File size: 36,781 Bytes
0de20e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
2023-10-24 22:47:35,121 ----------------------------------------------------------------------------------------------------
2023-10-24 22:47:35,122 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(64001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (1): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (2): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (3): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (4): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (5): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (6): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (7): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (8): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (9): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (10): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (11): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=13, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-24 22:47:35,122 ----------------------------------------------------------------------------------------------------
2023-10-24 22:47:35,122 MultiCorpus: 5777 train + 722 dev + 723 test sentences
 - NER_ICDAR_EUROPEANA Corpus: 5777 train + 722 dev + 723 test sentences - /home/ubuntu/.flair/datasets/ner_icdar_europeana/nl
2023-10-24 22:47:35,122 ----------------------------------------------------------------------------------------------------
2023-10-24 22:47:35,122 Train:  5777 sentences
2023-10-24 22:47:35,122         (train_with_dev=False, train_with_test=False)
2023-10-24 22:47:35,122 ----------------------------------------------------------------------------------------------------
2023-10-24 22:47:35,122 Training Params:
2023-10-24 22:47:35,122  - learning_rate: "5e-05" 
2023-10-24 22:47:35,123  - mini_batch_size: "8"
2023-10-24 22:47:35,123  - max_epochs: "10"
2023-10-24 22:47:35,123  - shuffle: "True"
2023-10-24 22:47:35,123 ----------------------------------------------------------------------------------------------------
2023-10-24 22:47:35,123 Plugins:
2023-10-24 22:47:35,123  - TensorboardLogger
2023-10-24 22:47:35,123  - LinearScheduler | warmup_fraction: '0.1'
2023-10-24 22:47:35,123 ----------------------------------------------------------------------------------------------------
2023-10-24 22:47:35,123 Final evaluation on model from best epoch (best-model.pt)
2023-10-24 22:47:35,123  - metric: "('micro avg', 'f1-score')"
2023-10-24 22:47:35,123 ----------------------------------------------------------------------------------------------------
2023-10-24 22:47:35,123 Computation:
2023-10-24 22:47:35,123  - compute on device: cuda:0
2023-10-24 22:47:35,123  - embedding storage: none
2023-10-24 22:47:35,123 ----------------------------------------------------------------------------------------------------
2023-10-24 22:47:35,123 Model training base path: "hmbench-icdar/nl-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1"
2023-10-24 22:47:35,123 ----------------------------------------------------------------------------------------------------
2023-10-24 22:47:35,123 ----------------------------------------------------------------------------------------------------
2023-10-24 22:47:35,123 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-24 22:47:43,574 epoch 1 - iter 72/723 - loss 1.90099622 - time (sec): 8.45 - samples/sec: 2093.32 - lr: 0.000005 - momentum: 0.000000
2023-10-24 22:47:52,328 epoch 1 - iter 144/723 - loss 1.09087996 - time (sec): 17.20 - samples/sec: 2047.05 - lr: 0.000010 - momentum: 0.000000
2023-10-24 22:48:01,244 epoch 1 - iter 216/723 - loss 0.77964600 - time (sec): 26.12 - samples/sec: 2072.80 - lr: 0.000015 - momentum: 0.000000
2023-10-24 22:48:09,443 epoch 1 - iter 288/723 - loss 0.63708806 - time (sec): 34.32 - samples/sec: 2055.00 - lr: 0.000020 - momentum: 0.000000
2023-10-24 22:48:17,547 epoch 1 - iter 360/723 - loss 0.54313247 - time (sec): 42.42 - samples/sec: 2054.17 - lr: 0.000025 - momentum: 0.000000
2023-10-24 22:48:25,862 epoch 1 - iter 432/723 - loss 0.48284963 - time (sec): 50.74 - samples/sec: 2053.75 - lr: 0.000030 - momentum: 0.000000
2023-10-24 22:48:34,173 epoch 1 - iter 504/723 - loss 0.43417529 - time (sec): 59.05 - samples/sec: 2046.07 - lr: 0.000035 - momentum: 0.000000
2023-10-24 22:48:43,285 epoch 1 - iter 576/723 - loss 0.39662721 - time (sec): 68.16 - samples/sec: 2037.13 - lr: 0.000040 - momentum: 0.000000
2023-10-24 22:48:51,944 epoch 1 - iter 648/723 - loss 0.36490823 - time (sec): 76.82 - samples/sec: 2044.94 - lr: 0.000045 - momentum: 0.000000
2023-10-24 22:49:01,070 epoch 1 - iter 720/723 - loss 0.33855338 - time (sec): 85.95 - samples/sec: 2044.95 - lr: 0.000050 - momentum: 0.000000
2023-10-24 22:49:01,321 ----------------------------------------------------------------------------------------------------
2023-10-24 22:49:01,321 EPOCH 1 done: loss 0.3381 - lr: 0.000050
2023-10-24 22:49:04,603 DEV : loss 0.13358977437019348 - f1-score (micro avg)  0.5559
2023-10-24 22:49:04,615 saving best model
2023-10-24 22:49:05,173 ----------------------------------------------------------------------------------------------------
2023-10-24 22:49:13,532 epoch 2 - iter 72/723 - loss 0.11563641 - time (sec): 8.36 - samples/sec: 2039.66 - lr: 0.000049 - momentum: 0.000000
2023-10-24 22:49:21,466 epoch 2 - iter 144/723 - loss 0.11274613 - time (sec): 16.29 - samples/sec: 2051.20 - lr: 0.000049 - momentum: 0.000000
2023-10-24 22:49:29,822 epoch 2 - iter 216/723 - loss 0.10902633 - time (sec): 24.65 - samples/sec: 2053.51 - lr: 0.000048 - momentum: 0.000000
2023-10-24 22:49:38,964 epoch 2 - iter 288/723 - loss 0.10367207 - time (sec): 33.79 - samples/sec: 2049.90 - lr: 0.000048 - momentum: 0.000000
2023-10-24 22:49:48,274 epoch 2 - iter 360/723 - loss 0.09939488 - time (sec): 43.10 - samples/sec: 2053.73 - lr: 0.000047 - momentum: 0.000000
2023-10-24 22:49:57,605 epoch 2 - iter 432/723 - loss 0.09748051 - time (sec): 52.43 - samples/sec: 2046.48 - lr: 0.000047 - momentum: 0.000000
2023-10-24 22:50:06,005 epoch 2 - iter 504/723 - loss 0.09514922 - time (sec): 60.83 - samples/sec: 2045.92 - lr: 0.000046 - momentum: 0.000000
2023-10-24 22:50:13,666 epoch 2 - iter 576/723 - loss 0.09875432 - time (sec): 68.49 - samples/sec: 2047.89 - lr: 0.000046 - momentum: 0.000000
2023-10-24 22:50:22,101 epoch 2 - iter 648/723 - loss 0.09818627 - time (sec): 76.93 - samples/sec: 2048.27 - lr: 0.000045 - momentum: 0.000000
2023-10-24 22:50:30,670 epoch 2 - iter 720/723 - loss 0.09775475 - time (sec): 85.50 - samples/sec: 2053.69 - lr: 0.000044 - momentum: 0.000000
2023-10-24 22:50:30,916 ----------------------------------------------------------------------------------------------------
2023-10-24 22:50:30,916 EPOCH 2 done: loss 0.0977 - lr: 0.000044
2023-10-24 22:50:34,642 DEV : loss 0.09923986345529556 - f1-score (micro avg)  0.7434
2023-10-24 22:50:34,654 saving best model
2023-10-24 22:50:35,378 ----------------------------------------------------------------------------------------------------
2023-10-24 22:50:44,044 epoch 3 - iter 72/723 - loss 0.07128608 - time (sec): 8.66 - samples/sec: 2017.83 - lr: 0.000044 - momentum: 0.000000
2023-10-24 22:50:52,525 epoch 3 - iter 144/723 - loss 0.05959143 - time (sec): 17.15 - samples/sec: 2039.09 - lr: 0.000043 - momentum: 0.000000
2023-10-24 22:51:00,812 epoch 3 - iter 216/723 - loss 0.06657607 - time (sec): 25.43 - samples/sec: 2055.01 - lr: 0.000043 - momentum: 0.000000
2023-10-24 22:51:09,580 epoch 3 - iter 288/723 - loss 0.06577637 - time (sec): 34.20 - samples/sec: 2060.35 - lr: 0.000042 - momentum: 0.000000
2023-10-24 22:51:18,393 epoch 3 - iter 360/723 - loss 0.06437789 - time (sec): 43.01 - samples/sec: 2050.83 - lr: 0.000042 - momentum: 0.000000
2023-10-24 22:51:27,526 epoch 3 - iter 432/723 - loss 0.06488597 - time (sec): 52.15 - samples/sec: 2052.47 - lr: 0.000041 - momentum: 0.000000
2023-10-24 22:51:35,847 epoch 3 - iter 504/723 - loss 0.06625285 - time (sec): 60.47 - samples/sec: 2041.55 - lr: 0.000041 - momentum: 0.000000
2023-10-24 22:51:44,188 epoch 3 - iter 576/723 - loss 0.06508266 - time (sec): 68.81 - samples/sec: 2036.26 - lr: 0.000040 - momentum: 0.000000
2023-10-24 22:51:52,876 epoch 3 - iter 648/723 - loss 0.06525563 - time (sec): 77.50 - samples/sec: 2036.55 - lr: 0.000039 - momentum: 0.000000
2023-10-24 22:52:01,622 epoch 3 - iter 720/723 - loss 0.06417277 - time (sec): 86.24 - samples/sec: 2039.48 - lr: 0.000039 - momentum: 0.000000
2023-10-24 22:52:01,826 ----------------------------------------------------------------------------------------------------
2023-10-24 22:52:01,827 EPOCH 3 done: loss 0.0642 - lr: 0.000039
2023-10-24 22:52:05,562 DEV : loss 0.08431313186883926 - f1-score (micro avg)  0.8162
2023-10-24 22:52:05,574 saving best model
2023-10-24 22:52:06,287 ----------------------------------------------------------------------------------------------------
2023-10-24 22:52:14,602 epoch 4 - iter 72/723 - loss 0.04275318 - time (sec): 8.31 - samples/sec: 2104.71 - lr: 0.000038 - momentum: 0.000000
2023-10-24 22:52:23,182 epoch 4 - iter 144/723 - loss 0.04122534 - time (sec): 16.89 - samples/sec: 2056.08 - lr: 0.000038 - momentum: 0.000000
2023-10-24 22:52:30,986 epoch 4 - iter 216/723 - loss 0.04387147 - time (sec): 24.70 - samples/sec: 2053.76 - lr: 0.000037 - momentum: 0.000000
2023-10-24 22:52:39,468 epoch 4 - iter 288/723 - loss 0.04477684 - time (sec): 33.18 - samples/sec: 2026.76 - lr: 0.000037 - momentum: 0.000000
2023-10-24 22:52:48,425 epoch 4 - iter 360/723 - loss 0.04492124 - time (sec): 42.14 - samples/sec: 2037.30 - lr: 0.000036 - momentum: 0.000000
2023-10-24 22:52:57,346 epoch 4 - iter 432/723 - loss 0.04583451 - time (sec): 51.06 - samples/sec: 2038.10 - lr: 0.000036 - momentum: 0.000000
2023-10-24 22:53:06,429 epoch 4 - iter 504/723 - loss 0.04611188 - time (sec): 60.14 - samples/sec: 2037.05 - lr: 0.000035 - momentum: 0.000000
2023-10-24 22:53:15,120 epoch 4 - iter 576/723 - loss 0.04469752 - time (sec): 68.83 - samples/sec: 2040.59 - lr: 0.000034 - momentum: 0.000000
2023-10-24 22:53:23,881 epoch 4 - iter 648/723 - loss 0.04421455 - time (sec): 77.59 - samples/sec: 2036.88 - lr: 0.000034 - momentum: 0.000000
2023-10-24 22:53:32,384 epoch 4 - iter 720/723 - loss 0.04381095 - time (sec): 86.10 - samples/sec: 2041.83 - lr: 0.000033 - momentum: 0.000000
2023-10-24 22:53:32,612 ----------------------------------------------------------------------------------------------------
2023-10-24 22:53:32,612 EPOCH 4 done: loss 0.0440 - lr: 0.000033
2023-10-24 22:53:36,048 DEV : loss 0.0921085774898529 - f1-score (micro avg)  0.8061
2023-10-24 22:53:36,059 ----------------------------------------------------------------------------------------------------
2023-10-24 22:53:45,135 epoch 5 - iter 72/723 - loss 0.02981632 - time (sec): 9.07 - samples/sec: 2016.43 - lr: 0.000033 - momentum: 0.000000
2023-10-24 22:53:54,262 epoch 5 - iter 144/723 - loss 0.03293464 - time (sec): 18.20 - samples/sec: 1965.96 - lr: 0.000032 - momentum: 0.000000
2023-10-24 22:54:02,987 epoch 5 - iter 216/723 - loss 0.02903229 - time (sec): 26.93 - samples/sec: 1981.65 - lr: 0.000032 - momentum: 0.000000
2023-10-24 22:54:12,480 epoch 5 - iter 288/723 - loss 0.02921469 - time (sec): 36.42 - samples/sec: 1984.35 - lr: 0.000031 - momentum: 0.000000
2023-10-24 22:54:20,920 epoch 5 - iter 360/723 - loss 0.03035987 - time (sec): 44.86 - samples/sec: 1994.23 - lr: 0.000031 - momentum: 0.000000
2023-10-24 22:54:29,626 epoch 5 - iter 432/723 - loss 0.03109785 - time (sec): 53.57 - samples/sec: 2009.90 - lr: 0.000030 - momentum: 0.000000
2023-10-24 22:54:37,390 epoch 5 - iter 504/723 - loss 0.03348098 - time (sec): 61.33 - samples/sec: 2014.44 - lr: 0.000029 - momentum: 0.000000
2023-10-24 22:54:46,312 epoch 5 - iter 576/723 - loss 0.03272635 - time (sec): 70.25 - samples/sec: 2013.74 - lr: 0.000029 - momentum: 0.000000
2023-10-24 22:54:54,679 epoch 5 - iter 648/723 - loss 0.03250020 - time (sec): 78.62 - samples/sec: 2009.22 - lr: 0.000028 - momentum: 0.000000
2023-10-24 22:55:03,105 epoch 5 - iter 720/723 - loss 0.03217828 - time (sec): 87.04 - samples/sec: 2015.60 - lr: 0.000028 - momentum: 0.000000
2023-10-24 22:55:03,508 ----------------------------------------------------------------------------------------------------
2023-10-24 22:55:03,508 EPOCH 5 done: loss 0.0323 - lr: 0.000028
2023-10-24 22:55:06,952 DEV : loss 0.12793748080730438 - f1-score (micro avg)  0.8201
2023-10-24 22:55:06,964 saving best model
2023-10-24 22:55:07,671 ----------------------------------------------------------------------------------------------------
2023-10-24 22:55:16,444 epoch 6 - iter 72/723 - loss 0.01771827 - time (sec): 8.77 - samples/sec: 1953.71 - lr: 0.000027 - momentum: 0.000000
2023-10-24 22:55:24,853 epoch 6 - iter 144/723 - loss 0.02179612 - time (sec): 17.18 - samples/sec: 1999.81 - lr: 0.000027 - momentum: 0.000000
2023-10-24 22:55:34,164 epoch 6 - iter 216/723 - loss 0.02091712 - time (sec): 26.49 - samples/sec: 2012.54 - lr: 0.000026 - momentum: 0.000000
2023-10-24 22:55:42,847 epoch 6 - iter 288/723 - loss 0.02115975 - time (sec): 35.18 - samples/sec: 1995.33 - lr: 0.000026 - momentum: 0.000000
2023-10-24 22:55:51,268 epoch 6 - iter 360/723 - loss 0.02279607 - time (sec): 43.60 - samples/sec: 2003.54 - lr: 0.000025 - momentum: 0.000000
2023-10-24 22:55:59,917 epoch 6 - iter 432/723 - loss 0.02299399 - time (sec): 52.25 - samples/sec: 2015.37 - lr: 0.000024 - momentum: 0.000000
2023-10-24 22:56:08,369 epoch 6 - iter 504/723 - loss 0.02253209 - time (sec): 60.70 - samples/sec: 2032.10 - lr: 0.000024 - momentum: 0.000000
2023-10-24 22:56:16,964 epoch 6 - iter 576/723 - loss 0.02318425 - time (sec): 69.29 - samples/sec: 2032.54 - lr: 0.000023 - momentum: 0.000000
2023-10-24 22:56:25,279 epoch 6 - iter 648/723 - loss 0.02365793 - time (sec): 77.61 - samples/sec: 2042.94 - lr: 0.000023 - momentum: 0.000000
2023-10-24 22:56:33,600 epoch 6 - iter 720/723 - loss 0.02442479 - time (sec): 85.93 - samples/sec: 2044.40 - lr: 0.000022 - momentum: 0.000000
2023-10-24 22:56:33,868 ----------------------------------------------------------------------------------------------------
2023-10-24 22:56:33,869 EPOCH 6 done: loss 0.0244 - lr: 0.000022
2023-10-24 22:56:37,590 DEV : loss 0.13028167188167572 - f1-score (micro avg)  0.8206
2023-10-24 22:56:37,602 saving best model
2023-10-24 22:56:38,305 ----------------------------------------------------------------------------------------------------
2023-10-24 22:56:46,715 epoch 7 - iter 72/723 - loss 0.01204270 - time (sec): 8.41 - samples/sec: 2127.69 - lr: 0.000022 - momentum: 0.000000
2023-10-24 22:56:55,800 epoch 7 - iter 144/723 - loss 0.01568493 - time (sec): 17.49 - samples/sec: 2021.54 - lr: 0.000021 - momentum: 0.000000
2023-10-24 22:57:04,172 epoch 7 - iter 216/723 - loss 0.01685436 - time (sec): 25.87 - samples/sec: 2034.94 - lr: 0.000021 - momentum: 0.000000
2023-10-24 22:57:12,899 epoch 7 - iter 288/723 - loss 0.01586004 - time (sec): 34.59 - samples/sec: 2049.11 - lr: 0.000020 - momentum: 0.000000
2023-10-24 22:57:22,002 epoch 7 - iter 360/723 - loss 0.01669915 - time (sec): 43.70 - samples/sec: 2039.42 - lr: 0.000019 - momentum: 0.000000
2023-10-24 22:57:30,281 epoch 7 - iter 432/723 - loss 0.01664053 - time (sec): 51.98 - samples/sec: 2027.06 - lr: 0.000019 - momentum: 0.000000
2023-10-24 22:57:38,651 epoch 7 - iter 504/723 - loss 0.01665777 - time (sec): 60.35 - samples/sec: 2027.21 - lr: 0.000018 - momentum: 0.000000
2023-10-24 22:57:47,215 epoch 7 - iter 576/723 - loss 0.01672193 - time (sec): 68.91 - samples/sec: 2029.42 - lr: 0.000018 - momentum: 0.000000
2023-10-24 22:57:56,065 epoch 7 - iter 648/723 - loss 0.01634593 - time (sec): 77.76 - samples/sec: 2032.35 - lr: 0.000017 - momentum: 0.000000
2023-10-24 22:58:04,677 epoch 7 - iter 720/723 - loss 0.01622942 - time (sec): 86.37 - samples/sec: 2032.46 - lr: 0.000017 - momentum: 0.000000
2023-10-24 22:58:05,043 ----------------------------------------------------------------------------------------------------
2023-10-24 22:58:05,043 EPOCH 7 done: loss 0.0162 - lr: 0.000017
2023-10-24 22:58:08,477 DEV : loss 0.16047385334968567 - f1-score (micro avg)  0.8284
2023-10-24 22:58:08,489 saving best model
2023-10-24 22:58:09,187 ----------------------------------------------------------------------------------------------------
2023-10-24 22:58:18,118 epoch 8 - iter 72/723 - loss 0.00701010 - time (sec): 8.93 - samples/sec: 1976.12 - lr: 0.000016 - momentum: 0.000000
2023-10-24 22:58:27,226 epoch 8 - iter 144/723 - loss 0.00950195 - time (sec): 18.04 - samples/sec: 1966.17 - lr: 0.000016 - momentum: 0.000000
2023-10-24 22:58:35,453 epoch 8 - iter 216/723 - loss 0.01036607 - time (sec): 26.26 - samples/sec: 2020.43 - lr: 0.000015 - momentum: 0.000000
2023-10-24 22:58:44,819 epoch 8 - iter 288/723 - loss 0.01038046 - time (sec): 35.63 - samples/sec: 2054.12 - lr: 0.000014 - momentum: 0.000000
2023-10-24 22:58:53,155 epoch 8 - iter 360/723 - loss 0.01050105 - time (sec): 43.97 - samples/sec: 2051.11 - lr: 0.000014 - momentum: 0.000000
2023-10-24 22:59:01,634 epoch 8 - iter 432/723 - loss 0.01077764 - time (sec): 52.45 - samples/sec: 2053.71 - lr: 0.000013 - momentum: 0.000000
2023-10-24 22:59:10,359 epoch 8 - iter 504/723 - loss 0.01155176 - time (sec): 61.17 - samples/sec: 2044.08 - lr: 0.000013 - momentum: 0.000000
2023-10-24 22:59:18,085 epoch 8 - iter 576/723 - loss 0.01170645 - time (sec): 68.90 - samples/sec: 2035.43 - lr: 0.000012 - momentum: 0.000000
2023-10-24 22:59:26,361 epoch 8 - iter 648/723 - loss 0.01132420 - time (sec): 77.17 - samples/sec: 2036.57 - lr: 0.000012 - momentum: 0.000000
2023-10-24 22:59:35,154 epoch 8 - iter 720/723 - loss 0.01110679 - time (sec): 85.97 - samples/sec: 2041.54 - lr: 0.000011 - momentum: 0.000000
2023-10-24 22:59:35,626 ----------------------------------------------------------------------------------------------------
2023-10-24 22:59:35,626 EPOCH 8 done: loss 0.0111 - lr: 0.000011
2023-10-24 22:59:39,060 DEV : loss 0.17271144688129425 - f1-score (micro avg)  0.8152
2023-10-24 22:59:39,072 ----------------------------------------------------------------------------------------------------
2023-10-24 22:59:48,021 epoch 9 - iter 72/723 - loss 0.00436475 - time (sec): 8.95 - samples/sec: 2093.86 - lr: 0.000011 - momentum: 0.000000
2023-10-24 22:59:55,966 epoch 9 - iter 144/723 - loss 0.00673411 - time (sec): 16.89 - samples/sec: 2075.39 - lr: 0.000010 - momentum: 0.000000
2023-10-24 23:00:05,069 epoch 9 - iter 216/723 - loss 0.00655734 - time (sec): 26.00 - samples/sec: 2059.97 - lr: 0.000009 - momentum: 0.000000
2023-10-24 23:00:13,711 epoch 9 - iter 288/723 - loss 0.00707595 - time (sec): 34.64 - samples/sec: 2050.59 - lr: 0.000009 - momentum: 0.000000
2023-10-24 23:00:22,414 epoch 9 - iter 360/723 - loss 0.00702570 - time (sec): 43.34 - samples/sec: 2037.79 - lr: 0.000008 - momentum: 0.000000
2023-10-24 23:00:30,933 epoch 9 - iter 432/723 - loss 0.00653348 - time (sec): 51.86 - samples/sec: 2047.10 - lr: 0.000008 - momentum: 0.000000
2023-10-24 23:00:39,615 epoch 9 - iter 504/723 - loss 0.00730415 - time (sec): 60.54 - samples/sec: 2047.35 - lr: 0.000007 - momentum: 0.000000
2023-10-24 23:00:47,843 epoch 9 - iter 576/723 - loss 0.00716059 - time (sec): 68.77 - samples/sec: 2051.75 - lr: 0.000007 - momentum: 0.000000
2023-10-24 23:00:56,415 epoch 9 - iter 648/723 - loss 0.00716027 - time (sec): 77.34 - samples/sec: 2049.01 - lr: 0.000006 - momentum: 0.000000
2023-10-24 23:01:05,125 epoch 9 - iter 720/723 - loss 0.00769558 - time (sec): 86.05 - samples/sec: 2043.30 - lr: 0.000006 - momentum: 0.000000
2023-10-24 23:01:05,342 ----------------------------------------------------------------------------------------------------
2023-10-24 23:01:05,342 EPOCH 9 done: loss 0.0077 - lr: 0.000006
2023-10-24 23:01:09,068 DEV : loss 0.18762636184692383 - f1-score (micro avg)  0.8138
2023-10-24 23:01:09,080 ----------------------------------------------------------------------------------------------------
2023-10-24 23:01:17,501 epoch 10 - iter 72/723 - loss 0.00700037 - time (sec): 8.42 - samples/sec: 2072.79 - lr: 0.000005 - momentum: 0.000000
2023-10-24 23:01:25,989 epoch 10 - iter 144/723 - loss 0.00538041 - time (sec): 16.91 - samples/sec: 2100.23 - lr: 0.000004 - momentum: 0.000000
2023-10-24 23:01:34,941 epoch 10 - iter 216/723 - loss 0.00524047 - time (sec): 25.86 - samples/sec: 2105.37 - lr: 0.000004 - momentum: 0.000000
2023-10-24 23:01:44,291 epoch 10 - iter 288/723 - loss 0.00587406 - time (sec): 35.21 - samples/sec: 2067.64 - lr: 0.000003 - momentum: 0.000000
2023-10-24 23:01:52,710 epoch 10 - iter 360/723 - loss 0.00546117 - time (sec): 43.63 - samples/sec: 2052.35 - lr: 0.000003 - momentum: 0.000000
2023-10-24 23:02:01,634 epoch 10 - iter 432/723 - loss 0.00525314 - time (sec): 52.55 - samples/sec: 2031.85 - lr: 0.000002 - momentum: 0.000000
2023-10-24 23:02:10,260 epoch 10 - iter 504/723 - loss 0.00559956 - time (sec): 61.18 - samples/sec: 2028.96 - lr: 0.000002 - momentum: 0.000000
2023-10-24 23:02:18,569 epoch 10 - iter 576/723 - loss 0.00567395 - time (sec): 69.49 - samples/sec: 2036.85 - lr: 0.000001 - momentum: 0.000000
2023-10-24 23:02:27,420 epoch 10 - iter 648/723 - loss 0.00543119 - time (sec): 78.34 - samples/sec: 2025.44 - lr: 0.000001 - momentum: 0.000000
2023-10-24 23:02:35,701 epoch 10 - iter 720/723 - loss 0.00550425 - time (sec): 86.62 - samples/sec: 2029.78 - lr: 0.000000 - momentum: 0.000000
2023-10-24 23:02:35,912 ----------------------------------------------------------------------------------------------------
2023-10-24 23:02:35,913 EPOCH 10 done: loss 0.0055 - lr: 0.000000
2023-10-24 23:02:39,645 DEV : loss 0.19829346239566803 - f1-score (micro avg)  0.8156
2023-10-24 23:02:40,213 ----------------------------------------------------------------------------------------------------
2023-10-24 23:02:40,214 Loading model from best epoch ...
2023-10-24 23:02:42,032 SequenceTagger predicts: Dictionary with 13 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-ORG, B-ORG, E-ORG, I-ORG
2023-10-24 23:02:45,283 
Results:
- F-score (micro) 0.8006
- F-score (macro) 0.6747
- Accuracy 0.6799

By class:
              precision    recall  f1-score   support

         PER     0.8527    0.7925    0.8215       482
         LOC     0.8801    0.8013    0.8389       458
         ORG     0.4231    0.3188    0.3636        69

   micro avg     0.8408    0.7641    0.8006      1009
   macro avg     0.7186    0.6376    0.6747      1009
weighted avg     0.8357    0.7641    0.7981      1009

2023-10-24 23:02:45,283 ----------------------------------------------------------------------------------------------------