File size: 25,444 Bytes
d75353b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
2023-10-14 06:00:02,910 ----------------------------------------------------------------------------------------------------
2023-10-14 06:00:02,912 Model: "SequenceTagger(
  (embeddings): ByT5Embeddings(
    (model): T5EncoderModel(
      (shared): Embedding(384, 1472)
      (encoder): T5Stack(
        (embed_tokens): Embedding(384, 1472)
        (block): ModuleList(
          (0): T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                  (relative_attention_bias): Embedding(32, 6)
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
          (1-11): 11 x T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
        )
        (final_layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=1472, out_features=13, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-14 06:00:02,912 ----------------------------------------------------------------------------------------------------
2023-10-14 06:00:02,912 MultiCorpus: 14465 train + 1392 dev + 2432 test sentences
 - NER_HIPE_2022 Corpus: 14465 train + 1392 dev + 2432 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/letemps/fr/with_doc_seperator
2023-10-14 06:00:02,913 ----------------------------------------------------------------------------------------------------
2023-10-14 06:00:02,913 Train:  14465 sentences
2023-10-14 06:00:02,913         (train_with_dev=False, train_with_test=False)
2023-10-14 06:00:02,913 ----------------------------------------------------------------------------------------------------
2023-10-14 06:00:02,913 Training Params:
2023-10-14 06:00:02,913  - learning_rate: "0.00016" 
2023-10-14 06:00:02,913  - mini_batch_size: "4"
2023-10-14 06:00:02,913  - max_epochs: "10"
2023-10-14 06:00:02,913  - shuffle: "True"
2023-10-14 06:00:02,913 ----------------------------------------------------------------------------------------------------
2023-10-14 06:00:02,913 Plugins:
2023-10-14 06:00:02,913  - TensorboardLogger
2023-10-14 06:00:02,913  - LinearScheduler | warmup_fraction: '0.1'
2023-10-14 06:00:02,913 ----------------------------------------------------------------------------------------------------
2023-10-14 06:00:02,913 Final evaluation on model from best epoch (best-model.pt)
2023-10-14 06:00:02,914  - metric: "('micro avg', 'f1-score')"
2023-10-14 06:00:02,914 ----------------------------------------------------------------------------------------------------
2023-10-14 06:00:02,914 Computation:
2023-10-14 06:00:02,914  - compute on device: cuda:0
2023-10-14 06:00:02,914  - embedding storage: none
2023-10-14 06:00:02,914 ----------------------------------------------------------------------------------------------------
2023-10-14 06:00:02,914 Model training base path: "hmbench-letemps/fr-hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax-bs4-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-3"
2023-10-14 06:00:02,914 ----------------------------------------------------------------------------------------------------
2023-10-14 06:00:02,914 ----------------------------------------------------------------------------------------------------
2023-10-14 06:00:02,914 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-14 06:01:53,445 epoch 1 - iter 361/3617 - loss 2.47239461 - time (sec): 110.53 - samples/sec: 341.23 - lr: 0.000016 - momentum: 0.000000
2023-10-14 06:03:37,266 epoch 1 - iter 722/3617 - loss 2.07484525 - time (sec): 214.35 - samples/sec: 347.51 - lr: 0.000032 - momentum: 0.000000
2023-10-14 06:05:25,472 epoch 1 - iter 1083/3617 - loss 1.61456832 - time (sec): 322.56 - samples/sec: 350.12 - lr: 0.000048 - momentum: 0.000000
2023-10-14 06:07:08,611 epoch 1 - iter 1444/3617 - loss 1.27675526 - time (sec): 425.69 - samples/sec: 355.51 - lr: 0.000064 - momentum: 0.000000
2023-10-14 06:08:50,479 epoch 1 - iter 1805/3617 - loss 1.05993658 - time (sec): 527.56 - samples/sec: 358.18 - lr: 0.000080 - momentum: 0.000000
2023-10-14 06:10:29,696 epoch 1 - iter 2166/3617 - loss 0.91231426 - time (sec): 626.78 - samples/sec: 361.53 - lr: 0.000096 - momentum: 0.000000
2023-10-14 06:12:09,104 epoch 1 - iter 2527/3617 - loss 0.80617937 - time (sec): 726.19 - samples/sec: 362.44 - lr: 0.000112 - momentum: 0.000000
2023-10-14 06:13:53,682 epoch 1 - iter 2888/3617 - loss 0.72280386 - time (sec): 830.77 - samples/sec: 362.49 - lr: 0.000128 - momentum: 0.000000
2023-10-14 06:15:37,793 epoch 1 - iter 3249/3617 - loss 0.65137338 - time (sec): 934.88 - samples/sec: 364.42 - lr: 0.000144 - momentum: 0.000000
2023-10-14 06:17:19,931 epoch 1 - iter 3610/3617 - loss 0.59733239 - time (sec): 1037.01 - samples/sec: 365.74 - lr: 0.000160 - momentum: 0.000000
2023-10-14 06:17:21,610 ----------------------------------------------------------------------------------------------------
2023-10-14 06:17:21,611 EPOCH 1 done: loss 0.5965 - lr: 0.000160
2023-10-14 06:18:02,444 DEV : loss 0.12650439143180847 - f1-score (micro avg)  0.6067
2023-10-14 06:18:02,513 saving best model
2023-10-14 06:18:03,590 ----------------------------------------------------------------------------------------------------
2023-10-14 06:19:58,085 epoch 2 - iter 361/3617 - loss 0.09250931 - time (sec): 114.49 - samples/sec: 331.01 - lr: 0.000158 - momentum: 0.000000
2023-10-14 06:21:42,643 epoch 2 - iter 722/3617 - loss 0.09407297 - time (sec): 219.05 - samples/sec: 342.51 - lr: 0.000156 - momentum: 0.000000
2023-10-14 06:23:32,345 epoch 2 - iter 1083/3617 - loss 0.09368204 - time (sec): 328.75 - samples/sec: 353.59 - lr: 0.000155 - momentum: 0.000000
2023-10-14 06:25:14,764 epoch 2 - iter 1444/3617 - loss 0.09240527 - time (sec): 431.17 - samples/sec: 359.43 - lr: 0.000153 - momentum: 0.000000
2023-10-14 06:26:54,551 epoch 2 - iter 1805/3617 - loss 0.09322341 - time (sec): 530.96 - samples/sec: 363.88 - lr: 0.000151 - momentum: 0.000000
2023-10-14 06:28:32,658 epoch 2 - iter 2166/3617 - loss 0.09164435 - time (sec): 629.06 - samples/sec: 365.00 - lr: 0.000149 - momentum: 0.000000
2023-10-14 06:30:13,945 epoch 2 - iter 2527/3617 - loss 0.09049817 - time (sec): 730.35 - samples/sec: 365.65 - lr: 0.000148 - momentum: 0.000000
2023-10-14 06:31:53,651 epoch 2 - iter 2888/3617 - loss 0.09055334 - time (sec): 830.06 - samples/sec: 366.60 - lr: 0.000146 - momentum: 0.000000
2023-10-14 06:33:36,995 epoch 2 - iter 3249/3617 - loss 0.09003575 - time (sec): 933.40 - samples/sec: 366.95 - lr: 0.000144 - momentum: 0.000000
2023-10-14 06:35:21,055 epoch 2 - iter 3610/3617 - loss 0.08946027 - time (sec): 1037.46 - samples/sec: 365.54 - lr: 0.000142 - momentum: 0.000000
2023-10-14 06:35:22,984 ----------------------------------------------------------------------------------------------------
2023-10-14 06:35:22,984 EPOCH 2 done: loss 0.0894 - lr: 0.000142
2023-10-14 06:36:03,645 DEV : loss 0.11830706894397736 - f1-score (micro avg)  0.6257
2023-10-14 06:36:03,706 saving best model
2023-10-14 06:36:09,241 ----------------------------------------------------------------------------------------------------
2023-10-14 06:37:52,453 epoch 3 - iter 361/3617 - loss 0.06677874 - time (sec): 103.21 - samples/sec: 362.87 - lr: 0.000140 - momentum: 0.000000
2023-10-14 06:39:35,134 epoch 3 - iter 722/3617 - loss 0.06628824 - time (sec): 205.89 - samples/sec: 374.82 - lr: 0.000139 - momentum: 0.000000
2023-10-14 06:41:18,032 epoch 3 - iter 1083/3617 - loss 0.06459732 - time (sec): 308.79 - samples/sec: 372.39 - lr: 0.000137 - momentum: 0.000000
2023-10-14 06:43:02,845 epoch 3 - iter 1444/3617 - loss 0.06301256 - time (sec): 413.60 - samples/sec: 369.24 - lr: 0.000135 - momentum: 0.000000
2023-10-14 06:44:48,454 epoch 3 - iter 1805/3617 - loss 0.06356181 - time (sec): 519.21 - samples/sec: 370.00 - lr: 0.000133 - momentum: 0.000000
2023-10-14 06:46:34,140 epoch 3 - iter 2166/3617 - loss 0.06323142 - time (sec): 624.90 - samples/sec: 368.82 - lr: 0.000132 - momentum: 0.000000
2023-10-14 06:48:23,285 epoch 3 - iter 2527/3617 - loss 0.06443387 - time (sec): 734.04 - samples/sec: 363.27 - lr: 0.000130 - momentum: 0.000000
2023-10-14 06:50:15,844 epoch 3 - iter 2888/3617 - loss 0.06348206 - time (sec): 846.60 - samples/sec: 358.62 - lr: 0.000128 - momentum: 0.000000
2023-10-14 06:52:05,894 epoch 3 - iter 3249/3617 - loss 0.06319253 - time (sec): 956.65 - samples/sec: 355.86 - lr: 0.000126 - momentum: 0.000000
2023-10-14 06:53:56,573 epoch 3 - iter 3610/3617 - loss 0.06352064 - time (sec): 1067.33 - samples/sec: 355.17 - lr: 0.000124 - momentum: 0.000000
2023-10-14 06:53:58,615 ----------------------------------------------------------------------------------------------------
2023-10-14 06:53:58,615 EPOCH 3 done: loss 0.0634 - lr: 0.000124
2023-10-14 06:54:40,585 DEV : loss 0.18002015352249146 - f1-score (micro avg)  0.6241
2023-10-14 06:54:40,652 ----------------------------------------------------------------------------------------------------
2023-10-14 06:56:25,424 epoch 4 - iter 361/3617 - loss 0.04589010 - time (sec): 104.77 - samples/sec: 349.69 - lr: 0.000123 - momentum: 0.000000
2023-10-14 06:58:11,340 epoch 4 - iter 722/3617 - loss 0.04524784 - time (sec): 210.69 - samples/sec: 357.08 - lr: 0.000121 - momentum: 0.000000
2023-10-14 07:00:01,015 epoch 4 - iter 1083/3617 - loss 0.04459280 - time (sec): 320.36 - samples/sec: 352.15 - lr: 0.000119 - momentum: 0.000000
2023-10-14 07:01:47,053 epoch 4 - iter 1444/3617 - loss 0.04241941 - time (sec): 426.40 - samples/sec: 351.10 - lr: 0.000117 - momentum: 0.000000
2023-10-14 07:03:29,823 epoch 4 - iter 1805/3617 - loss 0.04232486 - time (sec): 529.17 - samples/sec: 354.82 - lr: 0.000116 - momentum: 0.000000
2023-10-14 07:05:12,160 epoch 4 - iter 2166/3617 - loss 0.04384413 - time (sec): 631.51 - samples/sec: 359.79 - lr: 0.000114 - momentum: 0.000000
2023-10-14 07:06:59,230 epoch 4 - iter 2527/3617 - loss 0.04460396 - time (sec): 738.58 - samples/sec: 360.08 - lr: 0.000112 - momentum: 0.000000
2023-10-14 07:08:41,529 epoch 4 - iter 2888/3617 - loss 0.04544588 - time (sec): 840.88 - samples/sec: 360.44 - lr: 0.000110 - momentum: 0.000000
2023-10-14 07:10:25,972 epoch 4 - iter 3249/3617 - loss 0.04605584 - time (sec): 945.32 - samples/sec: 361.87 - lr: 0.000108 - momentum: 0.000000
2023-10-14 07:12:06,260 epoch 4 - iter 3610/3617 - loss 0.04631529 - time (sec): 1045.61 - samples/sec: 362.78 - lr: 0.000107 - momentum: 0.000000
2023-10-14 07:12:07,916 ----------------------------------------------------------------------------------------------------
2023-10-14 07:12:07,916 EPOCH 4 done: loss 0.0463 - lr: 0.000107
2023-10-14 07:12:47,955 DEV : loss 0.2199789583683014 - f1-score (micro avg)  0.6424
2023-10-14 07:12:48,014 saving best model
2023-10-14 07:12:49,081 ----------------------------------------------------------------------------------------------------
2023-10-14 07:14:30,776 epoch 5 - iter 361/3617 - loss 0.02732386 - time (sec): 101.69 - samples/sec: 378.30 - lr: 0.000105 - momentum: 0.000000
2023-10-14 07:16:19,492 epoch 5 - iter 722/3617 - loss 0.02918770 - time (sec): 210.41 - samples/sec: 363.23 - lr: 0.000103 - momentum: 0.000000
2023-10-14 07:18:11,252 epoch 5 - iter 1083/3617 - loss 0.03233304 - time (sec): 322.17 - samples/sec: 352.73 - lr: 0.000101 - momentum: 0.000000
2023-10-14 07:20:01,023 epoch 5 - iter 1444/3617 - loss 0.03284681 - time (sec): 431.94 - samples/sec: 347.83 - lr: 0.000100 - momentum: 0.000000
2023-10-14 07:21:44,113 epoch 5 - iter 1805/3617 - loss 0.03214533 - time (sec): 535.03 - samples/sec: 353.10 - lr: 0.000098 - momentum: 0.000000
2023-10-14 07:23:24,045 epoch 5 - iter 2166/3617 - loss 0.03217787 - time (sec): 634.96 - samples/sec: 356.66 - lr: 0.000096 - momentum: 0.000000
2023-10-14 07:25:04,587 epoch 5 - iter 2527/3617 - loss 0.03195592 - time (sec): 735.50 - samples/sec: 357.47 - lr: 0.000094 - momentum: 0.000000
2023-10-14 07:26:45,009 epoch 5 - iter 2888/3617 - loss 0.03247486 - time (sec): 835.93 - samples/sec: 359.86 - lr: 0.000092 - momentum: 0.000000
2023-10-14 07:28:30,143 epoch 5 - iter 3249/3617 - loss 0.03317830 - time (sec): 941.06 - samples/sec: 361.44 - lr: 0.000091 - momentum: 0.000000
2023-10-14 07:30:10,900 epoch 5 - iter 3610/3617 - loss 0.03266682 - time (sec): 1041.82 - samples/sec: 364.12 - lr: 0.000089 - momentum: 0.000000
2023-10-14 07:30:12,602 ----------------------------------------------------------------------------------------------------
2023-10-14 07:30:12,603 EPOCH 5 done: loss 0.0327 - lr: 0.000089
2023-10-14 07:30:54,210 DEV : loss 0.24780842661857605 - f1-score (micro avg)  0.6605
2023-10-14 07:30:54,277 saving best model
2023-10-14 07:30:59,067 ----------------------------------------------------------------------------------------------------
2023-10-14 07:32:41,778 epoch 6 - iter 361/3617 - loss 0.01937433 - time (sec): 102.70 - samples/sec: 382.13 - lr: 0.000087 - momentum: 0.000000
2023-10-14 07:34:22,211 epoch 6 - iter 722/3617 - loss 0.01983213 - time (sec): 203.13 - samples/sec: 379.33 - lr: 0.000085 - momentum: 0.000000
2023-10-14 07:36:00,973 epoch 6 - iter 1083/3617 - loss 0.02234270 - time (sec): 301.89 - samples/sec: 379.02 - lr: 0.000084 - momentum: 0.000000
2023-10-14 07:37:43,093 epoch 6 - iter 1444/3617 - loss 0.02403649 - time (sec): 404.01 - samples/sec: 373.77 - lr: 0.000082 - momentum: 0.000000
2023-10-14 07:39:32,914 epoch 6 - iter 1805/3617 - loss 0.02399559 - time (sec): 513.83 - samples/sec: 365.51 - lr: 0.000080 - momentum: 0.000000
2023-10-14 07:41:13,200 epoch 6 - iter 2166/3617 - loss 0.02304717 - time (sec): 614.12 - samples/sec: 366.92 - lr: 0.000078 - momentum: 0.000000
2023-10-14 07:42:57,050 epoch 6 - iter 2527/3617 - loss 0.02261731 - time (sec): 717.97 - samples/sec: 369.09 - lr: 0.000076 - momentum: 0.000000
2023-10-14 07:44:39,865 epoch 6 - iter 2888/3617 - loss 0.02304199 - time (sec): 820.78 - samples/sec: 370.40 - lr: 0.000075 - momentum: 0.000000
2023-10-14 07:46:20,394 epoch 6 - iter 3249/3617 - loss 0.02338086 - time (sec): 921.31 - samples/sec: 369.43 - lr: 0.000073 - momentum: 0.000000
2023-10-14 07:48:04,126 epoch 6 - iter 3610/3617 - loss 0.02327186 - time (sec): 1025.04 - samples/sec: 369.81 - lr: 0.000071 - momentum: 0.000000
2023-10-14 07:48:06,205 ----------------------------------------------------------------------------------------------------
2023-10-14 07:48:06,205 EPOCH 6 done: loss 0.0232 - lr: 0.000071
2023-10-14 07:48:44,950 DEV : loss 0.2599741816520691 - f1-score (micro avg)  0.6625
2023-10-14 07:48:45,008 saving best model
2023-10-14 07:48:46,022 ----------------------------------------------------------------------------------------------------
2023-10-14 07:50:26,907 epoch 7 - iter 361/3617 - loss 0.01112762 - time (sec): 100.88 - samples/sec: 380.64 - lr: 0.000069 - momentum: 0.000000
2023-10-14 07:52:10,004 epoch 7 - iter 722/3617 - loss 0.01292842 - time (sec): 203.98 - samples/sec: 373.47 - lr: 0.000068 - momentum: 0.000000
2023-10-14 07:53:56,320 epoch 7 - iter 1083/3617 - loss 0.01286273 - time (sec): 310.30 - samples/sec: 365.83 - lr: 0.000066 - momentum: 0.000000
2023-10-14 07:55:39,361 epoch 7 - iter 1444/3617 - loss 0.01371638 - time (sec): 413.34 - samples/sec: 370.42 - lr: 0.000064 - momentum: 0.000000
2023-10-14 07:57:19,068 epoch 7 - iter 1805/3617 - loss 0.01339942 - time (sec): 513.04 - samples/sec: 371.39 - lr: 0.000062 - momentum: 0.000000
2023-10-14 07:59:01,846 epoch 7 - iter 2166/3617 - loss 0.01421913 - time (sec): 615.82 - samples/sec: 370.62 - lr: 0.000060 - momentum: 0.000000
2023-10-14 08:00:47,048 epoch 7 - iter 2527/3617 - loss 0.01439729 - time (sec): 721.02 - samples/sec: 370.52 - lr: 0.000059 - momentum: 0.000000
2023-10-14 08:02:27,477 epoch 7 - iter 2888/3617 - loss 0.01432233 - time (sec): 821.45 - samples/sec: 370.63 - lr: 0.000057 - momentum: 0.000000
2023-10-14 08:04:08,239 epoch 7 - iter 3249/3617 - loss 0.01466633 - time (sec): 922.21 - samples/sec: 371.36 - lr: 0.000055 - momentum: 0.000000
2023-10-14 08:05:56,328 epoch 7 - iter 3610/3617 - loss 0.01454880 - time (sec): 1030.30 - samples/sec: 368.20 - lr: 0.000053 - momentum: 0.000000
2023-10-14 08:05:58,204 ----------------------------------------------------------------------------------------------------
2023-10-14 08:05:58,204 EPOCH 7 done: loss 0.0145 - lr: 0.000053
2023-10-14 08:06:46,371 DEV : loss 0.303059846162796 - f1-score (micro avg)  0.6603
2023-10-14 08:06:46,454 ----------------------------------------------------------------------------------------------------
2023-10-14 08:08:30,534 epoch 8 - iter 361/3617 - loss 0.00660663 - time (sec): 104.08 - samples/sec: 356.89 - lr: 0.000052 - momentum: 0.000000
2023-10-14 08:10:12,010 epoch 8 - iter 722/3617 - loss 0.00864086 - time (sec): 205.55 - samples/sec: 366.15 - lr: 0.000050 - momentum: 0.000000
2023-10-14 08:11:54,676 epoch 8 - iter 1083/3617 - loss 0.00759540 - time (sec): 308.22 - samples/sec: 372.41 - lr: 0.000048 - momentum: 0.000000
2023-10-14 08:13:35,504 epoch 8 - iter 1444/3617 - loss 0.00839154 - time (sec): 409.05 - samples/sec: 372.79 - lr: 0.000046 - momentum: 0.000000
2023-10-14 08:15:20,638 epoch 8 - iter 1805/3617 - loss 0.00820435 - time (sec): 514.18 - samples/sec: 372.20 - lr: 0.000044 - momentum: 0.000000
2023-10-14 08:17:02,003 epoch 8 - iter 2166/3617 - loss 0.00843406 - time (sec): 615.55 - samples/sec: 371.47 - lr: 0.000043 - momentum: 0.000000
2023-10-14 08:18:41,684 epoch 8 - iter 2527/3617 - loss 0.00913255 - time (sec): 715.23 - samples/sec: 372.84 - lr: 0.000041 - momentum: 0.000000
2023-10-14 08:20:30,352 epoch 8 - iter 2888/3617 - loss 0.00931845 - time (sec): 823.90 - samples/sec: 369.40 - lr: 0.000039 - momentum: 0.000000
2023-10-14 08:22:10,317 epoch 8 - iter 3249/3617 - loss 0.00922798 - time (sec): 923.86 - samples/sec: 369.93 - lr: 0.000037 - momentum: 0.000000
2023-10-14 08:23:58,744 epoch 8 - iter 3610/3617 - loss 0.00921932 - time (sec): 1032.29 - samples/sec: 367.62 - lr: 0.000036 - momentum: 0.000000
2023-10-14 08:24:00,299 ----------------------------------------------------------------------------------------------------
2023-10-14 08:24:00,299 EPOCH 8 done: loss 0.0092 - lr: 0.000036
2023-10-14 08:24:39,988 DEV : loss 0.3336223363876343 - f1-score (micro avg)  0.6534
2023-10-14 08:24:40,055 ----------------------------------------------------------------------------------------------------
2023-10-14 08:26:22,702 epoch 9 - iter 361/3617 - loss 0.00528020 - time (sec): 102.65 - samples/sec: 377.08 - lr: 0.000034 - momentum: 0.000000
2023-10-14 08:28:04,835 epoch 9 - iter 722/3617 - loss 0.00615366 - time (sec): 204.78 - samples/sec: 381.57 - lr: 0.000032 - momentum: 0.000000
2023-10-14 08:29:42,817 epoch 9 - iter 1083/3617 - loss 0.00574831 - time (sec): 302.76 - samples/sec: 381.88 - lr: 0.000030 - momentum: 0.000000
2023-10-14 08:31:21,510 epoch 9 - iter 1444/3617 - loss 0.00593530 - time (sec): 401.45 - samples/sec: 383.40 - lr: 0.000028 - momentum: 0.000000
2023-10-14 08:33:07,164 epoch 9 - iter 1805/3617 - loss 0.00576089 - time (sec): 507.11 - samples/sec: 377.05 - lr: 0.000027 - momentum: 0.000000
2023-10-14 08:34:51,885 epoch 9 - iter 2166/3617 - loss 0.00642936 - time (sec): 611.83 - samples/sec: 375.27 - lr: 0.000025 - momentum: 0.000000
2023-10-14 08:36:35,388 epoch 9 - iter 2527/3617 - loss 0.00589172 - time (sec): 715.33 - samples/sec: 373.83 - lr: 0.000023 - momentum: 0.000000
2023-10-14 08:38:16,323 epoch 9 - iter 2888/3617 - loss 0.00596664 - time (sec): 816.27 - samples/sec: 372.98 - lr: 0.000021 - momentum: 0.000000
2023-10-14 08:40:00,323 epoch 9 - iter 3249/3617 - loss 0.00596886 - time (sec): 920.27 - samples/sec: 370.19 - lr: 0.000020 - momentum: 0.000000
2023-10-14 08:41:46,467 epoch 9 - iter 3610/3617 - loss 0.00585104 - time (sec): 1026.41 - samples/sec: 369.47 - lr: 0.000018 - momentum: 0.000000
2023-10-14 08:41:48,372 ----------------------------------------------------------------------------------------------------
2023-10-14 08:41:48,373 EPOCH 9 done: loss 0.0059 - lr: 0.000018
2023-10-14 08:42:29,867 DEV : loss 0.37816229462623596 - f1-score (micro avg)  0.6517
2023-10-14 08:42:29,939 ----------------------------------------------------------------------------------------------------
2023-10-14 08:44:16,008 epoch 10 - iter 361/3617 - loss 0.00562974 - time (sec): 106.07 - samples/sec: 355.80 - lr: 0.000016 - momentum: 0.000000
2023-10-14 08:45:57,224 epoch 10 - iter 722/3617 - loss 0.00588847 - time (sec): 207.28 - samples/sec: 356.86 - lr: 0.000014 - momentum: 0.000000
2023-10-14 08:47:37,036 epoch 10 - iter 1083/3617 - loss 0.00580326 - time (sec): 307.09 - samples/sec: 366.26 - lr: 0.000012 - momentum: 0.000000
2023-10-14 08:49:18,323 epoch 10 - iter 1444/3617 - loss 0.00517980 - time (sec): 408.38 - samples/sec: 365.73 - lr: 0.000011 - momentum: 0.000000
2023-10-14 08:50:59,735 epoch 10 - iter 1805/3617 - loss 0.00496664 - time (sec): 509.79 - samples/sec: 368.87 - lr: 0.000009 - momentum: 0.000000
2023-10-14 08:52:39,423 epoch 10 - iter 2166/3617 - loss 0.00448679 - time (sec): 609.48 - samples/sec: 369.82 - lr: 0.000007 - momentum: 0.000000
2023-10-14 08:54:21,432 epoch 10 - iter 2527/3617 - loss 0.00434716 - time (sec): 711.49 - samples/sec: 372.23 - lr: 0.000005 - momentum: 0.000000
2023-10-14 08:56:01,306 epoch 10 - iter 2888/3617 - loss 0.00431111 - time (sec): 811.36 - samples/sec: 372.31 - lr: 0.000004 - momentum: 0.000000
2023-10-14 08:57:43,937 epoch 10 - iter 3249/3617 - loss 0.00426079 - time (sec): 914.00 - samples/sec: 373.34 - lr: 0.000002 - momentum: 0.000000
2023-10-14 08:59:25,667 epoch 10 - iter 3610/3617 - loss 0.00423353 - time (sec): 1015.73 - samples/sec: 373.10 - lr: 0.000000 - momentum: 0.000000
2023-10-14 08:59:27,802 ----------------------------------------------------------------------------------------------------
2023-10-14 08:59:27,802 EPOCH 10 done: loss 0.0042 - lr: 0.000000
2023-10-14 09:00:08,268 DEV : loss 0.3906834125518799 - f1-score (micro avg)  0.6573
2023-10-14 09:00:09,310 ----------------------------------------------------------------------------------------------------
2023-10-14 09:00:09,312 Loading model from best epoch ...
2023-10-14 09:00:13,705 SequenceTagger predicts: Dictionary with 13 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org
2023-10-14 09:01:11,888 
Results:
- F-score (micro) 0.6379
- F-score (macro) 0.4852
- Accuracy 0.4792

By class:
              precision    recall  f1-score   support

         loc     0.6534    0.7242    0.6870       591
        pers     0.5650    0.7423    0.6416       357
         org     0.1702    0.1013    0.1270        79

   micro avg     0.5986    0.6826    0.6379      1027
   macro avg     0.4629    0.5226    0.4852      1027
weighted avg     0.5855    0.6826    0.6282      1027

2023-10-14 09:01:11,888 ----------------------------------------------------------------------------------------------------