File size: 23,820 Bytes
6cf3bbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
2023-10-14 11:47:09,968 ----------------------------------------------------------------------------------------------------
2023-10-14 11:47:09,969 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=13, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-14 11:47:09,969 ----------------------------------------------------------------------------------------------------
2023-10-14 11:47:09,969 MultiCorpus: 5777 train + 722 dev + 723 test sentences
 - NER_ICDAR_EUROPEANA Corpus: 5777 train + 722 dev + 723 test sentences - /root/.flair/datasets/ner_icdar_europeana/nl
2023-10-14 11:47:09,969 ----------------------------------------------------------------------------------------------------
2023-10-14 11:47:09,969 Train:  5777 sentences
2023-10-14 11:47:09,969         (train_with_dev=False, train_with_test=False)
2023-10-14 11:47:09,969 ----------------------------------------------------------------------------------------------------
2023-10-14 11:47:09,969 Training Params:
2023-10-14 11:47:09,969  - learning_rate: "3e-05" 
2023-10-14 11:47:09,970  - mini_batch_size: "8"
2023-10-14 11:47:09,970  - max_epochs: "10"
2023-10-14 11:47:09,970  - shuffle: "True"
2023-10-14 11:47:09,970 ----------------------------------------------------------------------------------------------------
2023-10-14 11:47:09,970 Plugins:
2023-10-14 11:47:09,970  - LinearScheduler | warmup_fraction: '0.1'
2023-10-14 11:47:09,970 ----------------------------------------------------------------------------------------------------
2023-10-14 11:47:09,970 Final evaluation on model from best epoch (best-model.pt)
2023-10-14 11:47:09,970  - metric: "('micro avg', 'f1-score')"
2023-10-14 11:47:09,970 ----------------------------------------------------------------------------------------------------
2023-10-14 11:47:09,970 Computation:
2023-10-14 11:47:09,970  - compute on device: cuda:0
2023-10-14 11:47:09,970  - embedding storage: none
2023-10-14 11:47:09,970 ----------------------------------------------------------------------------------------------------
2023-10-14 11:47:09,970 Model training base path: "hmbench-icdar/nl-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5"
2023-10-14 11:47:09,970 ----------------------------------------------------------------------------------------------------
2023-10-14 11:47:09,970 ----------------------------------------------------------------------------------------------------
2023-10-14 11:47:16,044 epoch 1 - iter 72/723 - loss 2.17936848 - time (sec): 6.07 - samples/sec: 3053.65 - lr: 0.000003 - momentum: 0.000000
2023-10-14 11:47:22,048 epoch 1 - iter 144/723 - loss 1.30488853 - time (sec): 12.08 - samples/sec: 2974.16 - lr: 0.000006 - momentum: 0.000000
2023-10-14 11:47:27,819 epoch 1 - iter 216/723 - loss 0.96288539 - time (sec): 17.85 - samples/sec: 2988.26 - lr: 0.000009 - momentum: 0.000000
2023-10-14 11:47:34,101 epoch 1 - iter 288/723 - loss 0.77877705 - time (sec): 24.13 - samples/sec: 2957.82 - lr: 0.000012 - momentum: 0.000000
2023-10-14 11:47:40,166 epoch 1 - iter 360/723 - loss 0.66184851 - time (sec): 30.19 - samples/sec: 2937.05 - lr: 0.000015 - momentum: 0.000000
2023-10-14 11:47:46,237 epoch 1 - iter 432/723 - loss 0.58058110 - time (sec): 36.27 - samples/sec: 2929.70 - lr: 0.000018 - momentum: 0.000000
2023-10-14 11:47:52,424 epoch 1 - iter 504/723 - loss 0.52285800 - time (sec): 42.45 - samples/sec: 2920.34 - lr: 0.000021 - momentum: 0.000000
2023-10-14 11:47:58,303 epoch 1 - iter 576/723 - loss 0.47873115 - time (sec): 48.33 - samples/sec: 2901.73 - lr: 0.000024 - momentum: 0.000000
2023-10-14 11:48:04,095 epoch 1 - iter 648/723 - loss 0.43866282 - time (sec): 54.12 - samples/sec: 2916.97 - lr: 0.000027 - momentum: 0.000000
2023-10-14 11:48:10,154 epoch 1 - iter 720/723 - loss 0.40791889 - time (sec): 60.18 - samples/sec: 2918.46 - lr: 0.000030 - momentum: 0.000000
2023-10-14 11:48:10,356 ----------------------------------------------------------------------------------------------------
2023-10-14 11:48:10,356 EPOCH 1 done: loss 0.4072 - lr: 0.000030
2023-10-14 11:48:13,522 DEV : loss 0.13588625192642212 - f1-score (micro avg)  0.6361
2023-10-14 11:48:13,538 saving best model
2023-10-14 11:48:13,953 ----------------------------------------------------------------------------------------------------
2023-10-14 11:48:19,937 epoch 2 - iter 72/723 - loss 0.11712269 - time (sec): 5.98 - samples/sec: 2859.68 - lr: 0.000030 - momentum: 0.000000
2023-10-14 11:48:26,043 epoch 2 - iter 144/723 - loss 0.11668248 - time (sec): 12.09 - samples/sec: 2824.30 - lr: 0.000029 - momentum: 0.000000
2023-10-14 11:48:32,261 epoch 2 - iter 216/723 - loss 0.11217901 - time (sec): 18.31 - samples/sec: 2863.21 - lr: 0.000029 - momentum: 0.000000
2023-10-14 11:48:38,786 epoch 2 - iter 288/723 - loss 0.10925944 - time (sec): 24.83 - samples/sec: 2855.63 - lr: 0.000029 - momentum: 0.000000
2023-10-14 11:48:44,379 epoch 2 - iter 360/723 - loss 0.10959979 - time (sec): 30.43 - samples/sec: 2891.40 - lr: 0.000028 - momentum: 0.000000
2023-10-14 11:48:50,066 epoch 2 - iter 432/723 - loss 0.10627704 - time (sec): 36.11 - samples/sec: 2899.92 - lr: 0.000028 - momentum: 0.000000
2023-10-14 11:48:56,429 epoch 2 - iter 504/723 - loss 0.10609633 - time (sec): 42.48 - samples/sec: 2880.18 - lr: 0.000028 - momentum: 0.000000
2023-10-14 11:49:02,960 epoch 2 - iter 576/723 - loss 0.10378393 - time (sec): 49.01 - samples/sec: 2860.76 - lr: 0.000027 - momentum: 0.000000
2023-10-14 11:49:09,150 epoch 2 - iter 648/723 - loss 0.10374395 - time (sec): 55.20 - samples/sec: 2866.12 - lr: 0.000027 - momentum: 0.000000
2023-10-14 11:49:14,970 epoch 2 - iter 720/723 - loss 0.10227966 - time (sec): 61.02 - samples/sec: 2880.91 - lr: 0.000027 - momentum: 0.000000
2023-10-14 11:49:15,136 ----------------------------------------------------------------------------------------------------
2023-10-14 11:49:15,136 EPOCH 2 done: loss 0.1023 - lr: 0.000027
2023-10-14 11:49:18,826 DEV : loss 0.09264427423477173 - f1-score (micro avg)  0.7781
2023-10-14 11:49:18,843 saving best model
2023-10-14 11:49:19,322 ----------------------------------------------------------------------------------------------------
2023-10-14 11:49:25,171 epoch 3 - iter 72/723 - loss 0.07984702 - time (sec): 5.85 - samples/sec: 2901.93 - lr: 0.000026 - momentum: 0.000000
2023-10-14 11:49:31,011 epoch 3 - iter 144/723 - loss 0.07300924 - time (sec): 11.69 - samples/sec: 2916.01 - lr: 0.000026 - momentum: 0.000000
2023-10-14 11:49:37,186 epoch 3 - iter 216/723 - loss 0.06832100 - time (sec): 17.86 - samples/sec: 2865.29 - lr: 0.000026 - momentum: 0.000000
2023-10-14 11:49:42,899 epoch 3 - iter 288/723 - loss 0.06940238 - time (sec): 23.57 - samples/sec: 2881.77 - lr: 0.000025 - momentum: 0.000000
2023-10-14 11:49:48,505 epoch 3 - iter 360/723 - loss 0.06705455 - time (sec): 29.18 - samples/sec: 2889.13 - lr: 0.000025 - momentum: 0.000000
2023-10-14 11:49:54,710 epoch 3 - iter 432/723 - loss 0.06525111 - time (sec): 35.39 - samples/sec: 2917.74 - lr: 0.000025 - momentum: 0.000000
2023-10-14 11:50:00,599 epoch 3 - iter 504/723 - loss 0.06489497 - time (sec): 41.28 - samples/sec: 2917.45 - lr: 0.000024 - momentum: 0.000000
2023-10-14 11:50:06,623 epoch 3 - iter 576/723 - loss 0.06635288 - time (sec): 47.30 - samples/sec: 2941.51 - lr: 0.000024 - momentum: 0.000000
2023-10-14 11:50:12,929 epoch 3 - iter 648/723 - loss 0.06505342 - time (sec): 53.60 - samples/sec: 2926.74 - lr: 0.000024 - momentum: 0.000000
2023-10-14 11:50:19,279 epoch 3 - iter 720/723 - loss 0.06394731 - time (sec): 59.95 - samples/sec: 2932.02 - lr: 0.000023 - momentum: 0.000000
2023-10-14 11:50:19,444 ----------------------------------------------------------------------------------------------------
2023-10-14 11:50:19,444 EPOCH 3 done: loss 0.0641 - lr: 0.000023
2023-10-14 11:50:24,040 DEV : loss 0.08042255789041519 - f1-score (micro avg)  0.7954
2023-10-14 11:50:24,072 saving best model
2023-10-14 11:50:24,642 ----------------------------------------------------------------------------------------------------
2023-10-14 11:50:30,665 epoch 4 - iter 72/723 - loss 0.03888401 - time (sec): 6.02 - samples/sec: 2815.75 - lr: 0.000023 - momentum: 0.000000
2023-10-14 11:50:36,602 epoch 4 - iter 144/723 - loss 0.04190461 - time (sec): 11.96 - samples/sec: 2998.16 - lr: 0.000023 - momentum: 0.000000
2023-10-14 11:50:42,498 epoch 4 - iter 216/723 - loss 0.04041996 - time (sec): 17.85 - samples/sec: 2969.21 - lr: 0.000022 - momentum: 0.000000
2023-10-14 11:50:48,871 epoch 4 - iter 288/723 - loss 0.04268068 - time (sec): 24.23 - samples/sec: 2917.23 - lr: 0.000022 - momentum: 0.000000
2023-10-14 11:50:54,653 epoch 4 - iter 360/723 - loss 0.04323841 - time (sec): 30.01 - samples/sec: 2913.19 - lr: 0.000022 - momentum: 0.000000
2023-10-14 11:51:00,881 epoch 4 - iter 432/723 - loss 0.04422879 - time (sec): 36.24 - samples/sec: 2899.02 - lr: 0.000021 - momentum: 0.000000
2023-10-14 11:51:07,029 epoch 4 - iter 504/723 - loss 0.04346939 - time (sec): 42.38 - samples/sec: 2903.77 - lr: 0.000021 - momentum: 0.000000
2023-10-14 11:51:12,738 epoch 4 - iter 576/723 - loss 0.04268000 - time (sec): 48.09 - samples/sec: 2905.38 - lr: 0.000021 - momentum: 0.000000
2023-10-14 11:51:18,686 epoch 4 - iter 648/723 - loss 0.04192132 - time (sec): 54.04 - samples/sec: 2920.00 - lr: 0.000020 - momentum: 0.000000
2023-10-14 11:51:24,862 epoch 4 - iter 720/723 - loss 0.04244714 - time (sec): 60.22 - samples/sec: 2919.39 - lr: 0.000020 - momentum: 0.000000
2023-10-14 11:51:25,034 ----------------------------------------------------------------------------------------------------
2023-10-14 11:51:25,034 EPOCH 4 done: loss 0.0424 - lr: 0.000020
2023-10-14 11:51:28,568 DEV : loss 0.09498978406190872 - f1-score (micro avg)  0.7943
2023-10-14 11:51:28,585 ----------------------------------------------------------------------------------------------------
2023-10-14 11:51:34,533 epoch 5 - iter 72/723 - loss 0.02557454 - time (sec): 5.95 - samples/sec: 2796.46 - lr: 0.000020 - momentum: 0.000000
2023-10-14 11:51:40,625 epoch 5 - iter 144/723 - loss 0.02813156 - time (sec): 12.04 - samples/sec: 2775.57 - lr: 0.000019 - momentum: 0.000000
2023-10-14 11:51:47,161 epoch 5 - iter 216/723 - loss 0.03143363 - time (sec): 18.57 - samples/sec: 2722.72 - lr: 0.000019 - momentum: 0.000000
2023-10-14 11:51:53,361 epoch 5 - iter 288/723 - loss 0.03092080 - time (sec): 24.77 - samples/sec: 2791.88 - lr: 0.000019 - momentum: 0.000000
2023-10-14 11:51:59,575 epoch 5 - iter 360/723 - loss 0.03267232 - time (sec): 30.99 - samples/sec: 2813.37 - lr: 0.000018 - momentum: 0.000000
2023-10-14 11:52:05,683 epoch 5 - iter 432/723 - loss 0.03342599 - time (sec): 37.10 - samples/sec: 2839.84 - lr: 0.000018 - momentum: 0.000000
2023-10-14 11:52:12,172 epoch 5 - iter 504/723 - loss 0.03230870 - time (sec): 43.58 - samples/sec: 2848.04 - lr: 0.000018 - momentum: 0.000000
2023-10-14 11:52:18,077 epoch 5 - iter 576/723 - loss 0.03186647 - time (sec): 49.49 - samples/sec: 2846.56 - lr: 0.000017 - momentum: 0.000000
2023-10-14 11:52:23,851 epoch 5 - iter 648/723 - loss 0.03038680 - time (sec): 55.26 - samples/sec: 2860.04 - lr: 0.000017 - momentum: 0.000000
2023-10-14 11:52:30,050 epoch 5 - iter 720/723 - loss 0.03171654 - time (sec): 61.46 - samples/sec: 2853.61 - lr: 0.000017 - momentum: 0.000000
2023-10-14 11:52:30,317 ----------------------------------------------------------------------------------------------------
2023-10-14 11:52:30,317 EPOCH 5 done: loss 0.0319 - lr: 0.000017
2023-10-14 11:52:33,961 DEV : loss 0.11846506595611572 - f1-score (micro avg)  0.8055
2023-10-14 11:52:33,977 saving best model
2023-10-14 11:52:34,393 ----------------------------------------------------------------------------------------------------
2023-10-14 11:52:40,195 epoch 6 - iter 72/723 - loss 0.02635934 - time (sec): 5.80 - samples/sec: 2915.02 - lr: 0.000016 - momentum: 0.000000
2023-10-14 11:52:45,847 epoch 6 - iter 144/723 - loss 0.02567053 - time (sec): 11.45 - samples/sec: 2989.60 - lr: 0.000016 - momentum: 0.000000
2023-10-14 11:52:52,001 epoch 6 - iter 216/723 - loss 0.02594002 - time (sec): 17.61 - samples/sec: 2958.72 - lr: 0.000016 - momentum: 0.000000
2023-10-14 11:52:58,150 epoch 6 - iter 288/723 - loss 0.02839596 - time (sec): 23.76 - samples/sec: 2961.05 - lr: 0.000015 - momentum: 0.000000
2023-10-14 11:53:04,782 epoch 6 - iter 360/723 - loss 0.02953778 - time (sec): 30.39 - samples/sec: 2945.44 - lr: 0.000015 - momentum: 0.000000
2023-10-14 11:53:10,905 epoch 6 - iter 432/723 - loss 0.02804276 - time (sec): 36.51 - samples/sec: 2926.53 - lr: 0.000015 - momentum: 0.000000
2023-10-14 11:53:16,320 epoch 6 - iter 504/723 - loss 0.02683702 - time (sec): 41.92 - samples/sec: 2948.93 - lr: 0.000014 - momentum: 0.000000
2023-10-14 11:53:22,244 epoch 6 - iter 576/723 - loss 0.02562191 - time (sec): 47.85 - samples/sec: 2942.84 - lr: 0.000014 - momentum: 0.000000
2023-10-14 11:53:27,883 epoch 6 - iter 648/723 - loss 0.02530607 - time (sec): 53.49 - samples/sec: 2958.77 - lr: 0.000014 - momentum: 0.000000
2023-10-14 11:53:33,702 epoch 6 - iter 720/723 - loss 0.02457646 - time (sec): 59.31 - samples/sec: 2962.58 - lr: 0.000013 - momentum: 0.000000
2023-10-14 11:53:33,918 ----------------------------------------------------------------------------------------------------
2023-10-14 11:53:33,919 EPOCH 6 done: loss 0.0246 - lr: 0.000013
2023-10-14 11:53:38,487 DEV : loss 0.13894404470920563 - f1-score (micro avg)  0.8147
2023-10-14 11:53:38,512 saving best model
2023-10-14 11:53:39,053 ----------------------------------------------------------------------------------------------------
2023-10-14 11:53:45,100 epoch 7 - iter 72/723 - loss 0.01514089 - time (sec): 6.04 - samples/sec: 2816.37 - lr: 0.000013 - momentum: 0.000000
2023-10-14 11:53:51,034 epoch 7 - iter 144/723 - loss 0.01504761 - time (sec): 11.98 - samples/sec: 2857.79 - lr: 0.000013 - momentum: 0.000000
2023-10-14 11:53:57,277 epoch 7 - iter 216/723 - loss 0.01712868 - time (sec): 18.22 - samples/sec: 2888.95 - lr: 0.000012 - momentum: 0.000000
2023-10-14 11:54:03,341 epoch 7 - iter 288/723 - loss 0.01831387 - time (sec): 24.29 - samples/sec: 2883.50 - lr: 0.000012 - momentum: 0.000000
2023-10-14 11:54:09,339 epoch 7 - iter 360/723 - loss 0.01652720 - time (sec): 30.28 - samples/sec: 2908.98 - lr: 0.000012 - momentum: 0.000000
2023-10-14 11:54:15,105 epoch 7 - iter 432/723 - loss 0.01612436 - time (sec): 36.05 - samples/sec: 2923.73 - lr: 0.000011 - momentum: 0.000000
2023-10-14 11:54:21,245 epoch 7 - iter 504/723 - loss 0.01609187 - time (sec): 42.19 - samples/sec: 2914.96 - lr: 0.000011 - momentum: 0.000000
2023-10-14 11:54:27,377 epoch 7 - iter 576/723 - loss 0.01654164 - time (sec): 48.32 - samples/sec: 2910.10 - lr: 0.000011 - momentum: 0.000000
2023-10-14 11:54:33,068 epoch 7 - iter 648/723 - loss 0.01719631 - time (sec): 54.01 - samples/sec: 2909.29 - lr: 0.000010 - momentum: 0.000000
2023-10-14 11:54:39,697 epoch 7 - iter 720/723 - loss 0.01721697 - time (sec): 60.64 - samples/sec: 2897.14 - lr: 0.000010 - momentum: 0.000000
2023-10-14 11:54:39,934 ----------------------------------------------------------------------------------------------------
2023-10-14 11:54:39,934 EPOCH 7 done: loss 0.0172 - lr: 0.000010
2023-10-14 11:54:43,657 DEV : loss 0.16778483986854553 - f1-score (micro avg)  0.8077
2023-10-14 11:54:43,680 ----------------------------------------------------------------------------------------------------
2023-10-14 11:54:50,765 epoch 8 - iter 72/723 - loss 0.01257707 - time (sec): 7.08 - samples/sec: 2514.43 - lr: 0.000010 - momentum: 0.000000
2023-10-14 11:54:56,831 epoch 8 - iter 144/723 - loss 0.01317721 - time (sec): 13.15 - samples/sec: 2673.46 - lr: 0.000009 - momentum: 0.000000
2023-10-14 11:55:03,315 epoch 8 - iter 216/723 - loss 0.01362361 - time (sec): 19.63 - samples/sec: 2712.80 - lr: 0.000009 - momentum: 0.000000
2023-10-14 11:55:09,075 epoch 8 - iter 288/723 - loss 0.01440453 - time (sec): 25.39 - samples/sec: 2780.28 - lr: 0.000009 - momentum: 0.000000
2023-10-14 11:55:15,429 epoch 8 - iter 360/723 - loss 0.01453039 - time (sec): 31.75 - samples/sec: 2789.63 - lr: 0.000008 - momentum: 0.000000
2023-10-14 11:55:21,249 epoch 8 - iter 432/723 - loss 0.01405394 - time (sec): 37.57 - samples/sec: 2820.91 - lr: 0.000008 - momentum: 0.000000
2023-10-14 11:55:27,058 epoch 8 - iter 504/723 - loss 0.01345119 - time (sec): 43.38 - samples/sec: 2820.92 - lr: 0.000008 - momentum: 0.000000
2023-10-14 11:55:33,497 epoch 8 - iter 576/723 - loss 0.01275603 - time (sec): 49.82 - samples/sec: 2817.53 - lr: 0.000007 - momentum: 0.000000
2023-10-14 11:55:39,761 epoch 8 - iter 648/723 - loss 0.01366196 - time (sec): 56.08 - samples/sec: 2826.80 - lr: 0.000007 - momentum: 0.000000
2023-10-14 11:55:45,544 epoch 8 - iter 720/723 - loss 0.01335513 - time (sec): 61.86 - samples/sec: 2836.20 - lr: 0.000007 - momentum: 0.000000
2023-10-14 11:55:45,852 ----------------------------------------------------------------------------------------------------
2023-10-14 11:55:45,852 EPOCH 8 done: loss 0.0133 - lr: 0.000007
2023-10-14 11:55:49,362 DEV : loss 0.18129222095012665 - f1-score (micro avg)  0.8109
2023-10-14 11:55:49,380 ----------------------------------------------------------------------------------------------------
2023-10-14 11:55:55,373 epoch 9 - iter 72/723 - loss 0.00469641 - time (sec): 5.99 - samples/sec: 2909.93 - lr: 0.000006 - momentum: 0.000000
2023-10-14 11:56:00,990 epoch 9 - iter 144/723 - loss 0.00558362 - time (sec): 11.61 - samples/sec: 2883.12 - lr: 0.000006 - momentum: 0.000000
2023-10-14 11:56:07,785 epoch 9 - iter 216/723 - loss 0.00934811 - time (sec): 18.40 - samples/sec: 2914.61 - lr: 0.000006 - momentum: 0.000000
2023-10-14 11:56:13,316 epoch 9 - iter 288/723 - loss 0.00967709 - time (sec): 23.93 - samples/sec: 2938.46 - lr: 0.000005 - momentum: 0.000000
2023-10-14 11:56:19,287 epoch 9 - iter 360/723 - loss 0.00972270 - time (sec): 29.91 - samples/sec: 2955.84 - lr: 0.000005 - momentum: 0.000000
2023-10-14 11:56:25,175 epoch 9 - iter 432/723 - loss 0.00996302 - time (sec): 35.79 - samples/sec: 2957.64 - lr: 0.000005 - momentum: 0.000000
2023-10-14 11:56:31,060 epoch 9 - iter 504/723 - loss 0.00950339 - time (sec): 41.68 - samples/sec: 2959.25 - lr: 0.000004 - momentum: 0.000000
2023-10-14 11:56:37,078 epoch 9 - iter 576/723 - loss 0.01010530 - time (sec): 47.70 - samples/sec: 2943.69 - lr: 0.000004 - momentum: 0.000000
2023-10-14 11:56:42,906 epoch 9 - iter 648/723 - loss 0.01002914 - time (sec): 53.52 - samples/sec: 2946.96 - lr: 0.000004 - momentum: 0.000000
2023-10-14 11:56:48,906 epoch 9 - iter 720/723 - loss 0.01036201 - time (sec): 59.52 - samples/sec: 2948.08 - lr: 0.000003 - momentum: 0.000000
2023-10-14 11:56:49,182 ----------------------------------------------------------------------------------------------------
2023-10-14 11:56:49,182 EPOCH 9 done: loss 0.0103 - lr: 0.000003
2023-10-14 11:56:53,096 DEV : loss 0.1801426112651825 - f1-score (micro avg)  0.8155
2023-10-14 11:56:53,111 saving best model
2023-10-14 11:56:53,771 ----------------------------------------------------------------------------------------------------
2023-10-14 11:57:00,146 epoch 10 - iter 72/723 - loss 0.00771571 - time (sec): 6.37 - samples/sec: 2841.33 - lr: 0.000003 - momentum: 0.000000
2023-10-14 11:57:05,943 epoch 10 - iter 144/723 - loss 0.00799529 - time (sec): 12.17 - samples/sec: 2929.37 - lr: 0.000003 - momentum: 0.000000
2023-10-14 11:57:12,088 epoch 10 - iter 216/723 - loss 0.00964900 - time (sec): 18.31 - samples/sec: 2909.61 - lr: 0.000002 - momentum: 0.000000
2023-10-14 11:57:18,469 epoch 10 - iter 288/723 - loss 0.00910715 - time (sec): 24.69 - samples/sec: 2908.74 - lr: 0.000002 - momentum: 0.000000
2023-10-14 11:57:24,261 epoch 10 - iter 360/723 - loss 0.00785801 - time (sec): 30.49 - samples/sec: 2927.64 - lr: 0.000002 - momentum: 0.000000
2023-10-14 11:57:29,982 epoch 10 - iter 432/723 - loss 0.00782112 - time (sec): 36.21 - samples/sec: 2949.53 - lr: 0.000001 - momentum: 0.000000
2023-10-14 11:57:36,136 epoch 10 - iter 504/723 - loss 0.00784393 - time (sec): 42.36 - samples/sec: 2934.43 - lr: 0.000001 - momentum: 0.000000
2023-10-14 11:57:41,890 epoch 10 - iter 576/723 - loss 0.00793032 - time (sec): 48.12 - samples/sec: 2940.39 - lr: 0.000001 - momentum: 0.000000
2023-10-14 11:57:47,590 epoch 10 - iter 648/723 - loss 0.00792955 - time (sec): 53.82 - samples/sec: 2936.65 - lr: 0.000000 - momentum: 0.000000
2023-10-14 11:57:53,365 epoch 10 - iter 720/723 - loss 0.00802050 - time (sec): 59.59 - samples/sec: 2946.14 - lr: 0.000000 - momentum: 0.000000
2023-10-14 11:57:53,666 ----------------------------------------------------------------------------------------------------
2023-10-14 11:57:53,667 EPOCH 10 done: loss 0.0080 - lr: 0.000000
2023-10-14 11:57:57,150 DEV : loss 0.1832604557275772 - f1-score (micro avg)  0.8127
2023-10-14 11:57:57,618 ----------------------------------------------------------------------------------------------------
2023-10-14 11:57:57,619 Loading model from best epoch ...
2023-10-14 11:57:59,232 SequenceTagger predicts: Dictionary with 13 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-ORG, B-ORG, E-ORG, I-ORG
2023-10-14 11:58:02,393 
Results:
- F-score (micro) 0.8004
- F-score (macro) 0.6962
- Accuracy 0.6799

By class:
              precision    recall  f1-score   support

         PER     0.8323    0.8237    0.8279       482
         LOC     0.8741    0.7882    0.8289       458
         ORG     0.4286    0.4348    0.4317        69

   micro avg     0.8208    0.7810    0.8004      1009
   macro avg     0.7116    0.6822    0.6962      1009
weighted avg     0.8237    0.7810    0.8013      1009

2023-10-14 11:58:02,393 ----------------------------------------------------------------------------------------------------