File size: 25,618 Bytes
57b1f09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
2023-10-12 02:19:10,693 ----------------------------------------------------------------------------------------------------
2023-10-12 02:19:10,695 Model: "SequenceTagger(
  (embeddings): ByT5Embeddings(
    (model): T5EncoderModel(
      (shared): Embedding(384, 1472)
      (encoder): T5Stack(
        (embed_tokens): Embedding(384, 1472)
        (block): ModuleList(
          (0): T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                  (relative_attention_bias): Embedding(32, 6)
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
          (1-11): 11 x T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
        )
        (final_layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=1472, out_features=17, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-12 02:19:10,696 ----------------------------------------------------------------------------------------------------
2023-10-12 02:19:10,696 MultiCorpus: 20847 train + 1123 dev + 3350 test sentences
 - NER_HIPE_2022 Corpus: 20847 train + 1123 dev + 3350 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/de/with_doc_seperator
2023-10-12 02:19:10,696 ----------------------------------------------------------------------------------------------------
2023-10-12 02:19:10,696 Train:  20847 sentences
2023-10-12 02:19:10,696         (train_with_dev=False, train_with_test=False)
2023-10-12 02:19:10,696 ----------------------------------------------------------------------------------------------------
2023-10-12 02:19:10,696 Training Params:
2023-10-12 02:19:10,696  - learning_rate: "0.00015" 
2023-10-12 02:19:10,696  - mini_batch_size: "4"
2023-10-12 02:19:10,696  - max_epochs: "10"
2023-10-12 02:19:10,696  - shuffle: "True"
2023-10-12 02:19:10,696 ----------------------------------------------------------------------------------------------------
2023-10-12 02:19:10,696 Plugins:
2023-10-12 02:19:10,697  - TensorboardLogger
2023-10-12 02:19:10,697  - LinearScheduler | warmup_fraction: '0.1'
2023-10-12 02:19:10,697 ----------------------------------------------------------------------------------------------------
2023-10-12 02:19:10,697 Final evaluation on model from best epoch (best-model.pt)
2023-10-12 02:19:10,697  - metric: "('micro avg', 'f1-score')"
2023-10-12 02:19:10,697 ----------------------------------------------------------------------------------------------------
2023-10-12 02:19:10,697 Computation:
2023-10-12 02:19:10,697  - compute on device: cuda:0
2023-10-12 02:19:10,697  - embedding storage: none
2023-10-12 02:19:10,697 ----------------------------------------------------------------------------------------------------
2023-10-12 02:19:10,697 Model training base path: "hmbench-newseye/de-hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax-bs4-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-4"
2023-10-12 02:19:10,697 ----------------------------------------------------------------------------------------------------
2023-10-12 02:19:10,697 ----------------------------------------------------------------------------------------------------
2023-10-12 02:19:10,697 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-12 02:21:27,177 epoch 1 - iter 521/5212 - loss 2.79668095 - time (sec): 136.48 - samples/sec: 242.74 - lr: 0.000015 - momentum: 0.000000
2023-10-12 02:23:45,273 epoch 1 - iter 1042/5212 - loss 2.35843978 - time (sec): 274.57 - samples/sec: 247.36 - lr: 0.000030 - momentum: 0.000000
2023-10-12 02:26:04,245 epoch 1 - iter 1563/5212 - loss 1.80796410 - time (sec): 413.55 - samples/sec: 254.16 - lr: 0.000045 - momentum: 0.000000
2023-10-12 02:28:22,402 epoch 1 - iter 2084/5212 - loss 1.45533862 - time (sec): 551.70 - samples/sec: 257.38 - lr: 0.000060 - momentum: 0.000000
2023-10-12 02:30:41,547 epoch 1 - iter 2605/5212 - loss 1.24266578 - time (sec): 690.85 - samples/sec: 260.63 - lr: 0.000075 - momentum: 0.000000
2023-10-12 02:32:58,209 epoch 1 - iter 3126/5212 - loss 1.09834367 - time (sec): 827.51 - samples/sec: 259.96 - lr: 0.000090 - momentum: 0.000000
2023-10-12 02:35:17,942 epoch 1 - iter 3647/5212 - loss 0.98084623 - time (sec): 967.24 - samples/sec: 261.96 - lr: 0.000105 - momentum: 0.000000
2023-10-12 02:37:35,810 epoch 1 - iter 4168/5212 - loss 0.88950826 - time (sec): 1105.11 - samples/sec: 262.06 - lr: 0.000120 - momentum: 0.000000
2023-10-12 02:39:57,111 epoch 1 - iter 4689/5212 - loss 0.80746283 - time (sec): 1246.41 - samples/sec: 264.35 - lr: 0.000135 - momentum: 0.000000
2023-10-12 02:42:16,837 epoch 1 - iter 5210/5212 - loss 0.74371560 - time (sec): 1386.14 - samples/sec: 264.92 - lr: 0.000150 - momentum: 0.000000
2023-10-12 02:42:17,401 ----------------------------------------------------------------------------------------------------
2023-10-12 02:42:17,402 EPOCH 1 done: loss 0.7433 - lr: 0.000150
2023-10-12 02:42:52,120 DEV : loss 0.12636248767375946 - f1-score (micro avg)  0.2776
2023-10-12 02:42:52,174 saving best model
2023-10-12 02:42:53,044 ----------------------------------------------------------------------------------------------------
2023-10-12 02:45:11,088 epoch 2 - iter 521/5212 - loss 0.17686924 - time (sec): 138.04 - samples/sec: 262.94 - lr: 0.000148 - momentum: 0.000000
2023-10-12 02:47:30,960 epoch 2 - iter 1042/5212 - loss 0.15464838 - time (sec): 277.91 - samples/sec: 267.07 - lr: 0.000147 - momentum: 0.000000
2023-10-12 02:49:50,501 epoch 2 - iter 1563/5212 - loss 0.15677141 - time (sec): 417.45 - samples/sec: 261.48 - lr: 0.000145 - momentum: 0.000000
2023-10-12 02:52:16,593 epoch 2 - iter 2084/5212 - loss 0.15541495 - time (sec): 563.55 - samples/sec: 263.09 - lr: 0.000143 - momentum: 0.000000
2023-10-12 02:54:38,805 epoch 2 - iter 2605/5212 - loss 0.15288785 - time (sec): 705.76 - samples/sec: 261.65 - lr: 0.000142 - momentum: 0.000000
2023-10-12 02:56:58,256 epoch 2 - iter 3126/5212 - loss 0.15178570 - time (sec): 845.21 - samples/sec: 258.20 - lr: 0.000140 - momentum: 0.000000
2023-10-12 02:59:16,224 epoch 2 - iter 3647/5212 - loss 0.15320470 - time (sec): 983.18 - samples/sec: 254.99 - lr: 0.000138 - momentum: 0.000000
2023-10-12 03:01:39,472 epoch 2 - iter 4168/5212 - loss 0.14998413 - time (sec): 1126.43 - samples/sec: 256.63 - lr: 0.000137 - momentum: 0.000000
2023-10-12 03:04:04,945 epoch 2 - iter 4689/5212 - loss 0.14664370 - time (sec): 1271.90 - samples/sec: 259.73 - lr: 0.000135 - momentum: 0.000000
2023-10-12 03:06:26,106 epoch 2 - iter 5210/5212 - loss 0.14460575 - time (sec): 1413.06 - samples/sec: 259.97 - lr: 0.000133 - momentum: 0.000000
2023-10-12 03:06:26,551 ----------------------------------------------------------------------------------------------------
2023-10-12 03:06:26,552 EPOCH 2 done: loss 0.1446 - lr: 0.000133
2023-10-12 03:07:05,601 DEV : loss 0.14167223870754242 - f1-score (micro avg)  0.3339
2023-10-12 03:07:05,653 saving best model
2023-10-12 03:07:08,265 ----------------------------------------------------------------------------------------------------
2023-10-12 03:09:23,808 epoch 3 - iter 521/5212 - loss 0.10082822 - time (sec): 135.54 - samples/sec: 254.81 - lr: 0.000132 - momentum: 0.000000
2023-10-12 03:11:37,979 epoch 3 - iter 1042/5212 - loss 0.09748085 - time (sec): 269.71 - samples/sec: 250.08 - lr: 0.000130 - momentum: 0.000000
2023-10-12 03:13:58,974 epoch 3 - iter 1563/5212 - loss 0.09985524 - time (sec): 410.70 - samples/sec: 264.24 - lr: 0.000128 - momentum: 0.000000
2023-10-12 03:16:15,894 epoch 3 - iter 2084/5212 - loss 0.09997962 - time (sec): 547.62 - samples/sec: 263.03 - lr: 0.000127 - momentum: 0.000000
2023-10-12 03:18:33,733 epoch 3 - iter 2605/5212 - loss 0.09885177 - time (sec): 685.46 - samples/sec: 261.01 - lr: 0.000125 - momentum: 0.000000
2023-10-12 03:20:55,408 epoch 3 - iter 3126/5212 - loss 0.09501689 - time (sec): 827.14 - samples/sec: 264.99 - lr: 0.000123 - momentum: 0.000000
2023-10-12 03:23:18,463 epoch 3 - iter 3647/5212 - loss 0.09597740 - time (sec): 970.19 - samples/sec: 267.70 - lr: 0.000122 - momentum: 0.000000
2023-10-12 03:25:40,852 epoch 3 - iter 4168/5212 - loss 0.09794887 - time (sec): 1112.58 - samples/sec: 263.01 - lr: 0.000120 - momentum: 0.000000
2023-10-12 03:28:07,225 epoch 3 - iter 4689/5212 - loss 0.09904610 - time (sec): 1258.96 - samples/sec: 261.73 - lr: 0.000118 - momentum: 0.000000
2023-10-12 03:30:34,184 epoch 3 - iter 5210/5212 - loss 0.09816484 - time (sec): 1405.91 - samples/sec: 261.22 - lr: 0.000117 - momentum: 0.000000
2023-10-12 03:30:34,730 ----------------------------------------------------------------------------------------------------
2023-10-12 03:30:34,731 EPOCH 3 done: loss 0.0981 - lr: 0.000117
2023-10-12 03:31:15,205 DEV : loss 0.2600547671318054 - f1-score (micro avg)  0.3618
2023-10-12 03:31:15,262 saving best model
2023-10-12 03:31:17,833 ----------------------------------------------------------------------------------------------------
2023-10-12 03:33:41,338 epoch 4 - iter 521/5212 - loss 0.06934331 - time (sec): 143.50 - samples/sec: 252.51 - lr: 0.000115 - momentum: 0.000000
2023-10-12 03:36:05,531 epoch 4 - iter 1042/5212 - loss 0.07084255 - time (sec): 287.69 - samples/sec: 257.98 - lr: 0.000113 - momentum: 0.000000
2023-10-12 03:38:29,695 epoch 4 - iter 1563/5212 - loss 0.06755543 - time (sec): 431.86 - samples/sec: 261.22 - lr: 0.000112 - momentum: 0.000000
2023-10-12 03:40:54,693 epoch 4 - iter 2084/5212 - loss 0.06616838 - time (sec): 576.86 - samples/sec: 261.23 - lr: 0.000110 - momentum: 0.000000
2023-10-12 03:43:17,865 epoch 4 - iter 2605/5212 - loss 0.06558266 - time (sec): 720.03 - samples/sec: 258.99 - lr: 0.000108 - momentum: 0.000000
2023-10-12 03:45:41,115 epoch 4 - iter 3126/5212 - loss 0.06435344 - time (sec): 863.28 - samples/sec: 259.71 - lr: 0.000107 - momentum: 0.000000
2023-10-12 03:48:03,559 epoch 4 - iter 3647/5212 - loss 0.06413682 - time (sec): 1005.72 - samples/sec: 259.21 - lr: 0.000105 - momentum: 0.000000
2023-10-12 03:50:23,570 epoch 4 - iter 4168/5212 - loss 0.06596094 - time (sec): 1145.73 - samples/sec: 257.63 - lr: 0.000103 - momentum: 0.000000
2023-10-12 03:52:45,111 epoch 4 - iter 4689/5212 - loss 0.06614742 - time (sec): 1287.27 - samples/sec: 258.43 - lr: 0.000102 - momentum: 0.000000
2023-10-12 03:55:04,718 epoch 4 - iter 5210/5212 - loss 0.06648116 - time (sec): 1426.88 - samples/sec: 257.45 - lr: 0.000100 - momentum: 0.000000
2023-10-12 03:55:05,152 ----------------------------------------------------------------------------------------------------
2023-10-12 03:55:05,153 EPOCH 4 done: loss 0.0665 - lr: 0.000100
2023-10-12 03:55:45,279 DEV : loss 0.3101561367511749 - f1-score (micro avg)  0.3555
2023-10-12 03:55:45,331 ----------------------------------------------------------------------------------------------------
2023-10-12 03:58:04,744 epoch 5 - iter 521/5212 - loss 0.04426358 - time (sec): 139.41 - samples/sec: 259.84 - lr: 0.000098 - momentum: 0.000000
2023-10-12 04:00:24,001 epoch 5 - iter 1042/5212 - loss 0.04273940 - time (sec): 278.67 - samples/sec: 260.65 - lr: 0.000097 - momentum: 0.000000
2023-10-12 04:02:41,900 epoch 5 - iter 1563/5212 - loss 0.04286202 - time (sec): 416.57 - samples/sec: 256.36 - lr: 0.000095 - momentum: 0.000000
2023-10-12 04:05:03,372 epoch 5 - iter 2084/5212 - loss 0.04497980 - time (sec): 558.04 - samples/sec: 260.25 - lr: 0.000093 - momentum: 0.000000
2023-10-12 04:07:19,613 epoch 5 - iter 2605/5212 - loss 0.04479044 - time (sec): 694.28 - samples/sec: 258.94 - lr: 0.000092 - momentum: 0.000000
2023-10-12 04:09:43,942 epoch 5 - iter 3126/5212 - loss 0.04436294 - time (sec): 838.61 - samples/sec: 258.68 - lr: 0.000090 - momentum: 0.000000
2023-10-12 04:12:11,821 epoch 5 - iter 3647/5212 - loss 0.04380965 - time (sec): 986.49 - samples/sec: 258.99 - lr: 0.000088 - momentum: 0.000000
2023-10-12 04:14:37,186 epoch 5 - iter 4168/5212 - loss 0.04530386 - time (sec): 1131.85 - samples/sec: 258.58 - lr: 0.000087 - momentum: 0.000000
2023-10-12 04:17:02,247 epoch 5 - iter 4689/5212 - loss 0.04665775 - time (sec): 1276.91 - samples/sec: 257.28 - lr: 0.000085 - momentum: 0.000000
2023-10-12 04:19:31,906 epoch 5 - iter 5210/5212 - loss 0.04638068 - time (sec): 1426.57 - samples/sec: 257.51 - lr: 0.000083 - momentum: 0.000000
2023-10-12 04:19:32,352 ----------------------------------------------------------------------------------------------------
2023-10-12 04:19:32,353 EPOCH 5 done: loss 0.0464 - lr: 0.000083
2023-10-12 04:20:13,213 DEV : loss 0.3113304078578949 - f1-score (micro avg)  0.4003
2023-10-12 04:20:13,271 saving best model
2023-10-12 04:20:14,217 ----------------------------------------------------------------------------------------------------
2023-10-12 04:22:41,995 epoch 6 - iter 521/5212 - loss 0.02551644 - time (sec): 147.78 - samples/sec: 258.80 - lr: 0.000082 - momentum: 0.000000
2023-10-12 04:25:08,081 epoch 6 - iter 1042/5212 - loss 0.02937621 - time (sec): 293.86 - samples/sec: 259.22 - lr: 0.000080 - momentum: 0.000000
2023-10-12 04:27:33,632 epoch 6 - iter 1563/5212 - loss 0.03011832 - time (sec): 439.41 - samples/sec: 254.55 - lr: 0.000078 - momentum: 0.000000
2023-10-12 04:29:57,124 epoch 6 - iter 2084/5212 - loss 0.03067784 - time (sec): 582.90 - samples/sec: 252.43 - lr: 0.000077 - momentum: 0.000000
2023-10-12 04:32:22,709 epoch 6 - iter 2605/5212 - loss 0.03033894 - time (sec): 728.49 - samples/sec: 256.01 - lr: 0.000075 - momentum: 0.000000
2023-10-12 04:34:46,393 epoch 6 - iter 3126/5212 - loss 0.03057800 - time (sec): 872.17 - samples/sec: 256.98 - lr: 0.000073 - momentum: 0.000000
2023-10-12 04:37:07,410 epoch 6 - iter 3647/5212 - loss 0.03169587 - time (sec): 1013.19 - samples/sec: 256.43 - lr: 0.000072 - momentum: 0.000000
2023-10-12 04:39:27,981 epoch 6 - iter 4168/5212 - loss 0.03188952 - time (sec): 1153.76 - samples/sec: 256.11 - lr: 0.000070 - momentum: 0.000000
2023-10-12 04:41:50,066 epoch 6 - iter 4689/5212 - loss 0.03265092 - time (sec): 1295.85 - samples/sec: 256.18 - lr: 0.000068 - momentum: 0.000000
2023-10-12 04:44:09,929 epoch 6 - iter 5210/5212 - loss 0.03297566 - time (sec): 1435.71 - samples/sec: 255.87 - lr: 0.000067 - momentum: 0.000000
2023-10-12 04:44:10,371 ----------------------------------------------------------------------------------------------------
2023-10-12 04:44:10,371 EPOCH 6 done: loss 0.0330 - lr: 0.000067
2023-10-12 04:44:50,633 DEV : loss 0.40718281269073486 - f1-score (micro avg)  0.3971
2023-10-12 04:44:50,685 ----------------------------------------------------------------------------------------------------
2023-10-12 04:47:11,977 epoch 7 - iter 521/5212 - loss 0.02552297 - time (sec): 141.29 - samples/sec: 259.67 - lr: 0.000065 - momentum: 0.000000
2023-10-12 04:49:32,146 epoch 7 - iter 1042/5212 - loss 0.02437180 - time (sec): 281.46 - samples/sec: 271.70 - lr: 0.000063 - momentum: 0.000000
2023-10-12 04:51:48,960 epoch 7 - iter 1563/5212 - loss 0.02514062 - time (sec): 418.27 - samples/sec: 267.26 - lr: 0.000062 - momentum: 0.000000
2023-10-12 04:54:07,753 epoch 7 - iter 2084/5212 - loss 0.02516668 - time (sec): 557.07 - samples/sec: 267.87 - lr: 0.000060 - momentum: 0.000000
2023-10-12 04:56:27,890 epoch 7 - iter 2605/5212 - loss 0.02469412 - time (sec): 697.20 - samples/sec: 265.74 - lr: 0.000058 - momentum: 0.000000
2023-10-12 04:58:49,869 epoch 7 - iter 3126/5212 - loss 0.02456715 - time (sec): 839.18 - samples/sec: 265.93 - lr: 0.000057 - momentum: 0.000000
2023-10-12 05:01:09,634 epoch 7 - iter 3647/5212 - loss 0.02477855 - time (sec): 978.95 - samples/sec: 263.65 - lr: 0.000055 - momentum: 0.000000
2023-10-12 05:03:36,700 epoch 7 - iter 4168/5212 - loss 0.02394687 - time (sec): 1126.01 - samples/sec: 262.72 - lr: 0.000053 - momentum: 0.000000
2023-10-12 05:06:00,466 epoch 7 - iter 4689/5212 - loss 0.02356060 - time (sec): 1269.78 - samples/sec: 260.95 - lr: 0.000052 - momentum: 0.000000
2023-10-12 05:08:24,608 epoch 7 - iter 5210/5212 - loss 0.02323141 - time (sec): 1413.92 - samples/sec: 259.78 - lr: 0.000050 - momentum: 0.000000
2023-10-12 05:08:25,097 ----------------------------------------------------------------------------------------------------
2023-10-12 05:08:25,097 EPOCH 7 done: loss 0.0232 - lr: 0.000050
2023-10-12 05:09:04,885 DEV : loss 0.408222496509552 - f1-score (micro avg)  0.4035
2023-10-12 05:09:04,936 saving best model
2023-10-12 05:09:07,501 ----------------------------------------------------------------------------------------------------
2023-10-12 05:11:27,797 epoch 8 - iter 521/5212 - loss 0.01537607 - time (sec): 140.29 - samples/sec: 265.21 - lr: 0.000048 - momentum: 0.000000
2023-10-12 05:13:47,952 epoch 8 - iter 1042/5212 - loss 0.01753064 - time (sec): 280.45 - samples/sec: 271.51 - lr: 0.000047 - momentum: 0.000000
2023-10-12 05:16:11,225 epoch 8 - iter 1563/5212 - loss 0.01696724 - time (sec): 423.72 - samples/sec: 277.40 - lr: 0.000045 - momentum: 0.000000
2023-10-12 05:18:28,174 epoch 8 - iter 2084/5212 - loss 0.01669412 - time (sec): 560.67 - samples/sec: 273.78 - lr: 0.000043 - momentum: 0.000000
2023-10-12 05:20:45,546 epoch 8 - iter 2605/5212 - loss 0.01686027 - time (sec): 698.04 - samples/sec: 269.95 - lr: 0.000042 - momentum: 0.000000
2023-10-12 05:23:00,618 epoch 8 - iter 3126/5212 - loss 0.01671656 - time (sec): 833.11 - samples/sec: 267.12 - lr: 0.000040 - momentum: 0.000000
2023-10-12 05:25:16,222 epoch 8 - iter 3647/5212 - loss 0.01600572 - time (sec): 968.72 - samples/sec: 265.31 - lr: 0.000038 - momentum: 0.000000
2023-10-12 05:27:35,013 epoch 8 - iter 4168/5212 - loss 0.01597679 - time (sec): 1107.51 - samples/sec: 264.67 - lr: 0.000037 - momentum: 0.000000
2023-10-12 05:29:56,551 epoch 8 - iter 4689/5212 - loss 0.01553053 - time (sec): 1249.05 - samples/sec: 263.33 - lr: 0.000035 - momentum: 0.000000
2023-10-12 05:32:19,571 epoch 8 - iter 5210/5212 - loss 0.01639257 - time (sec): 1392.06 - samples/sec: 263.90 - lr: 0.000033 - momentum: 0.000000
2023-10-12 05:32:19,996 ----------------------------------------------------------------------------------------------------
2023-10-12 05:32:19,997 EPOCH 8 done: loss 0.0164 - lr: 0.000033
2023-10-12 05:32:58,072 DEV : loss 0.4335840940475464 - f1-score (micro avg)  0.404
2023-10-12 05:32:58,123 saving best model
2023-10-12 05:33:00,797 ----------------------------------------------------------------------------------------------------
2023-10-12 05:35:21,905 epoch 9 - iter 521/5212 - loss 0.01030793 - time (sec): 141.10 - samples/sec: 275.22 - lr: 0.000032 - momentum: 0.000000
2023-10-12 05:37:41,298 epoch 9 - iter 1042/5212 - loss 0.01148381 - time (sec): 280.50 - samples/sec: 274.31 - lr: 0.000030 - momentum: 0.000000
2023-10-12 05:40:02,195 epoch 9 - iter 1563/5212 - loss 0.01090402 - time (sec): 421.39 - samples/sec: 263.64 - lr: 0.000028 - momentum: 0.000000
2023-10-12 05:42:24,062 epoch 9 - iter 2084/5212 - loss 0.01205054 - time (sec): 563.26 - samples/sec: 259.21 - lr: 0.000027 - momentum: 0.000000
2023-10-12 05:44:49,921 epoch 9 - iter 2605/5212 - loss 0.01249863 - time (sec): 709.12 - samples/sec: 258.65 - lr: 0.000025 - momentum: 0.000000
2023-10-12 05:47:12,873 epoch 9 - iter 3126/5212 - loss 0.01215066 - time (sec): 852.07 - samples/sec: 258.10 - lr: 0.000023 - momentum: 0.000000
2023-10-12 05:49:39,769 epoch 9 - iter 3647/5212 - loss 0.01116151 - time (sec): 998.97 - samples/sec: 259.45 - lr: 0.000022 - momentum: 0.000000
2023-10-12 05:52:01,961 epoch 9 - iter 4168/5212 - loss 0.01081521 - time (sec): 1141.16 - samples/sec: 257.32 - lr: 0.000020 - momentum: 0.000000
2023-10-12 05:54:25,864 epoch 9 - iter 4689/5212 - loss 0.01082631 - time (sec): 1285.06 - samples/sec: 256.89 - lr: 0.000018 - momentum: 0.000000
2023-10-12 05:56:50,574 epoch 9 - iter 5210/5212 - loss 0.01087435 - time (sec): 1429.77 - samples/sec: 256.94 - lr: 0.000017 - momentum: 0.000000
2023-10-12 05:56:51,009 ----------------------------------------------------------------------------------------------------
2023-10-12 05:56:51,009 EPOCH 9 done: loss 0.0109 - lr: 0.000017
2023-10-12 05:57:30,552 DEV : loss 0.47575101256370544 - f1-score (micro avg)  0.3948
2023-10-12 05:57:30,605 ----------------------------------------------------------------------------------------------------
2023-10-12 05:59:52,416 epoch 10 - iter 521/5212 - loss 0.00498377 - time (sec): 141.81 - samples/sec: 252.02 - lr: 0.000015 - momentum: 0.000000
2023-10-12 06:02:13,588 epoch 10 - iter 1042/5212 - loss 0.00681335 - time (sec): 282.98 - samples/sec: 255.31 - lr: 0.000013 - momentum: 0.000000
2023-10-12 06:04:37,692 epoch 10 - iter 1563/5212 - loss 0.00622093 - time (sec): 427.08 - samples/sec: 259.59 - lr: 0.000012 - momentum: 0.000000
2023-10-12 06:06:59,831 epoch 10 - iter 2084/5212 - loss 0.00629281 - time (sec): 569.22 - samples/sec: 258.24 - lr: 0.000010 - momentum: 0.000000
2023-10-12 06:09:21,704 epoch 10 - iter 2605/5212 - loss 0.00707237 - time (sec): 711.10 - samples/sec: 257.28 - lr: 0.000008 - momentum: 0.000000
2023-10-12 06:11:42,090 epoch 10 - iter 3126/5212 - loss 0.00730698 - time (sec): 851.48 - samples/sec: 256.91 - lr: 0.000007 - momentum: 0.000000
2023-10-12 06:14:01,717 epoch 10 - iter 3647/5212 - loss 0.00730729 - time (sec): 991.11 - samples/sec: 258.63 - lr: 0.000005 - momentum: 0.000000
2023-10-12 06:16:22,285 epoch 10 - iter 4168/5212 - loss 0.00690845 - time (sec): 1131.68 - samples/sec: 260.93 - lr: 0.000003 - momentum: 0.000000
2023-10-12 06:18:43,018 epoch 10 - iter 4689/5212 - loss 0.00696219 - time (sec): 1272.41 - samples/sec: 260.74 - lr: 0.000002 - momentum: 0.000000
2023-10-12 06:21:02,617 epoch 10 - iter 5210/5212 - loss 0.00715270 - time (sec): 1412.01 - samples/sec: 260.15 - lr: 0.000000 - momentum: 0.000000
2023-10-12 06:21:03,064 ----------------------------------------------------------------------------------------------------
2023-10-12 06:21:03,065 EPOCH 10 done: loss 0.0072 - lr: 0.000000
2023-10-12 06:21:42,939 DEV : loss 0.4921533763408661 - f1-score (micro avg)  0.3907
2023-10-12 06:21:43,893 ----------------------------------------------------------------------------------------------------
2023-10-12 06:21:43,895 Loading model from best epoch ...
2023-10-12 06:21:47,649 SequenceTagger predicts: Dictionary with 17 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-ORG, B-ORG, E-ORG, I-ORG, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd
2023-10-12 06:23:28,188 
Results:
- F-score (micro) 0.4681
- F-score (macro) 0.3274
- Accuracy 0.3108

By class:
              precision    recall  f1-score   support

         LOC     0.5033    0.5610    0.5306      1214
         PER     0.4123    0.4567    0.4334       808
         ORG     0.3282    0.3654    0.3458       353
   HumanProd     0.0000    0.0000    0.0000        15

   micro avg     0.4454    0.4933    0.4681      2390
   macro avg     0.3110    0.3458    0.3274      2390
weighted avg     0.4435    0.4933    0.4671      2390

2023-10-12 06:23:28,188 ----------------------------------------------------------------------------------------------------