File size: 37,030 Bytes
101c03c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
2023-10-25 15:38:47,008 ----------------------------------------------------------------------------------------------------
2023-10-25 15:38:47,009 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(64001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (1): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (2): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (3): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (4): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (5): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (6): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (7): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (8): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (9): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (10): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (11): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=13, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-25 15:38:47,009 ----------------------------------------------------------------------------------------------------
2023-10-25 15:38:47,009 MultiCorpus: 14465 train + 1392 dev + 2432 test sentences
 - NER_HIPE_2022 Corpus: 14465 train + 1392 dev + 2432 test sentences - /home/ubuntu/.flair/datasets/ner_hipe_2022/v2.1/letemps/fr/with_doc_seperator
2023-10-25 15:38:47,009 ----------------------------------------------------------------------------------------------------
2023-10-25 15:38:47,009 Train:  14465 sentences
2023-10-25 15:38:47,009         (train_with_dev=False, train_with_test=False)
2023-10-25 15:38:47,009 ----------------------------------------------------------------------------------------------------
2023-10-25 15:38:47,009 Training Params:
2023-10-25 15:38:47,009  - learning_rate: "3e-05" 
2023-10-25 15:38:47,009  - mini_batch_size: "4"
2023-10-25 15:38:47,009  - max_epochs: "10"
2023-10-25 15:38:47,009  - shuffle: "True"
2023-10-25 15:38:47,009 ----------------------------------------------------------------------------------------------------
2023-10-25 15:38:47,009 Plugins:
2023-10-25 15:38:47,009  - TensorboardLogger
2023-10-25 15:38:47,009  - LinearScheduler | warmup_fraction: '0.1'
2023-10-25 15:38:47,009 ----------------------------------------------------------------------------------------------------
2023-10-25 15:38:47,009 Final evaluation on model from best epoch (best-model.pt)
2023-10-25 15:38:47,009  - metric: "('micro avg', 'f1-score')"
2023-10-25 15:38:47,009 ----------------------------------------------------------------------------------------------------
2023-10-25 15:38:47,009 Computation:
2023-10-25 15:38:47,009  - compute on device: cuda:0
2023-10-25 15:38:47,009  - embedding storage: none
2023-10-25 15:38:47,009 ----------------------------------------------------------------------------------------------------
2023-10-25 15:38:47,009 Model training base path: "hmbench-letemps/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4"
2023-10-25 15:38:47,009 ----------------------------------------------------------------------------------------------------
2023-10-25 15:38:47,009 ----------------------------------------------------------------------------------------------------
2023-10-25 15:38:47,009 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-25 15:39:09,553 epoch 1 - iter 361/3617 - loss 1.19886281 - time (sec): 22.54 - samples/sec: 1661.18 - lr: 0.000003 - momentum: 0.000000
2023-10-25 15:39:32,433 epoch 1 - iter 722/3617 - loss 0.68831441 - time (sec): 45.42 - samples/sec: 1682.42 - lr: 0.000006 - momentum: 0.000000
2023-10-25 15:39:54,936 epoch 1 - iter 1083/3617 - loss 0.51170947 - time (sec): 67.93 - samples/sec: 1667.26 - lr: 0.000009 - momentum: 0.000000
2023-10-25 15:40:17,679 epoch 1 - iter 1444/3617 - loss 0.41162390 - time (sec): 90.67 - samples/sec: 1675.46 - lr: 0.000012 - momentum: 0.000000
2023-10-25 15:40:40,401 epoch 1 - iter 1805/3617 - loss 0.35326768 - time (sec): 113.39 - samples/sec: 1674.11 - lr: 0.000015 - momentum: 0.000000
2023-10-25 15:41:03,110 epoch 1 - iter 2166/3617 - loss 0.31329417 - time (sec): 136.10 - samples/sec: 1682.14 - lr: 0.000018 - momentum: 0.000000
2023-10-25 15:41:25,626 epoch 1 - iter 2527/3617 - loss 0.28535492 - time (sec): 158.62 - samples/sec: 1680.30 - lr: 0.000021 - momentum: 0.000000
2023-10-25 15:41:48,351 epoch 1 - iter 2888/3617 - loss 0.26499215 - time (sec): 181.34 - samples/sec: 1682.04 - lr: 0.000024 - momentum: 0.000000
2023-10-25 15:42:10,950 epoch 1 - iter 3249/3617 - loss 0.24775587 - time (sec): 203.94 - samples/sec: 1678.70 - lr: 0.000027 - momentum: 0.000000
2023-10-25 15:42:33,298 epoch 1 - iter 3610/3617 - loss 0.23447570 - time (sec): 226.29 - samples/sec: 1675.45 - lr: 0.000030 - momentum: 0.000000
2023-10-25 15:42:33,748 ----------------------------------------------------------------------------------------------------
2023-10-25 15:42:33,748 EPOCH 1 done: loss 0.2341 - lr: 0.000030
2023-10-25 15:42:38,729 DEV : loss 0.12141559273004532 - f1-score (micro avg)  0.6425
2023-10-25 15:42:38,752 saving best model
2023-10-25 15:42:39,301 ----------------------------------------------------------------------------------------------------
2023-10-25 15:43:02,256 epoch 2 - iter 361/3617 - loss 0.10229911 - time (sec): 22.95 - samples/sec: 1700.22 - lr: 0.000030 - momentum: 0.000000
2023-10-25 15:43:24,847 epoch 2 - iter 722/3617 - loss 0.10119859 - time (sec): 45.55 - samples/sec: 1678.69 - lr: 0.000029 - momentum: 0.000000
2023-10-25 15:43:47,602 epoch 2 - iter 1083/3617 - loss 0.10115542 - time (sec): 68.30 - samples/sec: 1671.77 - lr: 0.000029 - momentum: 0.000000
2023-10-25 15:44:10,203 epoch 2 - iter 1444/3617 - loss 0.10048881 - time (sec): 90.90 - samples/sec: 1676.55 - lr: 0.000029 - momentum: 0.000000
2023-10-25 15:44:32,710 epoch 2 - iter 1805/3617 - loss 0.09969364 - time (sec): 113.41 - samples/sec: 1664.78 - lr: 0.000028 - momentum: 0.000000
2023-10-25 15:44:55,757 epoch 2 - iter 2166/3617 - loss 0.09899570 - time (sec): 136.45 - samples/sec: 1680.19 - lr: 0.000028 - momentum: 0.000000
2023-10-25 15:45:18,336 epoch 2 - iter 2527/3617 - loss 0.09812338 - time (sec): 159.03 - samples/sec: 1675.61 - lr: 0.000028 - momentum: 0.000000
2023-10-25 15:45:40,866 epoch 2 - iter 2888/3617 - loss 0.09881509 - time (sec): 181.56 - samples/sec: 1674.82 - lr: 0.000027 - momentum: 0.000000
2023-10-25 15:46:03,446 epoch 2 - iter 3249/3617 - loss 0.09818580 - time (sec): 204.14 - samples/sec: 1678.00 - lr: 0.000027 - momentum: 0.000000
2023-10-25 15:46:26,000 epoch 2 - iter 3610/3617 - loss 0.09912199 - time (sec): 226.70 - samples/sec: 1673.03 - lr: 0.000027 - momentum: 0.000000
2023-10-25 15:46:26,427 ----------------------------------------------------------------------------------------------------
2023-10-25 15:46:26,427 EPOCH 2 done: loss 0.0991 - lr: 0.000027
2023-10-25 15:46:31,155 DEV : loss 0.10703670233488083 - f1-score (micro avg)  0.5748
2023-10-25 15:46:31,178 ----------------------------------------------------------------------------------------------------
2023-10-25 15:46:54,123 epoch 3 - iter 361/3617 - loss 0.06451220 - time (sec): 22.94 - samples/sec: 1635.94 - lr: 0.000026 - momentum: 0.000000
2023-10-25 15:47:17,018 epoch 3 - iter 722/3617 - loss 0.07071297 - time (sec): 45.84 - samples/sec: 1661.24 - lr: 0.000026 - momentum: 0.000000
2023-10-25 15:47:39,779 epoch 3 - iter 1083/3617 - loss 0.07369259 - time (sec): 68.60 - samples/sec: 1671.64 - lr: 0.000026 - momentum: 0.000000
2023-10-25 15:48:02,401 epoch 3 - iter 1444/3617 - loss 0.07364717 - time (sec): 91.22 - samples/sec: 1660.50 - lr: 0.000025 - momentum: 0.000000
2023-10-25 15:48:25,138 epoch 3 - iter 1805/3617 - loss 0.07368861 - time (sec): 113.96 - samples/sec: 1661.84 - lr: 0.000025 - momentum: 0.000000
2023-10-25 15:48:47,723 epoch 3 - iter 2166/3617 - loss 0.07186830 - time (sec): 136.54 - samples/sec: 1669.15 - lr: 0.000025 - momentum: 0.000000
2023-10-25 15:49:10,464 epoch 3 - iter 2527/3617 - loss 0.07251865 - time (sec): 159.28 - samples/sec: 1672.41 - lr: 0.000024 - momentum: 0.000000
2023-10-25 15:49:32,837 epoch 3 - iter 2888/3617 - loss 0.07304301 - time (sec): 181.66 - samples/sec: 1667.81 - lr: 0.000024 - momentum: 0.000000
2023-10-25 15:49:55,910 epoch 3 - iter 3249/3617 - loss 0.07314916 - time (sec): 204.73 - samples/sec: 1669.74 - lr: 0.000024 - momentum: 0.000000
2023-10-25 15:50:18,464 epoch 3 - iter 3610/3617 - loss 0.07317717 - time (sec): 227.28 - samples/sec: 1667.96 - lr: 0.000023 - momentum: 0.000000
2023-10-25 15:50:18,929 ----------------------------------------------------------------------------------------------------
2023-10-25 15:50:18,929 EPOCH 3 done: loss 0.0731 - lr: 0.000023
2023-10-25 15:50:23,703 DEV : loss 0.22103023529052734 - f1-score (micro avg)  0.6461
2023-10-25 15:50:23,726 saving best model
2023-10-25 15:50:24,448 ----------------------------------------------------------------------------------------------------
2023-10-25 15:50:47,337 epoch 4 - iter 361/3617 - loss 0.04349179 - time (sec): 22.89 - samples/sec: 1687.96 - lr: 0.000023 - momentum: 0.000000
2023-10-25 15:51:09,914 epoch 4 - iter 722/3617 - loss 0.04765068 - time (sec): 45.47 - samples/sec: 1697.83 - lr: 0.000023 - momentum: 0.000000
2023-10-25 15:51:32,736 epoch 4 - iter 1083/3617 - loss 0.04598577 - time (sec): 68.29 - samples/sec: 1696.69 - lr: 0.000022 - momentum: 0.000000
2023-10-25 15:51:55,386 epoch 4 - iter 1444/3617 - loss 0.04854533 - time (sec): 90.94 - samples/sec: 1670.10 - lr: 0.000022 - momentum: 0.000000
2023-10-25 15:52:17,964 epoch 4 - iter 1805/3617 - loss 0.05057207 - time (sec): 113.51 - samples/sec: 1665.68 - lr: 0.000022 - momentum: 0.000000
2023-10-25 15:52:40,951 epoch 4 - iter 2166/3617 - loss 0.05016728 - time (sec): 136.50 - samples/sec: 1678.27 - lr: 0.000021 - momentum: 0.000000
2023-10-25 15:53:03,727 epoch 4 - iter 2527/3617 - loss 0.05059513 - time (sec): 159.28 - samples/sec: 1678.58 - lr: 0.000021 - momentum: 0.000000
2023-10-25 15:53:26,318 epoch 4 - iter 2888/3617 - loss 0.05293486 - time (sec): 181.87 - samples/sec: 1675.87 - lr: 0.000021 - momentum: 0.000000
2023-10-25 15:53:49,399 epoch 4 - iter 3249/3617 - loss 0.05285239 - time (sec): 204.95 - samples/sec: 1669.80 - lr: 0.000020 - momentum: 0.000000
2023-10-25 15:54:11,936 epoch 4 - iter 3610/3617 - loss 0.05260123 - time (sec): 227.49 - samples/sec: 1666.60 - lr: 0.000020 - momentum: 0.000000
2023-10-25 15:54:12,392 ----------------------------------------------------------------------------------------------------
2023-10-25 15:54:12,392 EPOCH 4 done: loss 0.0525 - lr: 0.000020
2023-10-25 15:54:17,149 DEV : loss 0.24151772260665894 - f1-score (micro avg)  0.6262
2023-10-25 15:54:17,172 ----------------------------------------------------------------------------------------------------
2023-10-25 15:54:39,932 epoch 5 - iter 361/3617 - loss 0.02889314 - time (sec): 22.76 - samples/sec: 1633.70 - lr: 0.000020 - momentum: 0.000000
2023-10-25 15:55:02,383 epoch 5 - iter 722/3617 - loss 0.02845671 - time (sec): 45.21 - samples/sec: 1640.80 - lr: 0.000019 - momentum: 0.000000
2023-10-25 15:55:25,074 epoch 5 - iter 1083/3617 - loss 0.02905149 - time (sec): 67.90 - samples/sec: 1652.84 - lr: 0.000019 - momentum: 0.000000
2023-10-25 15:55:47,562 epoch 5 - iter 1444/3617 - loss 0.03106635 - time (sec): 90.39 - samples/sec: 1657.09 - lr: 0.000019 - momentum: 0.000000
2023-10-25 15:56:10,156 epoch 5 - iter 1805/3617 - loss 0.03395971 - time (sec): 112.98 - samples/sec: 1662.83 - lr: 0.000018 - momentum: 0.000000
2023-10-25 15:56:32,681 epoch 5 - iter 2166/3617 - loss 0.03439912 - time (sec): 135.51 - samples/sec: 1657.17 - lr: 0.000018 - momentum: 0.000000
2023-10-25 15:56:55,301 epoch 5 - iter 2527/3617 - loss 0.03516551 - time (sec): 158.13 - samples/sec: 1655.70 - lr: 0.000018 - momentum: 0.000000
2023-10-25 15:57:18,303 epoch 5 - iter 2888/3617 - loss 0.03540794 - time (sec): 181.13 - samples/sec: 1670.73 - lr: 0.000017 - momentum: 0.000000
2023-10-25 15:57:40,862 epoch 5 - iter 3249/3617 - loss 0.03667999 - time (sec): 203.69 - samples/sec: 1666.12 - lr: 0.000017 - momentum: 0.000000
2023-10-25 15:58:03,741 epoch 5 - iter 3610/3617 - loss 0.03647650 - time (sec): 226.57 - samples/sec: 1674.18 - lr: 0.000017 - momentum: 0.000000
2023-10-25 15:58:04,146 ----------------------------------------------------------------------------------------------------
2023-10-25 15:58:04,146 EPOCH 5 done: loss 0.0365 - lr: 0.000017
2023-10-25 15:58:09,429 DEV : loss 0.27911558747291565 - f1-score (micro avg)  0.6411
2023-10-25 15:58:09,452 ----------------------------------------------------------------------------------------------------
2023-10-25 15:58:32,153 epoch 6 - iter 361/3617 - loss 0.01844611 - time (sec): 22.70 - samples/sec: 1684.49 - lr: 0.000016 - momentum: 0.000000
2023-10-25 15:58:54,997 epoch 6 - iter 722/3617 - loss 0.01909398 - time (sec): 45.54 - samples/sec: 1660.35 - lr: 0.000016 - momentum: 0.000000
2023-10-25 15:59:18,007 epoch 6 - iter 1083/3617 - loss 0.02262065 - time (sec): 68.55 - samples/sec: 1690.87 - lr: 0.000016 - momentum: 0.000000
2023-10-25 15:59:40,435 epoch 6 - iter 1444/3617 - loss 0.02337790 - time (sec): 90.98 - samples/sec: 1680.22 - lr: 0.000015 - momentum: 0.000000
2023-10-25 16:00:03,256 epoch 6 - iter 1805/3617 - loss 0.02294877 - time (sec): 113.80 - samples/sec: 1686.69 - lr: 0.000015 - momentum: 0.000000
2023-10-25 16:00:25,717 epoch 6 - iter 2166/3617 - loss 0.02260980 - time (sec): 136.26 - samples/sec: 1685.27 - lr: 0.000015 - momentum: 0.000000
2023-10-25 16:00:48,516 epoch 6 - iter 2527/3617 - loss 0.02245400 - time (sec): 159.06 - samples/sec: 1682.99 - lr: 0.000014 - momentum: 0.000000
2023-10-25 16:01:11,169 epoch 6 - iter 2888/3617 - loss 0.02342671 - time (sec): 181.72 - samples/sec: 1678.37 - lr: 0.000014 - momentum: 0.000000
2023-10-25 16:01:33,582 epoch 6 - iter 3249/3617 - loss 0.02358711 - time (sec): 204.13 - samples/sec: 1671.21 - lr: 0.000014 - momentum: 0.000000
2023-10-25 16:01:56,285 epoch 6 - iter 3610/3617 - loss 0.02404475 - time (sec): 226.83 - samples/sec: 1671.46 - lr: 0.000013 - momentum: 0.000000
2023-10-25 16:01:56,730 ----------------------------------------------------------------------------------------------------
2023-10-25 16:01:56,730 EPOCH 6 done: loss 0.0240 - lr: 0.000013
2023-10-25 16:02:02,029 DEV : loss 0.30914661288261414 - f1-score (micro avg)  0.6277
2023-10-25 16:02:02,052 ----------------------------------------------------------------------------------------------------
2023-10-25 16:02:24,697 epoch 7 - iter 361/3617 - loss 0.01518405 - time (sec): 22.64 - samples/sec: 1682.07 - lr: 0.000013 - momentum: 0.000000
2023-10-25 16:02:47,369 epoch 7 - iter 722/3617 - loss 0.01696119 - time (sec): 45.32 - samples/sec: 1686.25 - lr: 0.000013 - momentum: 0.000000
2023-10-25 16:03:10,138 epoch 7 - iter 1083/3617 - loss 0.01811277 - time (sec): 68.08 - samples/sec: 1679.52 - lr: 0.000012 - momentum: 0.000000
2023-10-25 16:03:33,026 epoch 7 - iter 1444/3617 - loss 0.01753427 - time (sec): 90.97 - samples/sec: 1687.97 - lr: 0.000012 - momentum: 0.000000
2023-10-25 16:03:55,497 epoch 7 - iter 1805/3617 - loss 0.01779560 - time (sec): 113.44 - samples/sec: 1678.37 - lr: 0.000012 - momentum: 0.000000
2023-10-25 16:04:18,296 epoch 7 - iter 2166/3617 - loss 0.01660255 - time (sec): 136.24 - samples/sec: 1684.12 - lr: 0.000011 - momentum: 0.000000
2023-10-25 16:04:40,932 epoch 7 - iter 2527/3617 - loss 0.01698618 - time (sec): 158.88 - samples/sec: 1684.01 - lr: 0.000011 - momentum: 0.000000
2023-10-25 16:05:03,601 epoch 7 - iter 2888/3617 - loss 0.01728988 - time (sec): 181.55 - samples/sec: 1677.49 - lr: 0.000011 - momentum: 0.000000
2023-10-25 16:05:26,391 epoch 7 - iter 3249/3617 - loss 0.01721398 - time (sec): 204.34 - samples/sec: 1672.88 - lr: 0.000010 - momentum: 0.000000
2023-10-25 16:05:48,951 epoch 7 - iter 3610/3617 - loss 0.01693395 - time (sec): 226.90 - samples/sec: 1671.22 - lr: 0.000010 - momentum: 0.000000
2023-10-25 16:05:49,404 ----------------------------------------------------------------------------------------------------
2023-10-25 16:05:49,404 EPOCH 7 done: loss 0.0169 - lr: 0.000010
2023-10-25 16:05:54,703 DEV : loss 0.35005614161491394 - f1-score (micro avg)  0.6476
2023-10-25 16:05:54,726 saving best model
2023-10-25 16:05:55,436 ----------------------------------------------------------------------------------------------------
2023-10-25 16:06:18,101 epoch 8 - iter 361/3617 - loss 0.01402887 - time (sec): 22.66 - samples/sec: 1711.01 - lr: 0.000010 - momentum: 0.000000
2023-10-25 16:06:40,840 epoch 8 - iter 722/3617 - loss 0.01326071 - time (sec): 45.40 - samples/sec: 1682.72 - lr: 0.000009 - momentum: 0.000000
2023-10-25 16:07:03,485 epoch 8 - iter 1083/3617 - loss 0.01183986 - time (sec): 68.05 - samples/sec: 1685.05 - lr: 0.000009 - momentum: 0.000000
2023-10-25 16:07:26,172 epoch 8 - iter 1444/3617 - loss 0.01108027 - time (sec): 90.74 - samples/sec: 1677.66 - lr: 0.000009 - momentum: 0.000000
2023-10-25 16:07:48,816 epoch 8 - iter 1805/3617 - loss 0.01123144 - time (sec): 113.38 - samples/sec: 1672.07 - lr: 0.000008 - momentum: 0.000000
2023-10-25 16:08:11,441 epoch 8 - iter 2166/3617 - loss 0.01079378 - time (sec): 136.00 - samples/sec: 1672.45 - lr: 0.000008 - momentum: 0.000000
2023-10-25 16:08:34,072 epoch 8 - iter 2527/3617 - loss 0.01078423 - time (sec): 158.63 - samples/sec: 1670.37 - lr: 0.000008 - momentum: 0.000000
2023-10-25 16:08:56,585 epoch 8 - iter 2888/3617 - loss 0.01037040 - time (sec): 181.15 - samples/sec: 1664.64 - lr: 0.000007 - momentum: 0.000000
2023-10-25 16:09:19,603 epoch 8 - iter 3249/3617 - loss 0.01027725 - time (sec): 204.17 - samples/sec: 1671.72 - lr: 0.000007 - momentum: 0.000000
2023-10-25 16:09:42,381 epoch 8 - iter 3610/3617 - loss 0.01022367 - time (sec): 226.94 - samples/sec: 1671.16 - lr: 0.000007 - momentum: 0.000000
2023-10-25 16:09:42,798 ----------------------------------------------------------------------------------------------------
2023-10-25 16:09:42,799 EPOCH 8 done: loss 0.0102 - lr: 0.000007
2023-10-25 16:09:47,567 DEV : loss 0.3698480725288391 - f1-score (micro avg)  0.6525
2023-10-25 16:09:47,591 saving best model
2023-10-25 16:09:48,302 ----------------------------------------------------------------------------------------------------
2023-10-25 16:10:11,572 epoch 9 - iter 361/3617 - loss 0.00763808 - time (sec): 23.27 - samples/sec: 1670.63 - lr: 0.000006 - momentum: 0.000000
2023-10-25 16:10:34,042 epoch 9 - iter 722/3617 - loss 0.00979704 - time (sec): 45.74 - samples/sec: 1646.34 - lr: 0.000006 - momentum: 0.000000
2023-10-25 16:10:56,797 epoch 9 - iter 1083/3617 - loss 0.00817557 - time (sec): 68.49 - samples/sec: 1662.63 - lr: 0.000006 - momentum: 0.000000
2023-10-25 16:11:19,697 epoch 9 - iter 1444/3617 - loss 0.00803821 - time (sec): 91.39 - samples/sec: 1664.55 - lr: 0.000005 - momentum: 0.000000
2023-10-25 16:11:42,445 epoch 9 - iter 1805/3617 - loss 0.00799518 - time (sec): 114.14 - samples/sec: 1674.93 - lr: 0.000005 - momentum: 0.000000
2023-10-25 16:12:04,911 epoch 9 - iter 2166/3617 - loss 0.00724524 - time (sec): 136.61 - samples/sec: 1664.75 - lr: 0.000005 - momentum: 0.000000
2023-10-25 16:12:27,624 epoch 9 - iter 2527/3617 - loss 0.00774410 - time (sec): 159.32 - samples/sec: 1659.46 - lr: 0.000004 - momentum: 0.000000
2023-10-25 16:12:50,435 epoch 9 - iter 2888/3617 - loss 0.00794723 - time (sec): 182.13 - samples/sec: 1665.12 - lr: 0.000004 - momentum: 0.000000
2023-10-25 16:13:13,176 epoch 9 - iter 3249/3617 - loss 0.00789576 - time (sec): 204.87 - samples/sec: 1665.74 - lr: 0.000004 - momentum: 0.000000
2023-10-25 16:13:35,910 epoch 9 - iter 3610/3617 - loss 0.00792795 - time (sec): 227.61 - samples/sec: 1666.40 - lr: 0.000003 - momentum: 0.000000
2023-10-25 16:13:36,335 ----------------------------------------------------------------------------------------------------
2023-10-25 16:13:36,335 EPOCH 9 done: loss 0.0080 - lr: 0.000003
2023-10-25 16:13:41,094 DEV : loss 0.3735716640949249 - f1-score (micro avg)  0.6539
2023-10-25 16:13:41,117 saving best model
2023-10-25 16:13:41,777 ----------------------------------------------------------------------------------------------------
2023-10-25 16:14:04,798 epoch 10 - iter 361/3617 - loss 0.00287944 - time (sec): 23.02 - samples/sec: 1742.64 - lr: 0.000003 - momentum: 0.000000
2023-10-25 16:14:27,220 epoch 10 - iter 722/3617 - loss 0.00450426 - time (sec): 45.44 - samples/sec: 1693.31 - lr: 0.000003 - momentum: 0.000000
2023-10-25 16:14:49,716 epoch 10 - iter 1083/3617 - loss 0.00489107 - time (sec): 67.94 - samples/sec: 1682.68 - lr: 0.000002 - momentum: 0.000000
2023-10-25 16:15:12,220 epoch 10 - iter 1444/3617 - loss 0.00465774 - time (sec): 90.44 - samples/sec: 1677.15 - lr: 0.000002 - momentum: 0.000000
2023-10-25 16:15:34,869 epoch 10 - iter 1805/3617 - loss 0.00452385 - time (sec): 113.09 - samples/sec: 1671.53 - lr: 0.000002 - momentum: 0.000000
2023-10-25 16:15:57,676 epoch 10 - iter 2166/3617 - loss 0.00459334 - time (sec): 135.90 - samples/sec: 1678.53 - lr: 0.000001 - momentum: 0.000000
2023-10-25 16:16:20,440 epoch 10 - iter 2527/3617 - loss 0.00459891 - time (sec): 158.66 - samples/sec: 1677.78 - lr: 0.000001 - momentum: 0.000000
2023-10-25 16:16:43,162 epoch 10 - iter 2888/3617 - loss 0.00448095 - time (sec): 181.38 - samples/sec: 1681.58 - lr: 0.000001 - momentum: 0.000000
2023-10-25 16:17:06,066 epoch 10 - iter 3249/3617 - loss 0.00453443 - time (sec): 204.29 - samples/sec: 1671.10 - lr: 0.000000 - momentum: 0.000000
2023-10-25 16:17:28,567 epoch 10 - iter 3610/3617 - loss 0.00449270 - time (sec): 226.79 - samples/sec: 1672.45 - lr: 0.000000 - momentum: 0.000000
2023-10-25 16:17:28,984 ----------------------------------------------------------------------------------------------------
2023-10-25 16:17:28,985 EPOCH 10 done: loss 0.0045 - lr: 0.000000
2023-10-25 16:17:33,739 DEV : loss 0.4017893970012665 - f1-score (micro avg)  0.6536
2023-10-25 16:17:34,312 ----------------------------------------------------------------------------------------------------
2023-10-25 16:17:34,312 Loading model from best epoch ...
2023-10-25 16:17:36,078 SequenceTagger predicts: Dictionary with 13 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org
2023-10-25 16:17:41,702 
Results:
- F-score (micro) 0.6735
- F-score (macro) 0.5491
- Accuracy 0.5216

By class:
              precision    recall  f1-score   support

         loc     0.6490    0.7885    0.7120       591
        pers     0.5944    0.7759    0.6731       357
         org     0.3721    0.2025    0.2623        79

   micro avg     0.6186    0.7390    0.6735      1027
   macro avg     0.5385    0.5890    0.5491      1027
weighted avg     0.6087    0.7390    0.6639      1027

2023-10-25 16:17:41,702 ----------------------------------------------------------------------------------------------------