File size: 23,794 Bytes
6bbf4ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
2023-10-16 18:44:14,992 ----------------------------------------------------------------------------------------------------
2023-10-16 18:44:14,993 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=17, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-16 18:44:14,993 ----------------------------------------------------------------------------------------------------
2023-10-16 18:44:14,993 MultiCorpus: 1166 train + 165 dev + 415 test sentences
 - NER_HIPE_2022 Corpus: 1166 train + 165 dev + 415 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/fi/with_doc_seperator
2023-10-16 18:44:14,993 ----------------------------------------------------------------------------------------------------
2023-10-16 18:44:14,993 Train:  1166 sentences
2023-10-16 18:44:14,993         (train_with_dev=False, train_with_test=False)
2023-10-16 18:44:14,993 ----------------------------------------------------------------------------------------------------
2023-10-16 18:44:14,993 Training Params:
2023-10-16 18:44:14,993  - learning_rate: "5e-05" 
2023-10-16 18:44:14,993  - mini_batch_size: "8"
2023-10-16 18:44:14,993  - max_epochs: "10"
2023-10-16 18:44:14,993  - shuffle: "True"
2023-10-16 18:44:14,994 ----------------------------------------------------------------------------------------------------
2023-10-16 18:44:14,994 Plugins:
2023-10-16 18:44:14,994  - LinearScheduler | warmup_fraction: '0.1'
2023-10-16 18:44:14,994 ----------------------------------------------------------------------------------------------------
2023-10-16 18:44:14,994 Final evaluation on model from best epoch (best-model.pt)
2023-10-16 18:44:14,994  - metric: "('micro avg', 'f1-score')"
2023-10-16 18:44:14,994 ----------------------------------------------------------------------------------------------------
2023-10-16 18:44:14,994 Computation:
2023-10-16 18:44:14,994  - compute on device: cuda:0
2023-10-16 18:44:14,994  - embedding storage: none
2023-10-16 18:44:14,994 ----------------------------------------------------------------------------------------------------
2023-10-16 18:44:14,994 Model training base path: "hmbench-newseye/fi-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4"
2023-10-16 18:44:14,994 ----------------------------------------------------------------------------------------------------
2023-10-16 18:44:14,994 ----------------------------------------------------------------------------------------------------
2023-10-16 18:44:16,450 epoch 1 - iter 14/146 - loss 2.93554078 - time (sec): 1.46 - samples/sec: 3031.39 - lr: 0.000004 - momentum: 0.000000
2023-10-16 18:44:17,598 epoch 1 - iter 28/146 - loss 2.59641910 - time (sec): 2.60 - samples/sec: 3093.50 - lr: 0.000009 - momentum: 0.000000
2023-10-16 18:44:19,197 epoch 1 - iter 42/146 - loss 1.98647565 - time (sec): 4.20 - samples/sec: 3046.18 - lr: 0.000014 - momentum: 0.000000
2023-10-16 18:44:20,958 epoch 1 - iter 56/146 - loss 1.65493251 - time (sec): 5.96 - samples/sec: 2908.07 - lr: 0.000019 - momentum: 0.000000
2023-10-16 18:44:22,265 epoch 1 - iter 70/146 - loss 1.48549199 - time (sec): 7.27 - samples/sec: 2906.30 - lr: 0.000024 - momentum: 0.000000
2023-10-16 18:44:23,957 epoch 1 - iter 84/146 - loss 1.33028113 - time (sec): 8.96 - samples/sec: 2878.44 - lr: 0.000028 - momentum: 0.000000
2023-10-16 18:44:25,337 epoch 1 - iter 98/146 - loss 1.19387586 - time (sec): 10.34 - samples/sec: 2907.41 - lr: 0.000033 - momentum: 0.000000
2023-10-16 18:44:26,724 epoch 1 - iter 112/146 - loss 1.07702304 - time (sec): 11.73 - samples/sec: 2939.16 - lr: 0.000038 - momentum: 0.000000
2023-10-16 18:44:28,150 epoch 1 - iter 126/146 - loss 0.98680341 - time (sec): 13.16 - samples/sec: 2960.74 - lr: 0.000043 - momentum: 0.000000
2023-10-16 18:44:29,393 epoch 1 - iter 140/146 - loss 0.91930004 - time (sec): 14.40 - samples/sec: 2986.90 - lr: 0.000048 - momentum: 0.000000
2023-10-16 18:44:29,886 ----------------------------------------------------------------------------------------------------
2023-10-16 18:44:29,887 EPOCH 1 done: loss 0.8989 - lr: 0.000048
2023-10-16 18:44:30,915 DEV : loss 0.19385209679603577 - f1-score (micro avg)  0.4388
2023-10-16 18:44:30,919 saving best model
2023-10-16 18:44:31,329 ----------------------------------------------------------------------------------------------------
2023-10-16 18:44:32,656 epoch 2 - iter 14/146 - loss 0.26646816 - time (sec): 1.33 - samples/sec: 3202.19 - lr: 0.000050 - momentum: 0.000000
2023-10-16 18:44:34,281 epoch 2 - iter 28/146 - loss 0.27245130 - time (sec): 2.95 - samples/sec: 3188.14 - lr: 0.000049 - momentum: 0.000000
2023-10-16 18:44:35,932 epoch 2 - iter 42/146 - loss 0.28481191 - time (sec): 4.60 - samples/sec: 2962.86 - lr: 0.000048 - momentum: 0.000000
2023-10-16 18:44:37,632 epoch 2 - iter 56/146 - loss 0.25721835 - time (sec): 6.30 - samples/sec: 2913.56 - lr: 0.000048 - momentum: 0.000000
2023-10-16 18:44:38,924 epoch 2 - iter 70/146 - loss 0.24376985 - time (sec): 7.59 - samples/sec: 2929.54 - lr: 0.000047 - momentum: 0.000000
2023-10-16 18:44:40,297 epoch 2 - iter 84/146 - loss 0.23798723 - time (sec): 8.97 - samples/sec: 2952.15 - lr: 0.000047 - momentum: 0.000000
2023-10-16 18:44:41,482 epoch 2 - iter 98/146 - loss 0.23172878 - time (sec): 10.15 - samples/sec: 2977.39 - lr: 0.000046 - momentum: 0.000000
2023-10-16 18:44:42,768 epoch 2 - iter 112/146 - loss 0.21818927 - time (sec): 11.44 - samples/sec: 3000.61 - lr: 0.000046 - momentum: 0.000000
2023-10-16 18:44:44,349 epoch 2 - iter 126/146 - loss 0.21149100 - time (sec): 13.02 - samples/sec: 2974.30 - lr: 0.000045 - momentum: 0.000000
2023-10-16 18:44:45,592 epoch 2 - iter 140/146 - loss 0.20682752 - time (sec): 14.26 - samples/sec: 2983.62 - lr: 0.000045 - momentum: 0.000000
2023-10-16 18:44:46,258 ----------------------------------------------------------------------------------------------------
2023-10-16 18:44:46,259 EPOCH 2 done: loss 0.2017 - lr: 0.000045
2023-10-16 18:44:47,492 DEV : loss 0.11957067251205444 - f1-score (micro avg)  0.6291
2023-10-16 18:44:47,503 saving best model
2023-10-16 18:44:47,979 ----------------------------------------------------------------------------------------------------
2023-10-16 18:44:49,571 epoch 3 - iter 14/146 - loss 0.11191478 - time (sec): 1.58 - samples/sec: 3023.30 - lr: 0.000044 - momentum: 0.000000
2023-10-16 18:44:51,442 epoch 3 - iter 28/146 - loss 0.11158050 - time (sec): 3.45 - samples/sec: 2823.35 - lr: 0.000043 - momentum: 0.000000
2023-10-16 18:44:52,817 epoch 3 - iter 42/146 - loss 0.11844144 - time (sec): 4.83 - samples/sec: 2769.61 - lr: 0.000043 - momentum: 0.000000
2023-10-16 18:44:53,989 epoch 3 - iter 56/146 - loss 0.11296688 - time (sec): 6.00 - samples/sec: 2807.39 - lr: 0.000042 - momentum: 0.000000
2023-10-16 18:44:55,247 epoch 3 - iter 70/146 - loss 0.11117130 - time (sec): 7.26 - samples/sec: 2862.75 - lr: 0.000042 - momentum: 0.000000
2023-10-16 18:44:56,780 epoch 3 - iter 84/146 - loss 0.10769328 - time (sec): 8.79 - samples/sec: 2918.14 - lr: 0.000041 - momentum: 0.000000
2023-10-16 18:44:58,413 epoch 3 - iter 98/146 - loss 0.10822287 - time (sec): 10.42 - samples/sec: 2956.84 - lr: 0.000041 - momentum: 0.000000
2023-10-16 18:44:59,893 epoch 3 - iter 112/146 - loss 0.10974325 - time (sec): 11.90 - samples/sec: 2946.24 - lr: 0.000040 - momentum: 0.000000
2023-10-16 18:45:01,233 epoch 3 - iter 126/146 - loss 0.10961191 - time (sec): 13.24 - samples/sec: 2948.19 - lr: 0.000040 - momentum: 0.000000
2023-10-16 18:45:02,762 epoch 3 - iter 140/146 - loss 0.11159692 - time (sec): 14.77 - samples/sec: 2908.76 - lr: 0.000039 - momentum: 0.000000
2023-10-16 18:45:03,277 ----------------------------------------------------------------------------------------------------
2023-10-16 18:45:03,277 EPOCH 3 done: loss 0.1116 - lr: 0.000039
2023-10-16 18:45:04,525 DEV : loss 0.10484768450260162 - f1-score (micro avg)  0.7265
2023-10-16 18:45:04,529 saving best model
2023-10-16 18:45:05,074 ----------------------------------------------------------------------------------------------------
2023-10-16 18:45:06,751 epoch 4 - iter 14/146 - loss 0.06773359 - time (sec): 1.67 - samples/sec: 3019.84 - lr: 0.000038 - momentum: 0.000000
2023-10-16 18:45:08,400 epoch 4 - iter 28/146 - loss 0.08808391 - time (sec): 3.32 - samples/sec: 2840.89 - lr: 0.000038 - momentum: 0.000000
2023-10-16 18:45:09,895 epoch 4 - iter 42/146 - loss 0.07321162 - time (sec): 4.82 - samples/sec: 2896.89 - lr: 0.000037 - momentum: 0.000000
2023-10-16 18:45:11,044 epoch 4 - iter 56/146 - loss 0.07713816 - time (sec): 5.97 - samples/sec: 2905.45 - lr: 0.000037 - momentum: 0.000000
2023-10-16 18:45:12,599 epoch 4 - iter 70/146 - loss 0.07754016 - time (sec): 7.52 - samples/sec: 2913.73 - lr: 0.000036 - momentum: 0.000000
2023-10-16 18:45:14,247 epoch 4 - iter 84/146 - loss 0.07736573 - time (sec): 9.17 - samples/sec: 2861.76 - lr: 0.000036 - momentum: 0.000000
2023-10-16 18:45:15,521 epoch 4 - iter 98/146 - loss 0.07596628 - time (sec): 10.44 - samples/sec: 2860.25 - lr: 0.000035 - momentum: 0.000000
2023-10-16 18:45:17,303 epoch 4 - iter 112/146 - loss 0.07335282 - time (sec): 12.23 - samples/sec: 2866.41 - lr: 0.000035 - momentum: 0.000000
2023-10-16 18:45:18,600 epoch 4 - iter 126/146 - loss 0.07440373 - time (sec): 13.52 - samples/sec: 2899.44 - lr: 0.000034 - momentum: 0.000000
2023-10-16 18:45:19,917 epoch 4 - iter 140/146 - loss 0.07551967 - time (sec): 14.84 - samples/sec: 2900.64 - lr: 0.000034 - momentum: 0.000000
2023-10-16 18:45:20,359 ----------------------------------------------------------------------------------------------------
2023-10-16 18:45:20,359 EPOCH 4 done: loss 0.0754 - lr: 0.000034
2023-10-16 18:45:21,637 DEV : loss 0.106049545109272 - f1-score (micro avg)  0.7489
2023-10-16 18:45:21,642 saving best model
2023-10-16 18:45:22,190 ----------------------------------------------------------------------------------------------------
2023-10-16 18:45:23,719 epoch 5 - iter 14/146 - loss 0.04848651 - time (sec): 1.53 - samples/sec: 2833.76 - lr: 0.000033 - momentum: 0.000000
2023-10-16 18:45:25,226 epoch 5 - iter 28/146 - loss 0.04053376 - time (sec): 3.03 - samples/sec: 2740.38 - lr: 0.000032 - momentum: 0.000000
2023-10-16 18:45:26,737 epoch 5 - iter 42/146 - loss 0.04042929 - time (sec): 4.54 - samples/sec: 2797.98 - lr: 0.000032 - momentum: 0.000000
2023-10-16 18:45:28,427 epoch 5 - iter 56/146 - loss 0.04755111 - time (sec): 6.23 - samples/sec: 2885.92 - lr: 0.000031 - momentum: 0.000000
2023-10-16 18:45:30,011 epoch 5 - iter 70/146 - loss 0.04653289 - time (sec): 7.82 - samples/sec: 2907.59 - lr: 0.000031 - momentum: 0.000000
2023-10-16 18:45:31,331 epoch 5 - iter 84/146 - loss 0.05035831 - time (sec): 9.14 - samples/sec: 2918.02 - lr: 0.000030 - momentum: 0.000000
2023-10-16 18:45:32,949 epoch 5 - iter 98/146 - loss 0.04699916 - time (sec): 10.76 - samples/sec: 2946.14 - lr: 0.000030 - momentum: 0.000000
2023-10-16 18:45:34,106 epoch 5 - iter 112/146 - loss 0.04895681 - time (sec): 11.91 - samples/sec: 2962.47 - lr: 0.000029 - momentum: 0.000000
2023-10-16 18:45:35,479 epoch 5 - iter 126/146 - loss 0.05041908 - time (sec): 13.29 - samples/sec: 2959.37 - lr: 0.000029 - momentum: 0.000000
2023-10-16 18:45:36,721 epoch 5 - iter 140/146 - loss 0.05285443 - time (sec): 14.53 - samples/sec: 2974.98 - lr: 0.000028 - momentum: 0.000000
2023-10-16 18:45:37,198 ----------------------------------------------------------------------------------------------------
2023-10-16 18:45:37,198 EPOCH 5 done: loss 0.0529 - lr: 0.000028
2023-10-16 18:45:38,518 DEV : loss 0.11109450459480286 - f1-score (micro avg)  0.7431
2023-10-16 18:45:38,525 ----------------------------------------------------------------------------------------------------
2023-10-16 18:45:39,890 epoch 6 - iter 14/146 - loss 0.05005263 - time (sec): 1.36 - samples/sec: 3099.52 - lr: 0.000027 - momentum: 0.000000
2023-10-16 18:45:41,470 epoch 6 - iter 28/146 - loss 0.04617285 - time (sec): 2.94 - samples/sec: 3109.63 - lr: 0.000027 - momentum: 0.000000
2023-10-16 18:45:42,781 epoch 6 - iter 42/146 - loss 0.03762395 - time (sec): 4.25 - samples/sec: 3087.76 - lr: 0.000026 - momentum: 0.000000
2023-10-16 18:45:44,214 epoch 6 - iter 56/146 - loss 0.03821664 - time (sec): 5.69 - samples/sec: 3009.65 - lr: 0.000026 - momentum: 0.000000
2023-10-16 18:45:45,976 epoch 6 - iter 70/146 - loss 0.03792029 - time (sec): 7.45 - samples/sec: 2884.01 - lr: 0.000025 - momentum: 0.000000
2023-10-16 18:45:47,431 epoch 6 - iter 84/146 - loss 0.03947725 - time (sec): 8.90 - samples/sec: 2851.63 - lr: 0.000025 - momentum: 0.000000
2023-10-16 18:45:48,916 epoch 6 - iter 98/146 - loss 0.03763630 - time (sec): 10.39 - samples/sec: 2885.48 - lr: 0.000024 - momentum: 0.000000
2023-10-16 18:45:50,323 epoch 6 - iter 112/146 - loss 0.03716618 - time (sec): 11.80 - samples/sec: 2911.43 - lr: 0.000024 - momentum: 0.000000
2023-10-16 18:45:51,783 epoch 6 - iter 126/146 - loss 0.03715143 - time (sec): 13.26 - samples/sec: 2934.88 - lr: 0.000023 - momentum: 0.000000
2023-10-16 18:45:53,097 epoch 6 - iter 140/146 - loss 0.03776802 - time (sec): 14.57 - samples/sec: 2928.64 - lr: 0.000023 - momentum: 0.000000
2023-10-16 18:45:53,735 ----------------------------------------------------------------------------------------------------
2023-10-16 18:45:53,735 EPOCH 6 done: loss 0.0377 - lr: 0.000023
2023-10-16 18:45:55,064 DEV : loss 0.10371122509241104 - f1-score (micro avg)  0.7702
2023-10-16 18:45:55,070 saving best model
2023-10-16 18:45:55,594 ----------------------------------------------------------------------------------------------------
2023-10-16 18:45:56,996 epoch 7 - iter 14/146 - loss 0.02717694 - time (sec): 1.40 - samples/sec: 3059.75 - lr: 0.000022 - momentum: 0.000000
2023-10-16 18:45:58,279 epoch 7 - iter 28/146 - loss 0.02170902 - time (sec): 2.68 - samples/sec: 3094.36 - lr: 0.000021 - momentum: 0.000000
2023-10-16 18:45:59,710 epoch 7 - iter 42/146 - loss 0.01935375 - time (sec): 4.11 - samples/sec: 3129.38 - lr: 0.000021 - momentum: 0.000000
2023-10-16 18:46:01,234 epoch 7 - iter 56/146 - loss 0.02181448 - time (sec): 5.64 - samples/sec: 3090.41 - lr: 0.000020 - momentum: 0.000000
2023-10-16 18:46:02,563 epoch 7 - iter 70/146 - loss 0.02092834 - time (sec): 6.97 - samples/sec: 3056.05 - lr: 0.000020 - momentum: 0.000000
2023-10-16 18:46:04,330 epoch 7 - iter 84/146 - loss 0.02507712 - time (sec): 8.73 - samples/sec: 2999.06 - lr: 0.000019 - momentum: 0.000000
2023-10-16 18:46:05,695 epoch 7 - iter 98/146 - loss 0.02423133 - time (sec): 10.10 - samples/sec: 3005.29 - lr: 0.000019 - momentum: 0.000000
2023-10-16 18:46:07,233 epoch 7 - iter 112/146 - loss 0.02532614 - time (sec): 11.64 - samples/sec: 2964.77 - lr: 0.000018 - momentum: 0.000000
2023-10-16 18:46:08,741 epoch 7 - iter 126/146 - loss 0.02581130 - time (sec): 13.15 - samples/sec: 2945.18 - lr: 0.000018 - momentum: 0.000000
2023-10-16 18:46:10,281 epoch 7 - iter 140/146 - loss 0.02646009 - time (sec): 14.69 - samples/sec: 2926.02 - lr: 0.000017 - momentum: 0.000000
2023-10-16 18:46:10,770 ----------------------------------------------------------------------------------------------------
2023-10-16 18:46:10,770 EPOCH 7 done: loss 0.0263 - lr: 0.000017
2023-10-16 18:46:12,029 DEV : loss 0.12524546682834625 - f1-score (micro avg)  0.7613
2023-10-16 18:46:12,034 ----------------------------------------------------------------------------------------------------
2023-10-16 18:46:13,421 epoch 8 - iter 14/146 - loss 0.01540096 - time (sec): 1.39 - samples/sec: 3120.75 - lr: 0.000016 - momentum: 0.000000
2023-10-16 18:46:14,944 epoch 8 - iter 28/146 - loss 0.01738761 - time (sec): 2.91 - samples/sec: 3063.83 - lr: 0.000016 - momentum: 0.000000
2023-10-16 18:46:16,589 epoch 8 - iter 42/146 - loss 0.02301455 - time (sec): 4.55 - samples/sec: 3009.18 - lr: 0.000015 - momentum: 0.000000
2023-10-16 18:46:17,768 epoch 8 - iter 56/146 - loss 0.02368094 - time (sec): 5.73 - samples/sec: 2956.04 - lr: 0.000015 - momentum: 0.000000
2023-10-16 18:46:19,225 epoch 8 - iter 70/146 - loss 0.02328872 - time (sec): 7.19 - samples/sec: 2990.68 - lr: 0.000014 - momentum: 0.000000
2023-10-16 18:46:20,897 epoch 8 - iter 84/146 - loss 0.02214130 - time (sec): 8.86 - samples/sec: 2969.74 - lr: 0.000014 - momentum: 0.000000
2023-10-16 18:46:22,215 epoch 8 - iter 98/146 - loss 0.02037658 - time (sec): 10.18 - samples/sec: 3002.75 - lr: 0.000013 - momentum: 0.000000
2023-10-16 18:46:23,724 epoch 8 - iter 112/146 - loss 0.02107436 - time (sec): 11.69 - samples/sec: 2975.20 - lr: 0.000013 - momentum: 0.000000
2023-10-16 18:46:25,210 epoch 8 - iter 126/146 - loss 0.02013553 - time (sec): 13.18 - samples/sec: 2976.87 - lr: 0.000012 - momentum: 0.000000
2023-10-16 18:46:26,439 epoch 8 - iter 140/146 - loss 0.01954804 - time (sec): 14.40 - samples/sec: 2984.73 - lr: 0.000012 - momentum: 0.000000
2023-10-16 18:46:26,930 ----------------------------------------------------------------------------------------------------
2023-10-16 18:46:26,930 EPOCH 8 done: loss 0.0194 - lr: 0.000012
2023-10-16 18:46:28,209 DEV : loss 0.1471555233001709 - f1-score (micro avg)  0.7468
2023-10-16 18:46:28,214 ----------------------------------------------------------------------------------------------------
2023-10-16 18:46:29,632 epoch 9 - iter 14/146 - loss 0.02032134 - time (sec): 1.42 - samples/sec: 3324.63 - lr: 0.000011 - momentum: 0.000000
2023-10-16 18:46:31,349 epoch 9 - iter 28/146 - loss 0.01946398 - time (sec): 3.13 - samples/sec: 2988.38 - lr: 0.000010 - momentum: 0.000000
2023-10-16 18:46:32,688 epoch 9 - iter 42/146 - loss 0.01654113 - time (sec): 4.47 - samples/sec: 2913.92 - lr: 0.000010 - momentum: 0.000000
2023-10-16 18:46:34,080 epoch 9 - iter 56/146 - loss 0.01628118 - time (sec): 5.86 - samples/sec: 2922.13 - lr: 0.000009 - momentum: 0.000000
2023-10-16 18:46:35,284 epoch 9 - iter 70/146 - loss 0.01650357 - time (sec): 7.07 - samples/sec: 2956.01 - lr: 0.000009 - momentum: 0.000000
2023-10-16 18:46:36,626 epoch 9 - iter 84/146 - loss 0.01631769 - time (sec): 8.41 - samples/sec: 2971.67 - lr: 0.000008 - momentum: 0.000000
2023-10-16 18:46:38,373 epoch 9 - iter 98/146 - loss 0.01409268 - time (sec): 10.16 - samples/sec: 2910.90 - lr: 0.000008 - momentum: 0.000000
2023-10-16 18:46:39,652 epoch 9 - iter 112/146 - loss 0.01357809 - time (sec): 11.44 - samples/sec: 2907.10 - lr: 0.000007 - momentum: 0.000000
2023-10-16 18:46:41,271 epoch 9 - iter 126/146 - loss 0.01361320 - time (sec): 13.06 - samples/sec: 2887.92 - lr: 0.000007 - momentum: 0.000000
2023-10-16 18:46:42,819 epoch 9 - iter 140/146 - loss 0.01401163 - time (sec): 14.60 - samples/sec: 2903.52 - lr: 0.000006 - momentum: 0.000000
2023-10-16 18:46:43,393 ----------------------------------------------------------------------------------------------------
2023-10-16 18:46:43,393 EPOCH 9 done: loss 0.0137 - lr: 0.000006
2023-10-16 18:46:44,724 DEV : loss 0.14237351715564728 - f1-score (micro avg)  0.7425
2023-10-16 18:46:44,729 ----------------------------------------------------------------------------------------------------
2023-10-16 18:46:46,002 epoch 10 - iter 14/146 - loss 0.01164471 - time (sec): 1.27 - samples/sec: 2898.78 - lr: 0.000005 - momentum: 0.000000
2023-10-16 18:46:47,276 epoch 10 - iter 28/146 - loss 0.00769121 - time (sec): 2.55 - samples/sec: 3100.67 - lr: 0.000005 - momentum: 0.000000
2023-10-16 18:46:48,584 epoch 10 - iter 42/146 - loss 0.01041592 - time (sec): 3.85 - samples/sec: 3128.38 - lr: 0.000004 - momentum: 0.000000
2023-10-16 18:46:50,364 epoch 10 - iter 56/146 - loss 0.01063731 - time (sec): 5.63 - samples/sec: 3008.74 - lr: 0.000004 - momentum: 0.000000
2023-10-16 18:46:51,888 epoch 10 - iter 70/146 - loss 0.01116153 - time (sec): 7.16 - samples/sec: 3038.46 - lr: 0.000003 - momentum: 0.000000
2023-10-16 18:46:53,303 epoch 10 - iter 84/146 - loss 0.01395303 - time (sec): 8.57 - samples/sec: 3047.73 - lr: 0.000003 - momentum: 0.000000
2023-10-16 18:46:54,633 epoch 10 - iter 98/146 - loss 0.01344263 - time (sec): 9.90 - samples/sec: 3046.71 - lr: 0.000002 - momentum: 0.000000
2023-10-16 18:46:56,080 epoch 10 - iter 112/146 - loss 0.01227917 - time (sec): 11.35 - samples/sec: 3019.23 - lr: 0.000002 - momentum: 0.000000
2023-10-16 18:46:57,603 epoch 10 - iter 126/146 - loss 0.01125604 - time (sec): 12.87 - samples/sec: 3017.04 - lr: 0.000001 - momentum: 0.000000
2023-10-16 18:46:59,081 epoch 10 - iter 140/146 - loss 0.01038127 - time (sec): 14.35 - samples/sec: 3020.01 - lr: 0.000000 - momentum: 0.000000
2023-10-16 18:46:59,533 ----------------------------------------------------------------------------------------------------
2023-10-16 18:46:59,533 EPOCH 10 done: loss 0.0104 - lr: 0.000000
2023-10-16 18:47:00,784 DEV : loss 0.14098528027534485 - f1-score (micro avg)  0.7532
2023-10-16 18:47:01,250 ----------------------------------------------------------------------------------------------------
2023-10-16 18:47:01,252 Loading model from best epoch ...
2023-10-16 18:47:02,920 SequenceTagger predicts: Dictionary with 17 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-ORG, B-ORG, E-ORG, I-ORG, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd
2023-10-16 18:47:05,389 
Results:
- F-score (micro) 0.7535
- F-score (macro) 0.6922
- Accuracy 0.6267

By class:
              precision    recall  f1-score   support

         PER     0.7902    0.8333    0.8112       348
         LOC     0.6719    0.8161    0.7370       261
         ORG     0.4340    0.4423    0.4381        52
   HumanProd     0.7500    0.8182    0.7826        22

   micro avg     0.7148    0.7965    0.7535       683
   macro avg     0.6615    0.7275    0.6922       683
weighted avg     0.7166    0.7965    0.7535       683

2023-10-16 18:47:05,390 ----------------------------------------------------------------------------------------------------