File size: 37,030 Bytes
101c03c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
2023-10-25 15:38:47,008 ----------------------------------------------------------------------------------------------------
2023-10-25 15:38:47,009 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(64001, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(1): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(2): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(3): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(4): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(5): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(6): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(7): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(8): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(9): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(10): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(11): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=13, bias=True)
(loss_function): CrossEntropyLoss()
)"
2023-10-25 15:38:47,009 ----------------------------------------------------------------------------------------------------
2023-10-25 15:38:47,009 MultiCorpus: 14465 train + 1392 dev + 2432 test sentences
- NER_HIPE_2022 Corpus: 14465 train + 1392 dev + 2432 test sentences - /home/ubuntu/.flair/datasets/ner_hipe_2022/v2.1/letemps/fr/with_doc_seperator
2023-10-25 15:38:47,009 ----------------------------------------------------------------------------------------------------
2023-10-25 15:38:47,009 Train: 14465 sentences
2023-10-25 15:38:47,009 (train_with_dev=False, train_with_test=False)
2023-10-25 15:38:47,009 ----------------------------------------------------------------------------------------------------
2023-10-25 15:38:47,009 Training Params:
2023-10-25 15:38:47,009 - learning_rate: "3e-05"
2023-10-25 15:38:47,009 - mini_batch_size: "4"
2023-10-25 15:38:47,009 - max_epochs: "10"
2023-10-25 15:38:47,009 - shuffle: "True"
2023-10-25 15:38:47,009 ----------------------------------------------------------------------------------------------------
2023-10-25 15:38:47,009 Plugins:
2023-10-25 15:38:47,009 - TensorboardLogger
2023-10-25 15:38:47,009 - LinearScheduler | warmup_fraction: '0.1'
2023-10-25 15:38:47,009 ----------------------------------------------------------------------------------------------------
2023-10-25 15:38:47,009 Final evaluation on model from best epoch (best-model.pt)
2023-10-25 15:38:47,009 - metric: "('micro avg', 'f1-score')"
2023-10-25 15:38:47,009 ----------------------------------------------------------------------------------------------------
2023-10-25 15:38:47,009 Computation:
2023-10-25 15:38:47,009 - compute on device: cuda:0
2023-10-25 15:38:47,009 - embedding storage: none
2023-10-25 15:38:47,009 ----------------------------------------------------------------------------------------------------
2023-10-25 15:38:47,009 Model training base path: "hmbench-letemps/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4"
2023-10-25 15:38:47,009 ----------------------------------------------------------------------------------------------------
2023-10-25 15:38:47,009 ----------------------------------------------------------------------------------------------------
2023-10-25 15:38:47,009 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-25 15:39:09,553 epoch 1 - iter 361/3617 - loss 1.19886281 - time (sec): 22.54 - samples/sec: 1661.18 - lr: 0.000003 - momentum: 0.000000
2023-10-25 15:39:32,433 epoch 1 - iter 722/3617 - loss 0.68831441 - time (sec): 45.42 - samples/sec: 1682.42 - lr: 0.000006 - momentum: 0.000000
2023-10-25 15:39:54,936 epoch 1 - iter 1083/3617 - loss 0.51170947 - time (sec): 67.93 - samples/sec: 1667.26 - lr: 0.000009 - momentum: 0.000000
2023-10-25 15:40:17,679 epoch 1 - iter 1444/3617 - loss 0.41162390 - time (sec): 90.67 - samples/sec: 1675.46 - lr: 0.000012 - momentum: 0.000000
2023-10-25 15:40:40,401 epoch 1 - iter 1805/3617 - loss 0.35326768 - time (sec): 113.39 - samples/sec: 1674.11 - lr: 0.000015 - momentum: 0.000000
2023-10-25 15:41:03,110 epoch 1 - iter 2166/3617 - loss 0.31329417 - time (sec): 136.10 - samples/sec: 1682.14 - lr: 0.000018 - momentum: 0.000000
2023-10-25 15:41:25,626 epoch 1 - iter 2527/3617 - loss 0.28535492 - time (sec): 158.62 - samples/sec: 1680.30 - lr: 0.000021 - momentum: 0.000000
2023-10-25 15:41:48,351 epoch 1 - iter 2888/3617 - loss 0.26499215 - time (sec): 181.34 - samples/sec: 1682.04 - lr: 0.000024 - momentum: 0.000000
2023-10-25 15:42:10,950 epoch 1 - iter 3249/3617 - loss 0.24775587 - time (sec): 203.94 - samples/sec: 1678.70 - lr: 0.000027 - momentum: 0.000000
2023-10-25 15:42:33,298 epoch 1 - iter 3610/3617 - loss 0.23447570 - time (sec): 226.29 - samples/sec: 1675.45 - lr: 0.000030 - momentum: 0.000000
2023-10-25 15:42:33,748 ----------------------------------------------------------------------------------------------------
2023-10-25 15:42:33,748 EPOCH 1 done: loss 0.2341 - lr: 0.000030
2023-10-25 15:42:38,729 DEV : loss 0.12141559273004532 - f1-score (micro avg) 0.6425
2023-10-25 15:42:38,752 saving best model
2023-10-25 15:42:39,301 ----------------------------------------------------------------------------------------------------
2023-10-25 15:43:02,256 epoch 2 - iter 361/3617 - loss 0.10229911 - time (sec): 22.95 - samples/sec: 1700.22 - lr: 0.000030 - momentum: 0.000000
2023-10-25 15:43:24,847 epoch 2 - iter 722/3617 - loss 0.10119859 - time (sec): 45.55 - samples/sec: 1678.69 - lr: 0.000029 - momentum: 0.000000
2023-10-25 15:43:47,602 epoch 2 - iter 1083/3617 - loss 0.10115542 - time (sec): 68.30 - samples/sec: 1671.77 - lr: 0.000029 - momentum: 0.000000
2023-10-25 15:44:10,203 epoch 2 - iter 1444/3617 - loss 0.10048881 - time (sec): 90.90 - samples/sec: 1676.55 - lr: 0.000029 - momentum: 0.000000
2023-10-25 15:44:32,710 epoch 2 - iter 1805/3617 - loss 0.09969364 - time (sec): 113.41 - samples/sec: 1664.78 - lr: 0.000028 - momentum: 0.000000
2023-10-25 15:44:55,757 epoch 2 - iter 2166/3617 - loss 0.09899570 - time (sec): 136.45 - samples/sec: 1680.19 - lr: 0.000028 - momentum: 0.000000
2023-10-25 15:45:18,336 epoch 2 - iter 2527/3617 - loss 0.09812338 - time (sec): 159.03 - samples/sec: 1675.61 - lr: 0.000028 - momentum: 0.000000
2023-10-25 15:45:40,866 epoch 2 - iter 2888/3617 - loss 0.09881509 - time (sec): 181.56 - samples/sec: 1674.82 - lr: 0.000027 - momentum: 0.000000
2023-10-25 15:46:03,446 epoch 2 - iter 3249/3617 - loss 0.09818580 - time (sec): 204.14 - samples/sec: 1678.00 - lr: 0.000027 - momentum: 0.000000
2023-10-25 15:46:26,000 epoch 2 - iter 3610/3617 - loss 0.09912199 - time (sec): 226.70 - samples/sec: 1673.03 - lr: 0.000027 - momentum: 0.000000
2023-10-25 15:46:26,427 ----------------------------------------------------------------------------------------------------
2023-10-25 15:46:26,427 EPOCH 2 done: loss 0.0991 - lr: 0.000027
2023-10-25 15:46:31,155 DEV : loss 0.10703670233488083 - f1-score (micro avg) 0.5748
2023-10-25 15:46:31,178 ----------------------------------------------------------------------------------------------------
2023-10-25 15:46:54,123 epoch 3 - iter 361/3617 - loss 0.06451220 - time (sec): 22.94 - samples/sec: 1635.94 - lr: 0.000026 - momentum: 0.000000
2023-10-25 15:47:17,018 epoch 3 - iter 722/3617 - loss 0.07071297 - time (sec): 45.84 - samples/sec: 1661.24 - lr: 0.000026 - momentum: 0.000000
2023-10-25 15:47:39,779 epoch 3 - iter 1083/3617 - loss 0.07369259 - time (sec): 68.60 - samples/sec: 1671.64 - lr: 0.000026 - momentum: 0.000000
2023-10-25 15:48:02,401 epoch 3 - iter 1444/3617 - loss 0.07364717 - time (sec): 91.22 - samples/sec: 1660.50 - lr: 0.000025 - momentum: 0.000000
2023-10-25 15:48:25,138 epoch 3 - iter 1805/3617 - loss 0.07368861 - time (sec): 113.96 - samples/sec: 1661.84 - lr: 0.000025 - momentum: 0.000000
2023-10-25 15:48:47,723 epoch 3 - iter 2166/3617 - loss 0.07186830 - time (sec): 136.54 - samples/sec: 1669.15 - lr: 0.000025 - momentum: 0.000000
2023-10-25 15:49:10,464 epoch 3 - iter 2527/3617 - loss 0.07251865 - time (sec): 159.28 - samples/sec: 1672.41 - lr: 0.000024 - momentum: 0.000000
2023-10-25 15:49:32,837 epoch 3 - iter 2888/3617 - loss 0.07304301 - time (sec): 181.66 - samples/sec: 1667.81 - lr: 0.000024 - momentum: 0.000000
2023-10-25 15:49:55,910 epoch 3 - iter 3249/3617 - loss 0.07314916 - time (sec): 204.73 - samples/sec: 1669.74 - lr: 0.000024 - momentum: 0.000000
2023-10-25 15:50:18,464 epoch 3 - iter 3610/3617 - loss 0.07317717 - time (sec): 227.28 - samples/sec: 1667.96 - lr: 0.000023 - momentum: 0.000000
2023-10-25 15:50:18,929 ----------------------------------------------------------------------------------------------------
2023-10-25 15:50:18,929 EPOCH 3 done: loss 0.0731 - lr: 0.000023
2023-10-25 15:50:23,703 DEV : loss 0.22103023529052734 - f1-score (micro avg) 0.6461
2023-10-25 15:50:23,726 saving best model
2023-10-25 15:50:24,448 ----------------------------------------------------------------------------------------------------
2023-10-25 15:50:47,337 epoch 4 - iter 361/3617 - loss 0.04349179 - time (sec): 22.89 - samples/sec: 1687.96 - lr: 0.000023 - momentum: 0.000000
2023-10-25 15:51:09,914 epoch 4 - iter 722/3617 - loss 0.04765068 - time (sec): 45.47 - samples/sec: 1697.83 - lr: 0.000023 - momentum: 0.000000
2023-10-25 15:51:32,736 epoch 4 - iter 1083/3617 - loss 0.04598577 - time (sec): 68.29 - samples/sec: 1696.69 - lr: 0.000022 - momentum: 0.000000
2023-10-25 15:51:55,386 epoch 4 - iter 1444/3617 - loss 0.04854533 - time (sec): 90.94 - samples/sec: 1670.10 - lr: 0.000022 - momentum: 0.000000
2023-10-25 15:52:17,964 epoch 4 - iter 1805/3617 - loss 0.05057207 - time (sec): 113.51 - samples/sec: 1665.68 - lr: 0.000022 - momentum: 0.000000
2023-10-25 15:52:40,951 epoch 4 - iter 2166/3617 - loss 0.05016728 - time (sec): 136.50 - samples/sec: 1678.27 - lr: 0.000021 - momentum: 0.000000
2023-10-25 15:53:03,727 epoch 4 - iter 2527/3617 - loss 0.05059513 - time (sec): 159.28 - samples/sec: 1678.58 - lr: 0.000021 - momentum: 0.000000
2023-10-25 15:53:26,318 epoch 4 - iter 2888/3617 - loss 0.05293486 - time (sec): 181.87 - samples/sec: 1675.87 - lr: 0.000021 - momentum: 0.000000
2023-10-25 15:53:49,399 epoch 4 - iter 3249/3617 - loss 0.05285239 - time (sec): 204.95 - samples/sec: 1669.80 - lr: 0.000020 - momentum: 0.000000
2023-10-25 15:54:11,936 epoch 4 - iter 3610/3617 - loss 0.05260123 - time (sec): 227.49 - samples/sec: 1666.60 - lr: 0.000020 - momentum: 0.000000
2023-10-25 15:54:12,392 ----------------------------------------------------------------------------------------------------
2023-10-25 15:54:12,392 EPOCH 4 done: loss 0.0525 - lr: 0.000020
2023-10-25 15:54:17,149 DEV : loss 0.24151772260665894 - f1-score (micro avg) 0.6262
2023-10-25 15:54:17,172 ----------------------------------------------------------------------------------------------------
2023-10-25 15:54:39,932 epoch 5 - iter 361/3617 - loss 0.02889314 - time (sec): 22.76 - samples/sec: 1633.70 - lr: 0.000020 - momentum: 0.000000
2023-10-25 15:55:02,383 epoch 5 - iter 722/3617 - loss 0.02845671 - time (sec): 45.21 - samples/sec: 1640.80 - lr: 0.000019 - momentum: 0.000000
2023-10-25 15:55:25,074 epoch 5 - iter 1083/3617 - loss 0.02905149 - time (sec): 67.90 - samples/sec: 1652.84 - lr: 0.000019 - momentum: 0.000000
2023-10-25 15:55:47,562 epoch 5 - iter 1444/3617 - loss 0.03106635 - time (sec): 90.39 - samples/sec: 1657.09 - lr: 0.000019 - momentum: 0.000000
2023-10-25 15:56:10,156 epoch 5 - iter 1805/3617 - loss 0.03395971 - time (sec): 112.98 - samples/sec: 1662.83 - lr: 0.000018 - momentum: 0.000000
2023-10-25 15:56:32,681 epoch 5 - iter 2166/3617 - loss 0.03439912 - time (sec): 135.51 - samples/sec: 1657.17 - lr: 0.000018 - momentum: 0.000000
2023-10-25 15:56:55,301 epoch 5 - iter 2527/3617 - loss 0.03516551 - time (sec): 158.13 - samples/sec: 1655.70 - lr: 0.000018 - momentum: 0.000000
2023-10-25 15:57:18,303 epoch 5 - iter 2888/3617 - loss 0.03540794 - time (sec): 181.13 - samples/sec: 1670.73 - lr: 0.000017 - momentum: 0.000000
2023-10-25 15:57:40,862 epoch 5 - iter 3249/3617 - loss 0.03667999 - time (sec): 203.69 - samples/sec: 1666.12 - lr: 0.000017 - momentum: 0.000000
2023-10-25 15:58:03,741 epoch 5 - iter 3610/3617 - loss 0.03647650 - time (sec): 226.57 - samples/sec: 1674.18 - lr: 0.000017 - momentum: 0.000000
2023-10-25 15:58:04,146 ----------------------------------------------------------------------------------------------------
2023-10-25 15:58:04,146 EPOCH 5 done: loss 0.0365 - lr: 0.000017
2023-10-25 15:58:09,429 DEV : loss 0.27911558747291565 - f1-score (micro avg) 0.6411
2023-10-25 15:58:09,452 ----------------------------------------------------------------------------------------------------
2023-10-25 15:58:32,153 epoch 6 - iter 361/3617 - loss 0.01844611 - time (sec): 22.70 - samples/sec: 1684.49 - lr: 0.000016 - momentum: 0.000000
2023-10-25 15:58:54,997 epoch 6 - iter 722/3617 - loss 0.01909398 - time (sec): 45.54 - samples/sec: 1660.35 - lr: 0.000016 - momentum: 0.000000
2023-10-25 15:59:18,007 epoch 6 - iter 1083/3617 - loss 0.02262065 - time (sec): 68.55 - samples/sec: 1690.87 - lr: 0.000016 - momentum: 0.000000
2023-10-25 15:59:40,435 epoch 6 - iter 1444/3617 - loss 0.02337790 - time (sec): 90.98 - samples/sec: 1680.22 - lr: 0.000015 - momentum: 0.000000
2023-10-25 16:00:03,256 epoch 6 - iter 1805/3617 - loss 0.02294877 - time (sec): 113.80 - samples/sec: 1686.69 - lr: 0.000015 - momentum: 0.000000
2023-10-25 16:00:25,717 epoch 6 - iter 2166/3617 - loss 0.02260980 - time (sec): 136.26 - samples/sec: 1685.27 - lr: 0.000015 - momentum: 0.000000
2023-10-25 16:00:48,516 epoch 6 - iter 2527/3617 - loss 0.02245400 - time (sec): 159.06 - samples/sec: 1682.99 - lr: 0.000014 - momentum: 0.000000
2023-10-25 16:01:11,169 epoch 6 - iter 2888/3617 - loss 0.02342671 - time (sec): 181.72 - samples/sec: 1678.37 - lr: 0.000014 - momentum: 0.000000
2023-10-25 16:01:33,582 epoch 6 - iter 3249/3617 - loss 0.02358711 - time (sec): 204.13 - samples/sec: 1671.21 - lr: 0.000014 - momentum: 0.000000
2023-10-25 16:01:56,285 epoch 6 - iter 3610/3617 - loss 0.02404475 - time (sec): 226.83 - samples/sec: 1671.46 - lr: 0.000013 - momentum: 0.000000
2023-10-25 16:01:56,730 ----------------------------------------------------------------------------------------------------
2023-10-25 16:01:56,730 EPOCH 6 done: loss 0.0240 - lr: 0.000013
2023-10-25 16:02:02,029 DEV : loss 0.30914661288261414 - f1-score (micro avg) 0.6277
2023-10-25 16:02:02,052 ----------------------------------------------------------------------------------------------------
2023-10-25 16:02:24,697 epoch 7 - iter 361/3617 - loss 0.01518405 - time (sec): 22.64 - samples/sec: 1682.07 - lr: 0.000013 - momentum: 0.000000
2023-10-25 16:02:47,369 epoch 7 - iter 722/3617 - loss 0.01696119 - time (sec): 45.32 - samples/sec: 1686.25 - lr: 0.000013 - momentum: 0.000000
2023-10-25 16:03:10,138 epoch 7 - iter 1083/3617 - loss 0.01811277 - time (sec): 68.08 - samples/sec: 1679.52 - lr: 0.000012 - momentum: 0.000000
2023-10-25 16:03:33,026 epoch 7 - iter 1444/3617 - loss 0.01753427 - time (sec): 90.97 - samples/sec: 1687.97 - lr: 0.000012 - momentum: 0.000000
2023-10-25 16:03:55,497 epoch 7 - iter 1805/3617 - loss 0.01779560 - time (sec): 113.44 - samples/sec: 1678.37 - lr: 0.000012 - momentum: 0.000000
2023-10-25 16:04:18,296 epoch 7 - iter 2166/3617 - loss 0.01660255 - time (sec): 136.24 - samples/sec: 1684.12 - lr: 0.000011 - momentum: 0.000000
2023-10-25 16:04:40,932 epoch 7 - iter 2527/3617 - loss 0.01698618 - time (sec): 158.88 - samples/sec: 1684.01 - lr: 0.000011 - momentum: 0.000000
2023-10-25 16:05:03,601 epoch 7 - iter 2888/3617 - loss 0.01728988 - time (sec): 181.55 - samples/sec: 1677.49 - lr: 0.000011 - momentum: 0.000000
2023-10-25 16:05:26,391 epoch 7 - iter 3249/3617 - loss 0.01721398 - time (sec): 204.34 - samples/sec: 1672.88 - lr: 0.000010 - momentum: 0.000000
2023-10-25 16:05:48,951 epoch 7 - iter 3610/3617 - loss 0.01693395 - time (sec): 226.90 - samples/sec: 1671.22 - lr: 0.000010 - momentum: 0.000000
2023-10-25 16:05:49,404 ----------------------------------------------------------------------------------------------------
2023-10-25 16:05:49,404 EPOCH 7 done: loss 0.0169 - lr: 0.000010
2023-10-25 16:05:54,703 DEV : loss 0.35005614161491394 - f1-score (micro avg) 0.6476
2023-10-25 16:05:54,726 saving best model
2023-10-25 16:05:55,436 ----------------------------------------------------------------------------------------------------
2023-10-25 16:06:18,101 epoch 8 - iter 361/3617 - loss 0.01402887 - time (sec): 22.66 - samples/sec: 1711.01 - lr: 0.000010 - momentum: 0.000000
2023-10-25 16:06:40,840 epoch 8 - iter 722/3617 - loss 0.01326071 - time (sec): 45.40 - samples/sec: 1682.72 - lr: 0.000009 - momentum: 0.000000
2023-10-25 16:07:03,485 epoch 8 - iter 1083/3617 - loss 0.01183986 - time (sec): 68.05 - samples/sec: 1685.05 - lr: 0.000009 - momentum: 0.000000
2023-10-25 16:07:26,172 epoch 8 - iter 1444/3617 - loss 0.01108027 - time (sec): 90.74 - samples/sec: 1677.66 - lr: 0.000009 - momentum: 0.000000
2023-10-25 16:07:48,816 epoch 8 - iter 1805/3617 - loss 0.01123144 - time (sec): 113.38 - samples/sec: 1672.07 - lr: 0.000008 - momentum: 0.000000
2023-10-25 16:08:11,441 epoch 8 - iter 2166/3617 - loss 0.01079378 - time (sec): 136.00 - samples/sec: 1672.45 - lr: 0.000008 - momentum: 0.000000
2023-10-25 16:08:34,072 epoch 8 - iter 2527/3617 - loss 0.01078423 - time (sec): 158.63 - samples/sec: 1670.37 - lr: 0.000008 - momentum: 0.000000
2023-10-25 16:08:56,585 epoch 8 - iter 2888/3617 - loss 0.01037040 - time (sec): 181.15 - samples/sec: 1664.64 - lr: 0.000007 - momentum: 0.000000
2023-10-25 16:09:19,603 epoch 8 - iter 3249/3617 - loss 0.01027725 - time (sec): 204.17 - samples/sec: 1671.72 - lr: 0.000007 - momentum: 0.000000
2023-10-25 16:09:42,381 epoch 8 - iter 3610/3617 - loss 0.01022367 - time (sec): 226.94 - samples/sec: 1671.16 - lr: 0.000007 - momentum: 0.000000
2023-10-25 16:09:42,798 ----------------------------------------------------------------------------------------------------
2023-10-25 16:09:42,799 EPOCH 8 done: loss 0.0102 - lr: 0.000007
2023-10-25 16:09:47,567 DEV : loss 0.3698480725288391 - f1-score (micro avg) 0.6525
2023-10-25 16:09:47,591 saving best model
2023-10-25 16:09:48,302 ----------------------------------------------------------------------------------------------------
2023-10-25 16:10:11,572 epoch 9 - iter 361/3617 - loss 0.00763808 - time (sec): 23.27 - samples/sec: 1670.63 - lr: 0.000006 - momentum: 0.000000
2023-10-25 16:10:34,042 epoch 9 - iter 722/3617 - loss 0.00979704 - time (sec): 45.74 - samples/sec: 1646.34 - lr: 0.000006 - momentum: 0.000000
2023-10-25 16:10:56,797 epoch 9 - iter 1083/3617 - loss 0.00817557 - time (sec): 68.49 - samples/sec: 1662.63 - lr: 0.000006 - momentum: 0.000000
2023-10-25 16:11:19,697 epoch 9 - iter 1444/3617 - loss 0.00803821 - time (sec): 91.39 - samples/sec: 1664.55 - lr: 0.000005 - momentum: 0.000000
2023-10-25 16:11:42,445 epoch 9 - iter 1805/3617 - loss 0.00799518 - time (sec): 114.14 - samples/sec: 1674.93 - lr: 0.000005 - momentum: 0.000000
2023-10-25 16:12:04,911 epoch 9 - iter 2166/3617 - loss 0.00724524 - time (sec): 136.61 - samples/sec: 1664.75 - lr: 0.000005 - momentum: 0.000000
2023-10-25 16:12:27,624 epoch 9 - iter 2527/3617 - loss 0.00774410 - time (sec): 159.32 - samples/sec: 1659.46 - lr: 0.000004 - momentum: 0.000000
2023-10-25 16:12:50,435 epoch 9 - iter 2888/3617 - loss 0.00794723 - time (sec): 182.13 - samples/sec: 1665.12 - lr: 0.000004 - momentum: 0.000000
2023-10-25 16:13:13,176 epoch 9 - iter 3249/3617 - loss 0.00789576 - time (sec): 204.87 - samples/sec: 1665.74 - lr: 0.000004 - momentum: 0.000000
2023-10-25 16:13:35,910 epoch 9 - iter 3610/3617 - loss 0.00792795 - time (sec): 227.61 - samples/sec: 1666.40 - lr: 0.000003 - momentum: 0.000000
2023-10-25 16:13:36,335 ----------------------------------------------------------------------------------------------------
2023-10-25 16:13:36,335 EPOCH 9 done: loss 0.0080 - lr: 0.000003
2023-10-25 16:13:41,094 DEV : loss 0.3735716640949249 - f1-score (micro avg) 0.6539
2023-10-25 16:13:41,117 saving best model
2023-10-25 16:13:41,777 ----------------------------------------------------------------------------------------------------
2023-10-25 16:14:04,798 epoch 10 - iter 361/3617 - loss 0.00287944 - time (sec): 23.02 - samples/sec: 1742.64 - lr: 0.000003 - momentum: 0.000000
2023-10-25 16:14:27,220 epoch 10 - iter 722/3617 - loss 0.00450426 - time (sec): 45.44 - samples/sec: 1693.31 - lr: 0.000003 - momentum: 0.000000
2023-10-25 16:14:49,716 epoch 10 - iter 1083/3617 - loss 0.00489107 - time (sec): 67.94 - samples/sec: 1682.68 - lr: 0.000002 - momentum: 0.000000
2023-10-25 16:15:12,220 epoch 10 - iter 1444/3617 - loss 0.00465774 - time (sec): 90.44 - samples/sec: 1677.15 - lr: 0.000002 - momentum: 0.000000
2023-10-25 16:15:34,869 epoch 10 - iter 1805/3617 - loss 0.00452385 - time (sec): 113.09 - samples/sec: 1671.53 - lr: 0.000002 - momentum: 0.000000
2023-10-25 16:15:57,676 epoch 10 - iter 2166/3617 - loss 0.00459334 - time (sec): 135.90 - samples/sec: 1678.53 - lr: 0.000001 - momentum: 0.000000
2023-10-25 16:16:20,440 epoch 10 - iter 2527/3617 - loss 0.00459891 - time (sec): 158.66 - samples/sec: 1677.78 - lr: 0.000001 - momentum: 0.000000
2023-10-25 16:16:43,162 epoch 10 - iter 2888/3617 - loss 0.00448095 - time (sec): 181.38 - samples/sec: 1681.58 - lr: 0.000001 - momentum: 0.000000
2023-10-25 16:17:06,066 epoch 10 - iter 3249/3617 - loss 0.00453443 - time (sec): 204.29 - samples/sec: 1671.10 - lr: 0.000000 - momentum: 0.000000
2023-10-25 16:17:28,567 epoch 10 - iter 3610/3617 - loss 0.00449270 - time (sec): 226.79 - samples/sec: 1672.45 - lr: 0.000000 - momentum: 0.000000
2023-10-25 16:17:28,984 ----------------------------------------------------------------------------------------------------
2023-10-25 16:17:28,985 EPOCH 10 done: loss 0.0045 - lr: 0.000000
2023-10-25 16:17:33,739 DEV : loss 0.4017893970012665 - f1-score (micro avg) 0.6536
2023-10-25 16:17:34,312 ----------------------------------------------------------------------------------------------------
2023-10-25 16:17:34,312 Loading model from best epoch ...
2023-10-25 16:17:36,078 SequenceTagger predicts: Dictionary with 13 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org
2023-10-25 16:17:41,702
Results:
- F-score (micro) 0.6735
- F-score (macro) 0.5491
- Accuracy 0.5216
By class:
precision recall f1-score support
loc 0.6490 0.7885 0.7120 591
pers 0.5944 0.7759 0.6731 357
org 0.3721 0.2025 0.2623 79
micro avg 0.6186 0.7390 0.6735 1027
macro avg 0.5385 0.5890 0.5491 1027
weighted avg 0.6087 0.7390 0.6639 1027
2023-10-25 16:17:41,702 ----------------------------------------------------------------------------------------------------
|