 - iter 890/1786 - loss 0.18627484 - time (sec): 14.88 - samples/sec: 8203.30 - lr: 0.000003 - momentum: 0.000000
2023-10-19 21:03:34,723 epoch 10 - iter 1068/1786 - loss 0.18580625 - time (sec): 18.00 - samples/sec: 8209.34 - lr: 0.000002 - momentum: 0.000000
2023-10-19 21:03:37,964 epoch 10 - iter 1246/1786 - loss 0.18908200 - time (sec): 21.24 - samples/sec: 8087.53 - lr: 0.000002 - momentum: 0.000000
2023-10-19 21:03:41,184 epoch 10 - iter 1424/1786 - loss 0.19346145 - time (sec): 24.46 - samples/sec: 8079.92 - lr: 0.000001 - momentum: 0.000000
2023-10-19 21:03:44,560 epoch 10 - iter 1602/1786 - loss 0.19442863 - time (sec): 27.84 - samples/sec: 8041.93 - lr: 0.000001 - momentum: 0.000000
2023-10-19 21:03:47,563 epoch 10 - iter 1780/1786 - loss 0.19490021 - time (sec): 30.84 - samples/sec: 8043.92 - lr: 0.000000 - momentum: 0.000000
2023-10-19 21:03:47,661 ----------------------------------------------------------------------------------------------------
2023-10-19 21:03:47,661 EPOCH 10 done: loss 0.1948 - lr: 0.000000
2023-10-19 21:03:50,516 DEV : loss 0.19669239223003387 - f1-score (micro avg)  0.539
2023-10-19 21:03:50,560 ----------------------------------------------------------------------------------------------------
2023-10-19 21:03:50,560 Loading model from best epoch ...
2023-10-19 21:03:50,642 SequenceTagger predicts: Dictionary with 17 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd
2023-10-19 21:03:55,238 
Results:
- F-score (micro) 0.4292
- F-score (macro) 0.2773
- Accuracy 0.2824

By class:
              precision    recall  f1-score   support

         LOC     0.4196    0.5361    0.4707      1095
         PER     0.4366    0.4931    0.4631      1012
         ORG     0.1986    0.1569    0.1753       357
   HumanProd     0.0000    0.0000    0.0000        33

   micro avg     0.4044    0.4573    0.4292      2497
   macro avg     0.2637    0.2965    0.2773      2497
weighted avg     0.3893    0.4573    0.4192      2497

2023-10-19 21:03:55,238 ----------------------------------------------------------------------------------------------------