File size: 36,853 Bytes
a867fa0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
2023-10-25 10:42:24,196 ----------------------------------------------------------------------------------------------------
2023-10-25 10:42:24,197 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(64001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (1): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (2): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (3): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (4): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (5): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (6): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (7): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (8): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (9): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (10): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (11): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=13, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-25 10:42:24,197 ----------------------------------------------------------------------------------------------------
2023-10-25 10:42:24,197 MultiCorpus: 14465 train + 1392 dev + 2432 test sentences
 - NER_HIPE_2022 Corpus: 14465 train + 1392 dev + 2432 test sentences - /home/ubuntu/.flair/datasets/ner_hipe_2022/v2.1/letemps/fr/with_doc_seperator
2023-10-25 10:42:24,197 ----------------------------------------------------------------------------------------------------
2023-10-25 10:42:24,197 Train:  14465 sentences
2023-10-25 10:42:24,197         (train_with_dev=False, train_with_test=False)
2023-10-25 10:42:24,197 ----------------------------------------------------------------------------------------------------
2023-10-25 10:42:24,197 Training Params:
2023-10-25 10:42:24,197  - learning_rate: "5e-05" 
2023-10-25 10:42:24,197  - mini_batch_size: "8"
2023-10-25 10:42:24,197  - max_epochs: "10"
2023-10-25 10:42:24,197  - shuffle: "True"
2023-10-25 10:42:24,197 ----------------------------------------------------------------------------------------------------
2023-10-25 10:42:24,197 Plugins:
2023-10-25 10:42:24,197  - TensorboardLogger
2023-10-25 10:42:24,197  - LinearScheduler | warmup_fraction: '0.1'
2023-10-25 10:42:24,197 ----------------------------------------------------------------------------------------------------
2023-10-25 10:42:24,197 Final evaluation on model from best epoch (best-model.pt)
2023-10-25 10:42:24,197  - metric: "('micro avg', 'f1-score')"
2023-10-25 10:42:24,197 ----------------------------------------------------------------------------------------------------
2023-10-25 10:42:24,197 Computation:
2023-10-25 10:42:24,197  - compute on device: cuda:0
2023-10-25 10:42:24,197  - embedding storage: none
2023-10-25 10:42:24,197 ----------------------------------------------------------------------------------------------------
2023-10-25 10:42:24,197 Model training base path: "hmbench-letemps/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2"
2023-10-25 10:42:24,197 ----------------------------------------------------------------------------------------------------
2023-10-25 10:42:24,197 ----------------------------------------------------------------------------------------------------
2023-10-25 10:42:24,198 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-25 10:42:39,798 epoch 1 - iter 180/1809 - loss 1.08864236 - time (sec): 15.60 - samples/sec: 2462.39 - lr: 0.000005 - momentum: 0.000000
2023-10-25 10:42:55,362 epoch 1 - iter 360/1809 - loss 0.63737072 - time (sec): 31.16 - samples/sec: 2435.51 - lr: 0.000010 - momentum: 0.000000
2023-10-25 10:43:11,204 epoch 1 - iter 540/1809 - loss 0.47500323 - time (sec): 47.01 - samples/sec: 2422.29 - lr: 0.000015 - momentum: 0.000000
2023-10-25 10:43:26,982 epoch 1 - iter 720/1809 - loss 0.38842572 - time (sec): 62.78 - samples/sec: 2405.92 - lr: 0.000020 - momentum: 0.000000
2023-10-25 10:43:42,388 epoch 1 - iter 900/1809 - loss 0.33612833 - time (sec): 78.19 - samples/sec: 2392.53 - lr: 0.000025 - momentum: 0.000000
2023-10-25 10:43:58,152 epoch 1 - iter 1080/1809 - loss 0.29705344 - time (sec): 93.95 - samples/sec: 2390.75 - lr: 0.000030 - momentum: 0.000000
2023-10-25 10:44:14,538 epoch 1 - iter 1260/1809 - loss 0.26939451 - time (sec): 110.34 - samples/sec: 2392.79 - lr: 0.000035 - momentum: 0.000000
2023-10-25 10:44:30,974 epoch 1 - iter 1440/1809 - loss 0.24905179 - time (sec): 126.78 - samples/sec: 2389.57 - lr: 0.000040 - momentum: 0.000000
2023-10-25 10:44:46,901 epoch 1 - iter 1620/1809 - loss 0.23268593 - time (sec): 142.70 - samples/sec: 2385.14 - lr: 0.000045 - momentum: 0.000000
2023-10-25 10:45:02,841 epoch 1 - iter 1800/1809 - loss 0.21934057 - time (sec): 158.64 - samples/sec: 2384.02 - lr: 0.000050 - momentum: 0.000000
2023-10-25 10:45:03,516 ----------------------------------------------------------------------------------------------------
2023-10-25 10:45:03,517 EPOCH 1 done: loss 0.2188 - lr: 0.000050
2023-10-25 10:45:08,070 DEV : loss 0.12551043927669525 - f1-score (micro avg)  0.595
2023-10-25 10:45:08,092 saving best model
2023-10-25 10:45:08,652 ----------------------------------------------------------------------------------------------------
2023-10-25 10:45:24,334 epoch 2 - iter 180/1809 - loss 0.09357098 - time (sec): 15.68 - samples/sec: 2407.94 - lr: 0.000049 - momentum: 0.000000
2023-10-25 10:45:40,596 epoch 2 - iter 360/1809 - loss 0.09016993 - time (sec): 31.94 - samples/sec: 2403.78 - lr: 0.000049 - momentum: 0.000000
2023-10-25 10:45:56,781 epoch 2 - iter 540/1809 - loss 0.09172432 - time (sec): 48.13 - samples/sec: 2396.27 - lr: 0.000048 - momentum: 0.000000
2023-10-25 10:46:12,794 epoch 2 - iter 720/1809 - loss 0.09158145 - time (sec): 64.14 - samples/sec: 2398.33 - lr: 0.000048 - momentum: 0.000000
2023-10-25 10:46:28,593 epoch 2 - iter 900/1809 - loss 0.09251771 - time (sec): 79.94 - samples/sec: 2389.54 - lr: 0.000047 - momentum: 0.000000
2023-10-25 10:46:44,259 epoch 2 - iter 1080/1809 - loss 0.09131020 - time (sec): 95.61 - samples/sec: 2395.09 - lr: 0.000047 - momentum: 0.000000
2023-10-25 10:46:59,923 epoch 2 - iter 1260/1809 - loss 0.09065843 - time (sec): 111.27 - samples/sec: 2387.06 - lr: 0.000046 - momentum: 0.000000
2023-10-25 10:47:15,682 epoch 2 - iter 1440/1809 - loss 0.09009273 - time (sec): 127.03 - samples/sec: 2386.49 - lr: 0.000046 - momentum: 0.000000
2023-10-25 10:47:31,440 epoch 2 - iter 1620/1809 - loss 0.08870597 - time (sec): 142.79 - samples/sec: 2389.70 - lr: 0.000045 - momentum: 0.000000
2023-10-25 10:47:47,438 epoch 2 - iter 1800/1809 - loss 0.08734034 - time (sec): 158.79 - samples/sec: 2380.41 - lr: 0.000044 - momentum: 0.000000
2023-10-25 10:47:48,319 ----------------------------------------------------------------------------------------------------
2023-10-25 10:47:48,320 EPOCH 2 done: loss 0.0871 - lr: 0.000044
2023-10-25 10:47:53,589 DEV : loss 0.12736038863658905 - f1-score (micro avg)  0.6164
2023-10-25 10:47:53,611 saving best model
2023-10-25 10:47:54,320 ----------------------------------------------------------------------------------------------------
2023-10-25 10:48:10,502 epoch 3 - iter 180/1809 - loss 0.07791949 - time (sec): 16.18 - samples/sec: 2440.64 - lr: 0.000044 - momentum: 0.000000
2023-10-25 10:48:26,551 epoch 3 - iter 360/1809 - loss 0.07255591 - time (sec): 32.23 - samples/sec: 2434.36 - lr: 0.000043 - momentum: 0.000000
2023-10-25 10:48:42,860 epoch 3 - iter 540/1809 - loss 0.07280647 - time (sec): 48.54 - samples/sec: 2416.45 - lr: 0.000043 - momentum: 0.000000
2023-10-25 10:48:58,313 epoch 3 - iter 720/1809 - loss 0.06999820 - time (sec): 63.99 - samples/sec: 2405.21 - lr: 0.000042 - momentum: 0.000000
2023-10-25 10:49:14,210 epoch 3 - iter 900/1809 - loss 0.06882067 - time (sec): 79.89 - samples/sec: 2398.64 - lr: 0.000042 - momentum: 0.000000
2023-10-25 10:49:29,782 epoch 3 - iter 1080/1809 - loss 0.06780427 - time (sec): 95.46 - samples/sec: 2391.39 - lr: 0.000041 - momentum: 0.000000
2023-10-25 10:49:45,430 epoch 3 - iter 1260/1809 - loss 0.06627869 - time (sec): 111.11 - samples/sec: 2384.04 - lr: 0.000041 - momentum: 0.000000
2023-10-25 10:50:01,822 epoch 3 - iter 1440/1809 - loss 0.06607504 - time (sec): 127.50 - samples/sec: 2375.41 - lr: 0.000040 - momentum: 0.000000
2023-10-25 10:50:17,479 epoch 3 - iter 1620/1809 - loss 0.06532994 - time (sec): 143.16 - samples/sec: 2381.32 - lr: 0.000039 - momentum: 0.000000
2023-10-25 10:50:33,050 epoch 3 - iter 1800/1809 - loss 0.06483682 - time (sec): 158.73 - samples/sec: 2383.21 - lr: 0.000039 - momentum: 0.000000
2023-10-25 10:50:33,799 ----------------------------------------------------------------------------------------------------
2023-10-25 10:50:33,799 EPOCH 3 done: loss 0.0649 - lr: 0.000039
2023-10-25 10:50:38,557 DEV : loss 0.13015878200531006 - f1-score (micro avg)  0.6083
2023-10-25 10:50:38,579 ----------------------------------------------------------------------------------------------------
2023-10-25 10:50:54,622 epoch 4 - iter 180/1809 - loss 0.04109198 - time (sec): 16.04 - samples/sec: 2401.20 - lr: 0.000038 - momentum: 0.000000
2023-10-25 10:51:10,400 epoch 4 - iter 360/1809 - loss 0.04019791 - time (sec): 31.82 - samples/sec: 2393.98 - lr: 0.000038 - momentum: 0.000000
2023-10-25 10:51:26,181 epoch 4 - iter 540/1809 - loss 0.04111006 - time (sec): 47.60 - samples/sec: 2401.38 - lr: 0.000037 - momentum: 0.000000
2023-10-25 10:51:41,964 epoch 4 - iter 720/1809 - loss 0.04191859 - time (sec): 63.38 - samples/sec: 2379.87 - lr: 0.000037 - momentum: 0.000000
2023-10-25 10:51:57,954 epoch 4 - iter 900/1809 - loss 0.04474768 - time (sec): 79.37 - samples/sec: 2381.93 - lr: 0.000036 - momentum: 0.000000
2023-10-25 10:52:13,744 epoch 4 - iter 1080/1809 - loss 0.04597864 - time (sec): 95.16 - samples/sec: 2371.18 - lr: 0.000036 - momentum: 0.000000
2023-10-25 10:52:29,289 epoch 4 - iter 1260/1809 - loss 0.04532760 - time (sec): 110.71 - samples/sec: 2374.95 - lr: 0.000035 - momentum: 0.000000
2023-10-25 10:52:45,599 epoch 4 - iter 1440/1809 - loss 0.04474968 - time (sec): 127.02 - samples/sec: 2360.69 - lr: 0.000034 - momentum: 0.000000
2023-10-25 10:53:01,795 epoch 4 - iter 1620/1809 - loss 0.04456366 - time (sec): 143.21 - samples/sec: 2366.29 - lr: 0.000034 - momentum: 0.000000
2023-10-25 10:53:17,695 epoch 4 - iter 1800/1809 - loss 0.04497375 - time (sec): 159.11 - samples/sec: 2376.49 - lr: 0.000033 - momentum: 0.000000
2023-10-25 10:53:18,468 ----------------------------------------------------------------------------------------------------
2023-10-25 10:53:18,469 EPOCH 4 done: loss 0.0450 - lr: 0.000033
2023-10-25 10:53:23,224 DEV : loss 0.23449285328388214 - f1-score (micro avg)  0.5643
2023-10-25 10:53:23,246 ----------------------------------------------------------------------------------------------------
2023-10-25 10:53:39,283 epoch 5 - iter 180/1809 - loss 0.11798032 - time (sec): 16.04 - samples/sec: 2458.47 - lr: 0.000033 - momentum: 0.000000
2023-10-25 10:53:55,130 epoch 5 - iter 360/1809 - loss 0.09384126 - time (sec): 31.88 - samples/sec: 2408.73 - lr: 0.000032 - momentum: 0.000000
2023-10-25 10:54:10,990 epoch 5 - iter 540/1809 - loss 0.07744584 - time (sec): 47.74 - samples/sec: 2388.60 - lr: 0.000032 - momentum: 0.000000
2023-10-25 10:54:26,505 epoch 5 - iter 720/1809 - loss 0.08471679 - time (sec): 63.26 - samples/sec: 2396.43 - lr: 0.000031 - momentum: 0.000000
2023-10-25 10:54:42,213 epoch 5 - iter 900/1809 - loss 0.09678449 - time (sec): 78.97 - samples/sec: 2398.43 - lr: 0.000031 - momentum: 0.000000
2023-10-25 10:54:58,597 epoch 5 - iter 1080/1809 - loss 0.09685579 - time (sec): 95.35 - samples/sec: 2396.32 - lr: 0.000030 - momentum: 0.000000
2023-10-25 10:55:14,316 epoch 5 - iter 1260/1809 - loss 0.09900587 - time (sec): 111.07 - samples/sec: 2388.46 - lr: 0.000029 - momentum: 0.000000
2023-10-25 10:55:30,081 epoch 5 - iter 1440/1809 - loss 0.10576125 - time (sec): 126.83 - samples/sec: 2388.49 - lr: 0.000029 - momentum: 0.000000
2023-10-25 10:55:45,766 epoch 5 - iter 1620/1809 - loss 0.11334555 - time (sec): 142.52 - samples/sec: 2382.86 - lr: 0.000028 - momentum: 0.000000
2023-10-25 10:56:01,695 epoch 5 - iter 1800/1809 - loss 0.11935313 - time (sec): 158.45 - samples/sec: 2386.46 - lr: 0.000028 - momentum: 0.000000
2023-10-25 10:56:02,462 ----------------------------------------------------------------------------------------------------
2023-10-25 10:56:02,462 EPOCH 5 done: loss 0.1197 - lr: 0.000028
2023-10-25 10:56:07,710 DEV : loss 0.22438712418079376 - f1-score (micro avg)  0.3385
2023-10-25 10:56:07,732 ----------------------------------------------------------------------------------------------------
2023-10-25 10:56:23,701 epoch 6 - iter 180/1809 - loss 0.13593977 - time (sec): 15.97 - samples/sec: 2374.30 - lr: 0.000027 - momentum: 0.000000
2023-10-25 10:56:39,782 epoch 6 - iter 360/1809 - loss 0.11374633 - time (sec): 32.05 - samples/sec: 2397.55 - lr: 0.000027 - momentum: 0.000000
2023-10-25 10:56:55,834 epoch 6 - iter 540/1809 - loss 0.10944967 - time (sec): 48.10 - samples/sec: 2399.11 - lr: 0.000026 - momentum: 0.000000
2023-10-25 10:57:11,763 epoch 6 - iter 720/1809 - loss 0.13307279 - time (sec): 64.03 - samples/sec: 2395.36 - lr: 0.000026 - momentum: 0.000000
2023-10-25 10:57:27,269 epoch 6 - iter 900/1809 - loss 0.14472156 - time (sec): 79.54 - samples/sec: 2392.63 - lr: 0.000025 - momentum: 0.000000
2023-10-25 10:57:43,006 epoch 6 - iter 1080/1809 - loss 0.14546492 - time (sec): 95.27 - samples/sec: 2388.10 - lr: 0.000024 - momentum: 0.000000
2023-10-25 10:57:58,783 epoch 6 - iter 1260/1809 - loss 0.14276182 - time (sec): 111.05 - samples/sec: 2382.48 - lr: 0.000024 - momentum: 0.000000
2023-10-25 10:58:14,861 epoch 6 - iter 1440/1809 - loss 0.13027593 - time (sec): 127.13 - samples/sec: 2387.70 - lr: 0.000023 - momentum: 0.000000
2023-10-25 10:58:30,584 epoch 6 - iter 1620/1809 - loss 0.12180313 - time (sec): 142.85 - samples/sec: 2386.56 - lr: 0.000023 - momentum: 0.000000
2023-10-25 10:58:46,528 epoch 6 - iter 1800/1809 - loss 0.11629211 - time (sec): 158.80 - samples/sec: 2381.42 - lr: 0.000022 - momentum: 0.000000
2023-10-25 10:58:47,311 ----------------------------------------------------------------------------------------------------
2023-10-25 10:58:47,312 EPOCH 6 done: loss 0.1159 - lr: 0.000022
2023-10-25 10:58:52,577 DEV : loss 0.23836202919483185 - f1-score (micro avg)  0.5285
2023-10-25 10:58:52,599 ----------------------------------------------------------------------------------------------------
2023-10-25 10:59:08,273 epoch 7 - iter 180/1809 - loss 0.05953192 - time (sec): 15.67 - samples/sec: 2390.84 - lr: 0.000022 - momentum: 0.000000
2023-10-25 10:59:24,137 epoch 7 - iter 360/1809 - loss 0.06041906 - time (sec): 31.54 - samples/sec: 2347.48 - lr: 0.000021 - momentum: 0.000000
2023-10-25 10:59:40,181 epoch 7 - iter 540/1809 - loss 0.06633058 - time (sec): 47.58 - samples/sec: 2329.88 - lr: 0.000021 - momentum: 0.000000
2023-10-25 10:59:55,826 epoch 7 - iter 720/1809 - loss 0.06758924 - time (sec): 63.23 - samples/sec: 2345.81 - lr: 0.000020 - momentum: 0.000000
2023-10-25 11:00:12,024 epoch 7 - iter 900/1809 - loss 0.06923090 - time (sec): 79.42 - samples/sec: 2348.03 - lr: 0.000019 - momentum: 0.000000
2023-10-25 11:00:27,650 epoch 7 - iter 1080/1809 - loss 0.06847767 - time (sec): 95.05 - samples/sec: 2350.34 - lr: 0.000019 - momentum: 0.000000
2023-10-25 11:00:43,756 epoch 7 - iter 1260/1809 - loss 0.06519470 - time (sec): 111.16 - samples/sec: 2354.86 - lr: 0.000018 - momentum: 0.000000
2023-10-25 11:01:00,077 epoch 7 - iter 1440/1809 - loss 0.06291968 - time (sec): 127.48 - samples/sec: 2362.89 - lr: 0.000018 - momentum: 0.000000
2023-10-25 11:01:15,563 epoch 7 - iter 1620/1809 - loss 0.06280369 - time (sec): 142.96 - samples/sec: 2372.87 - lr: 0.000017 - momentum: 0.000000
2023-10-25 11:01:31,725 epoch 7 - iter 1800/1809 - loss 0.06011227 - time (sec): 159.12 - samples/sec: 2377.28 - lr: 0.000017 - momentum: 0.000000
2023-10-25 11:01:32,510 ----------------------------------------------------------------------------------------------------
2023-10-25 11:01:32,510 EPOCH 7 done: loss 0.0601 - lr: 0.000017
2023-10-25 11:01:37,792 DEV : loss 0.25131794810295105 - f1-score (micro avg)  0.5408
2023-10-25 11:01:37,814 ----------------------------------------------------------------------------------------------------
2023-10-25 11:01:53,779 epoch 8 - iter 180/1809 - loss 0.01859667 - time (sec): 15.96 - samples/sec: 2421.30 - lr: 0.000016 - momentum: 0.000000
2023-10-25 11:02:09,497 epoch 8 - iter 360/1809 - loss 0.02439411 - time (sec): 31.68 - samples/sec: 2406.52 - lr: 0.000016 - momentum: 0.000000
2023-10-25 11:02:25,696 epoch 8 - iter 540/1809 - loss 0.02666204 - time (sec): 47.88 - samples/sec: 2383.15 - lr: 0.000015 - momentum: 0.000000
2023-10-25 11:02:41,394 epoch 8 - iter 720/1809 - loss 0.03108643 - time (sec): 63.58 - samples/sec: 2379.68 - lr: 0.000014 - momentum: 0.000000
2023-10-25 11:02:57,230 epoch 8 - iter 900/1809 - loss 0.03146788 - time (sec): 79.42 - samples/sec: 2379.80 - lr: 0.000014 - momentum: 0.000000
2023-10-25 11:03:13,381 epoch 8 - iter 1080/1809 - loss 0.03266776 - time (sec): 95.57 - samples/sec: 2388.45 - lr: 0.000013 - momentum: 0.000000
2023-10-25 11:03:29,042 epoch 8 - iter 1260/1809 - loss 0.03363994 - time (sec): 111.23 - samples/sec: 2391.56 - lr: 0.000013 - momentum: 0.000000
2023-10-25 11:03:44,858 epoch 8 - iter 1440/1809 - loss 0.03353747 - time (sec): 127.04 - samples/sec: 2394.81 - lr: 0.000012 - momentum: 0.000000
2023-10-25 11:04:00,459 epoch 8 - iter 1620/1809 - loss 0.03451516 - time (sec): 142.64 - samples/sec: 2393.65 - lr: 0.000012 - momentum: 0.000000
2023-10-25 11:04:16,154 epoch 8 - iter 1800/1809 - loss 0.03533870 - time (sec): 158.34 - samples/sec: 2387.59 - lr: 0.000011 - momentum: 0.000000
2023-10-25 11:04:16,985 ----------------------------------------------------------------------------------------------------
2023-10-25 11:04:16,986 EPOCH 8 done: loss 0.0353 - lr: 0.000011
2023-10-25 11:04:22,282 DEV : loss 0.2803691029548645 - f1-score (micro avg)  0.5162
2023-10-25 11:04:22,304 ----------------------------------------------------------------------------------------------------
2023-10-25 11:04:38,035 epoch 9 - iter 180/1809 - loss 0.04227779 - time (sec): 15.73 - samples/sec: 2359.95 - lr: 0.000011 - momentum: 0.000000
2023-10-25 11:04:53,886 epoch 9 - iter 360/1809 - loss 0.03812442 - time (sec): 31.58 - samples/sec: 2363.59 - lr: 0.000010 - momentum: 0.000000
2023-10-25 11:05:09,537 epoch 9 - iter 540/1809 - loss 0.03623853 - time (sec): 47.23 - samples/sec: 2371.61 - lr: 0.000009 - momentum: 0.000000
2023-10-25 11:05:25,709 epoch 9 - iter 720/1809 - loss 0.03584853 - time (sec): 63.40 - samples/sec: 2381.00 - lr: 0.000009 - momentum: 0.000000
2023-10-25 11:05:41,500 epoch 9 - iter 900/1809 - loss 0.03443228 - time (sec): 79.20 - samples/sec: 2386.06 - lr: 0.000008 - momentum: 0.000000
2023-10-25 11:05:57,949 epoch 9 - iter 1080/1809 - loss 0.03283348 - time (sec): 95.64 - samples/sec: 2383.97 - lr: 0.000008 - momentum: 0.000000
2023-10-25 11:06:14,072 epoch 9 - iter 1260/1809 - loss 0.03344930 - time (sec): 111.77 - samples/sec: 2378.11 - lr: 0.000007 - momentum: 0.000000
2023-10-25 11:06:30,047 epoch 9 - iter 1440/1809 - loss 0.03338922 - time (sec): 127.74 - samples/sec: 2380.90 - lr: 0.000007 - momentum: 0.000000
2023-10-25 11:06:45,210 epoch 9 - iter 1620/1809 - loss 0.03462184 - time (sec): 142.91 - samples/sec: 2379.23 - lr: 0.000006 - momentum: 0.000000
2023-10-25 11:07:00,995 epoch 9 - iter 1800/1809 - loss 0.03463472 - time (sec): 158.69 - samples/sec: 2383.29 - lr: 0.000006 - momentum: 0.000000
2023-10-25 11:07:01,773 ----------------------------------------------------------------------------------------------------
2023-10-25 11:07:01,773 EPOCH 9 done: loss 0.0347 - lr: 0.000006
2023-10-25 11:07:06,528 DEV : loss 0.2776682376861572 - f1-score (micro avg)  0.5031
2023-10-25 11:07:06,550 ----------------------------------------------------------------------------------------------------
2023-10-25 11:07:22,652 epoch 10 - iter 180/1809 - loss 0.02754181 - time (sec): 16.10 - samples/sec: 2301.55 - lr: 0.000005 - momentum: 0.000000
2023-10-25 11:07:38,870 epoch 10 - iter 360/1809 - loss 0.03479173 - time (sec): 32.32 - samples/sec: 2325.30 - lr: 0.000004 - momentum: 0.000000
2023-10-25 11:07:55,201 epoch 10 - iter 540/1809 - loss 0.03464083 - time (sec): 48.65 - samples/sec: 2351.22 - lr: 0.000004 - momentum: 0.000000
2023-10-25 11:08:11,048 epoch 10 - iter 720/1809 - loss 0.03422069 - time (sec): 64.50 - samples/sec: 2358.86 - lr: 0.000003 - momentum: 0.000000
2023-10-25 11:08:26,946 epoch 10 - iter 900/1809 - loss 0.03352713 - time (sec): 80.40 - samples/sec: 2373.35 - lr: 0.000003 - momentum: 0.000000
2023-10-25 11:08:42,565 epoch 10 - iter 1080/1809 - loss 0.03377603 - time (sec): 96.01 - samples/sec: 2365.83 - lr: 0.000002 - momentum: 0.000000
2023-10-25 11:08:58,382 epoch 10 - iter 1260/1809 - loss 0.03388777 - time (sec): 111.83 - samples/sec: 2369.29 - lr: 0.000002 - momentum: 0.000000
2023-10-25 11:09:14,125 epoch 10 - iter 1440/1809 - loss 0.03414918 - time (sec): 127.57 - samples/sec: 2372.33 - lr: 0.000001 - momentum: 0.000000
2023-10-25 11:09:30,395 epoch 10 - iter 1620/1809 - loss 0.03466586 - time (sec): 143.84 - samples/sec: 2374.22 - lr: 0.000001 - momentum: 0.000000
2023-10-25 11:09:46,068 epoch 10 - iter 1800/1809 - loss 0.03590016 - time (sec): 159.52 - samples/sec: 2372.05 - lr: 0.000000 - momentum: 0.000000
2023-10-25 11:09:46,864 ----------------------------------------------------------------------------------------------------
2023-10-25 11:09:46,864 EPOCH 10 done: loss 0.0359 - lr: 0.000000
2023-10-25 11:09:51,615 DEV : loss 0.2868908643722534 - f1-score (micro avg)  0.4824
2023-10-25 11:09:52,189 ----------------------------------------------------------------------------------------------------
2023-10-25 11:09:52,190 Loading model from best epoch ...
2023-10-25 11:09:53,952 SequenceTagger predicts: Dictionary with 13 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org
2023-10-25 11:10:00,212 
Results:
- F-score (micro) 0.6416
- F-score (macro) 0.4392
- Accuracy 0.4784

By class:
              precision    recall  f1-score   support

         loc     0.6730    0.7208    0.6961       591
        pers     0.5624    0.6947    0.6216       357
         org     0.0000    0.0000    0.0000        79

   micro avg     0.6276    0.6563    0.6416      1027
   macro avg     0.4118    0.4718    0.4392      1027
weighted avg     0.5828    0.6563    0.6166      1027

2023-10-25 11:10:00,213 ----------------------------------------------------------------------------------------------------