File size: 24,025 Bytes
379eb25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
2023-10-17 10:39:35,326 ----------------------------------------------------------------------------------------------------
2023-10-17 10:39:35,327 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): ElectraModel(
      (embeddings): ElectraEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): ElectraEncoder(
        (layer): ModuleList(
          (0-11): 12 x ElectraLayer(
            (attention): ElectraAttention(
              (self): ElectraSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): ElectraSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): ElectraIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): ElectraOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-17 10:39:35,327 ----------------------------------------------------------------------------------------------------
2023-10-17 10:39:35,327 MultiCorpus: 966 train + 219 dev + 204 test sentences
 - NER_HIPE_2022 Corpus: 966 train + 219 dev + 204 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/fr/with_doc_seperator
2023-10-17 10:39:35,327 ----------------------------------------------------------------------------------------------------
2023-10-17 10:39:35,327 Train:  966 sentences
2023-10-17 10:39:35,327         (train_with_dev=False, train_with_test=False)
2023-10-17 10:39:35,327 ----------------------------------------------------------------------------------------------------
2023-10-17 10:39:35,327 Training Params:
2023-10-17 10:39:35,327  - learning_rate: "3e-05" 
2023-10-17 10:39:35,327  - mini_batch_size: "8"
2023-10-17 10:39:35,327  - max_epochs: "10"
2023-10-17 10:39:35,327  - shuffle: "True"
2023-10-17 10:39:35,327 ----------------------------------------------------------------------------------------------------
2023-10-17 10:39:35,327 Plugins:
2023-10-17 10:39:35,327  - TensorboardLogger
2023-10-17 10:39:35,327  - LinearScheduler | warmup_fraction: '0.1'
2023-10-17 10:39:35,327 ----------------------------------------------------------------------------------------------------
2023-10-17 10:39:35,327 Final evaluation on model from best epoch (best-model.pt)
2023-10-17 10:39:35,327  - metric: "('micro avg', 'f1-score')"
2023-10-17 10:39:35,328 ----------------------------------------------------------------------------------------------------
2023-10-17 10:39:35,328 Computation:
2023-10-17 10:39:35,328  - compute on device: cuda:0
2023-10-17 10:39:35,328  - embedding storage: none
2023-10-17 10:39:35,328 ----------------------------------------------------------------------------------------------------
2023-10-17 10:39:35,328 Model training base path: "hmbench-ajmc/fr-hmteams/teams-base-historic-multilingual-discriminator-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2"
2023-10-17 10:39:35,328 ----------------------------------------------------------------------------------------------------
2023-10-17 10:39:35,328 ----------------------------------------------------------------------------------------------------
2023-10-17 10:39:35,328 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-17 10:39:36,109 epoch 1 - iter 12/121 - loss 4.25722385 - time (sec): 0.78 - samples/sec: 2872.89 - lr: 0.000003 - momentum: 0.000000
2023-10-17 10:39:36,809 epoch 1 - iter 24/121 - loss 4.00564937 - time (sec): 1.48 - samples/sec: 3154.85 - lr: 0.000006 - momentum: 0.000000
2023-10-17 10:39:37,642 epoch 1 - iter 36/121 - loss 3.40093382 - time (sec): 2.31 - samples/sec: 3172.82 - lr: 0.000009 - momentum: 0.000000
2023-10-17 10:39:38,404 epoch 1 - iter 48/121 - loss 2.78062785 - time (sec): 3.07 - samples/sec: 3143.94 - lr: 0.000012 - momentum: 0.000000
2023-10-17 10:39:39,161 epoch 1 - iter 60/121 - loss 2.35231184 - time (sec): 3.83 - samples/sec: 3199.31 - lr: 0.000015 - momentum: 0.000000
2023-10-17 10:39:39,973 epoch 1 - iter 72/121 - loss 2.06127860 - time (sec): 4.64 - samples/sec: 3147.72 - lr: 0.000018 - momentum: 0.000000
2023-10-17 10:39:40,735 epoch 1 - iter 84/121 - loss 1.81693509 - time (sec): 5.41 - samples/sec: 3200.90 - lr: 0.000021 - momentum: 0.000000
2023-10-17 10:39:41,470 epoch 1 - iter 96/121 - loss 1.67323399 - time (sec): 6.14 - samples/sec: 3170.67 - lr: 0.000024 - momentum: 0.000000
2023-10-17 10:39:42,303 epoch 1 - iter 108/121 - loss 1.51544682 - time (sec): 6.97 - samples/sec: 3172.12 - lr: 0.000027 - momentum: 0.000000
2023-10-17 10:39:43,069 epoch 1 - iter 120/121 - loss 1.39049965 - time (sec): 7.74 - samples/sec: 3180.24 - lr: 0.000030 - momentum: 0.000000
2023-10-17 10:39:43,123 ----------------------------------------------------------------------------------------------------
2023-10-17 10:39:43,124 EPOCH 1 done: loss 1.3838 - lr: 0.000030
2023-10-17 10:39:43,777 DEV : loss 0.251099556684494 - f1-score (micro avg)  0.5079
2023-10-17 10:39:43,787 saving best model
2023-10-17 10:39:44,242 ----------------------------------------------------------------------------------------------------
2023-10-17 10:39:44,933 epoch 2 - iter 12/121 - loss 0.26699978 - time (sec): 0.69 - samples/sec: 3362.95 - lr: 0.000030 - momentum: 0.000000
2023-10-17 10:39:45,686 epoch 2 - iter 24/121 - loss 0.27485034 - time (sec): 1.44 - samples/sec: 3098.99 - lr: 0.000029 - momentum: 0.000000
2023-10-17 10:39:46,440 epoch 2 - iter 36/121 - loss 0.27317472 - time (sec): 2.20 - samples/sec: 3168.93 - lr: 0.000029 - momentum: 0.000000
2023-10-17 10:39:47,147 epoch 2 - iter 48/121 - loss 0.25723374 - time (sec): 2.90 - samples/sec: 3131.61 - lr: 0.000029 - momentum: 0.000000
2023-10-17 10:39:47,919 epoch 2 - iter 60/121 - loss 0.24909349 - time (sec): 3.68 - samples/sec: 3140.85 - lr: 0.000028 - momentum: 0.000000
2023-10-17 10:39:48,756 epoch 2 - iter 72/121 - loss 0.23902434 - time (sec): 4.51 - samples/sec: 3138.67 - lr: 0.000028 - momentum: 0.000000
2023-10-17 10:39:49,474 epoch 2 - iter 84/121 - loss 0.23187052 - time (sec): 5.23 - samples/sec: 3187.32 - lr: 0.000028 - momentum: 0.000000
2023-10-17 10:39:50,215 epoch 2 - iter 96/121 - loss 0.22252914 - time (sec): 5.97 - samples/sec: 3228.69 - lr: 0.000027 - momentum: 0.000000
2023-10-17 10:39:51,016 epoch 2 - iter 108/121 - loss 0.21712543 - time (sec): 6.77 - samples/sec: 3218.14 - lr: 0.000027 - momentum: 0.000000
2023-10-17 10:39:51,746 epoch 2 - iter 120/121 - loss 0.21132328 - time (sec): 7.50 - samples/sec: 3262.76 - lr: 0.000027 - momentum: 0.000000
2023-10-17 10:39:51,826 ----------------------------------------------------------------------------------------------------
2023-10-17 10:39:51,826 EPOCH 2 done: loss 0.2094 - lr: 0.000027
2023-10-17 10:39:52,611 DEV : loss 0.14902380108833313 - f1-score (micro avg)  0.75
2023-10-17 10:39:52,617 saving best model
2023-10-17 10:39:53,122 ----------------------------------------------------------------------------------------------------
2023-10-17 10:39:53,897 epoch 3 - iter 12/121 - loss 0.12685344 - time (sec): 0.77 - samples/sec: 3347.70 - lr: 0.000026 - momentum: 0.000000
2023-10-17 10:39:54,635 epoch 3 - iter 24/121 - loss 0.13397141 - time (sec): 1.51 - samples/sec: 3458.76 - lr: 0.000026 - momentum: 0.000000
2023-10-17 10:39:55,449 epoch 3 - iter 36/121 - loss 0.13558235 - time (sec): 2.33 - samples/sec: 3364.66 - lr: 0.000026 - momentum: 0.000000
2023-10-17 10:39:56,155 epoch 3 - iter 48/121 - loss 0.13474115 - time (sec): 3.03 - samples/sec: 3288.55 - lr: 0.000025 - momentum: 0.000000
2023-10-17 10:39:56,871 epoch 3 - iter 60/121 - loss 0.13146380 - time (sec): 3.75 - samples/sec: 3298.28 - lr: 0.000025 - momentum: 0.000000
2023-10-17 10:39:57,695 epoch 3 - iter 72/121 - loss 0.13411500 - time (sec): 4.57 - samples/sec: 3238.48 - lr: 0.000025 - momentum: 0.000000
2023-10-17 10:39:58,415 epoch 3 - iter 84/121 - loss 0.13560617 - time (sec): 5.29 - samples/sec: 3284.45 - lr: 0.000024 - momentum: 0.000000
2023-10-17 10:39:59,143 epoch 3 - iter 96/121 - loss 0.13216345 - time (sec): 6.02 - samples/sec: 3237.82 - lr: 0.000024 - momentum: 0.000000
2023-10-17 10:39:59,872 epoch 3 - iter 108/121 - loss 0.12725540 - time (sec): 6.75 - samples/sec: 3254.99 - lr: 0.000024 - momentum: 0.000000
2023-10-17 10:40:00,620 epoch 3 - iter 120/121 - loss 0.12351647 - time (sec): 7.50 - samples/sec: 3282.36 - lr: 0.000023 - momentum: 0.000000
2023-10-17 10:40:00,666 ----------------------------------------------------------------------------------------------------
2023-10-17 10:40:00,666 EPOCH 3 done: loss 0.1229 - lr: 0.000023
2023-10-17 10:40:01,626 DEV : loss 0.14644193649291992 - f1-score (micro avg)  0.7974
2023-10-17 10:40:01,632 saving best model
2023-10-17 10:40:02,148 ----------------------------------------------------------------------------------------------------
2023-10-17 10:40:02,872 epoch 4 - iter 12/121 - loss 0.11855343 - time (sec): 0.72 - samples/sec: 3318.24 - lr: 0.000023 - momentum: 0.000000
2023-10-17 10:40:03,569 epoch 4 - iter 24/121 - loss 0.11086880 - time (sec): 1.42 - samples/sec: 3358.02 - lr: 0.000023 - momentum: 0.000000
2023-10-17 10:40:04,292 epoch 4 - iter 36/121 - loss 0.09714372 - time (sec): 2.14 - samples/sec: 3198.21 - lr: 0.000022 - momentum: 0.000000
2023-10-17 10:40:05,039 epoch 4 - iter 48/121 - loss 0.09071078 - time (sec): 2.89 - samples/sec: 3157.80 - lr: 0.000022 - momentum: 0.000000
2023-10-17 10:40:05,821 epoch 4 - iter 60/121 - loss 0.09150231 - time (sec): 3.67 - samples/sec: 3188.65 - lr: 0.000022 - momentum: 0.000000
2023-10-17 10:40:06,595 epoch 4 - iter 72/121 - loss 0.08403862 - time (sec): 4.44 - samples/sec: 3289.27 - lr: 0.000021 - momentum: 0.000000
2023-10-17 10:40:07,362 epoch 4 - iter 84/121 - loss 0.08179926 - time (sec): 5.21 - samples/sec: 3286.29 - lr: 0.000021 - momentum: 0.000000
2023-10-17 10:40:08,181 epoch 4 - iter 96/121 - loss 0.08496227 - time (sec): 6.03 - samples/sec: 3289.16 - lr: 0.000021 - momentum: 0.000000
2023-10-17 10:40:08,894 epoch 4 - iter 108/121 - loss 0.08355173 - time (sec): 6.74 - samples/sec: 3304.38 - lr: 0.000020 - momentum: 0.000000
2023-10-17 10:40:09,660 epoch 4 - iter 120/121 - loss 0.08565829 - time (sec): 7.51 - samples/sec: 3276.12 - lr: 0.000020 - momentum: 0.000000
2023-10-17 10:40:09,706 ----------------------------------------------------------------------------------------------------
2023-10-17 10:40:09,707 EPOCH 4 done: loss 0.0857 - lr: 0.000020
2023-10-17 10:40:10,514 DEV : loss 0.14408640563488007 - f1-score (micro avg)  0.8069
2023-10-17 10:40:10,521 saving best model
2023-10-17 10:40:11,050 ----------------------------------------------------------------------------------------------------
2023-10-17 10:40:11,843 epoch 5 - iter 12/121 - loss 0.06469600 - time (sec): 0.79 - samples/sec: 3149.16 - lr: 0.000020 - momentum: 0.000000
2023-10-17 10:40:12,700 epoch 5 - iter 24/121 - loss 0.06320875 - time (sec): 1.65 - samples/sec: 3129.05 - lr: 0.000019 - momentum: 0.000000
2023-10-17 10:40:13,483 epoch 5 - iter 36/121 - loss 0.05527648 - time (sec): 2.43 - samples/sec: 3190.52 - lr: 0.000019 - momentum: 0.000000
2023-10-17 10:40:14,248 epoch 5 - iter 48/121 - loss 0.05466742 - time (sec): 3.20 - samples/sec: 3259.54 - lr: 0.000019 - momentum: 0.000000
2023-10-17 10:40:15,013 epoch 5 - iter 60/121 - loss 0.05439576 - time (sec): 3.96 - samples/sec: 3233.41 - lr: 0.000018 - momentum: 0.000000
2023-10-17 10:40:15,756 epoch 5 - iter 72/121 - loss 0.05872498 - time (sec): 4.70 - samples/sec: 3267.51 - lr: 0.000018 - momentum: 0.000000
2023-10-17 10:40:16,427 epoch 5 - iter 84/121 - loss 0.05848788 - time (sec): 5.37 - samples/sec: 3280.41 - lr: 0.000018 - momentum: 0.000000
2023-10-17 10:40:17,153 epoch 5 - iter 96/121 - loss 0.05846039 - time (sec): 6.10 - samples/sec: 3272.26 - lr: 0.000017 - momentum: 0.000000
2023-10-17 10:40:17,891 epoch 5 - iter 108/121 - loss 0.05853485 - time (sec): 6.84 - samples/sec: 3269.18 - lr: 0.000017 - momentum: 0.000000
2023-10-17 10:40:18,638 epoch 5 - iter 120/121 - loss 0.05724472 - time (sec): 7.59 - samples/sec: 3250.89 - lr: 0.000017 - momentum: 0.000000
2023-10-17 10:40:18,684 ----------------------------------------------------------------------------------------------------
2023-10-17 10:40:18,685 EPOCH 5 done: loss 0.0571 - lr: 0.000017
2023-10-17 10:40:19,474 DEV : loss 0.15564198791980743 - f1-score (micro avg)  0.8015
2023-10-17 10:40:19,480 ----------------------------------------------------------------------------------------------------
2023-10-17 10:40:20,222 epoch 6 - iter 12/121 - loss 0.04969618 - time (sec): 0.74 - samples/sec: 3225.61 - lr: 0.000016 - momentum: 0.000000
2023-10-17 10:40:20,960 epoch 6 - iter 24/121 - loss 0.04644119 - time (sec): 1.48 - samples/sec: 3078.69 - lr: 0.000016 - momentum: 0.000000
2023-10-17 10:40:21,753 epoch 6 - iter 36/121 - loss 0.04209743 - time (sec): 2.27 - samples/sec: 3148.81 - lr: 0.000016 - momentum: 0.000000
2023-10-17 10:40:22,501 epoch 6 - iter 48/121 - loss 0.04711594 - time (sec): 3.02 - samples/sec: 3220.15 - lr: 0.000015 - momentum: 0.000000
2023-10-17 10:40:23,295 epoch 6 - iter 60/121 - loss 0.04764666 - time (sec): 3.81 - samples/sec: 3223.55 - lr: 0.000015 - momentum: 0.000000
2023-10-17 10:40:24,073 epoch 6 - iter 72/121 - loss 0.04477288 - time (sec): 4.59 - samples/sec: 3214.32 - lr: 0.000015 - momentum: 0.000000
2023-10-17 10:40:24,807 epoch 6 - iter 84/121 - loss 0.04169976 - time (sec): 5.33 - samples/sec: 3205.75 - lr: 0.000014 - momentum: 0.000000
2023-10-17 10:40:25,540 epoch 6 - iter 96/121 - loss 0.04232871 - time (sec): 6.06 - samples/sec: 3233.25 - lr: 0.000014 - momentum: 0.000000
2023-10-17 10:40:26,304 epoch 6 - iter 108/121 - loss 0.04135200 - time (sec): 6.82 - samples/sec: 3234.30 - lr: 0.000014 - momentum: 0.000000
2023-10-17 10:40:27,015 epoch 6 - iter 120/121 - loss 0.04338782 - time (sec): 7.53 - samples/sec: 3270.66 - lr: 0.000013 - momentum: 0.000000
2023-10-17 10:40:27,061 ----------------------------------------------------------------------------------------------------
2023-10-17 10:40:27,061 EPOCH 6 done: loss 0.0434 - lr: 0.000013
2023-10-17 10:40:27,828 DEV : loss 0.158291295170784 - f1-score (micro avg)  0.8204
2023-10-17 10:40:27,833 saving best model
2023-10-17 10:40:28,330 ----------------------------------------------------------------------------------------------------
2023-10-17 10:40:29,054 epoch 7 - iter 12/121 - loss 0.04068845 - time (sec): 0.72 - samples/sec: 3223.97 - lr: 0.000013 - momentum: 0.000000
2023-10-17 10:40:29,841 epoch 7 - iter 24/121 - loss 0.02967958 - time (sec): 1.51 - samples/sec: 3316.62 - lr: 0.000013 - momentum: 0.000000
2023-10-17 10:40:30,547 epoch 7 - iter 36/121 - loss 0.02930156 - time (sec): 2.21 - samples/sec: 3237.98 - lr: 0.000012 - momentum: 0.000000
2023-10-17 10:40:31,282 epoch 7 - iter 48/121 - loss 0.03417830 - time (sec): 2.95 - samples/sec: 3281.96 - lr: 0.000012 - momentum: 0.000000
2023-10-17 10:40:32,050 epoch 7 - iter 60/121 - loss 0.03460234 - time (sec): 3.72 - samples/sec: 3308.07 - lr: 0.000012 - momentum: 0.000000
2023-10-17 10:40:32,784 epoch 7 - iter 72/121 - loss 0.03483963 - time (sec): 4.45 - samples/sec: 3336.06 - lr: 0.000011 - momentum: 0.000000
2023-10-17 10:40:33,557 epoch 7 - iter 84/121 - loss 0.03363358 - time (sec): 5.22 - samples/sec: 3322.19 - lr: 0.000011 - momentum: 0.000000
2023-10-17 10:40:34,261 epoch 7 - iter 96/121 - loss 0.03264425 - time (sec): 5.93 - samples/sec: 3317.81 - lr: 0.000011 - momentum: 0.000000
2023-10-17 10:40:35,055 epoch 7 - iter 108/121 - loss 0.03194370 - time (sec): 6.72 - samples/sec: 3313.03 - lr: 0.000010 - momentum: 0.000000
2023-10-17 10:40:35,820 epoch 7 - iter 120/121 - loss 0.03311731 - time (sec): 7.49 - samples/sec: 3286.01 - lr: 0.000010 - momentum: 0.000000
2023-10-17 10:40:35,875 ----------------------------------------------------------------------------------------------------
2023-10-17 10:40:35,876 EPOCH 7 done: loss 0.0330 - lr: 0.000010
2023-10-17 10:40:36,669 DEV : loss 0.1770782619714737 - f1-score (micro avg)  0.8185
2023-10-17 10:40:36,681 ----------------------------------------------------------------------------------------------------
2023-10-17 10:40:37,429 epoch 8 - iter 12/121 - loss 0.02318625 - time (sec): 0.75 - samples/sec: 3466.20 - lr: 0.000010 - momentum: 0.000000
2023-10-17 10:40:38,254 epoch 8 - iter 24/121 - loss 0.02179879 - time (sec): 1.57 - samples/sec: 3154.01 - lr: 0.000009 - momentum: 0.000000
2023-10-17 10:40:38,978 epoch 8 - iter 36/121 - loss 0.01865314 - time (sec): 2.30 - samples/sec: 3244.27 - lr: 0.000009 - momentum: 0.000000
2023-10-17 10:40:39,799 epoch 8 - iter 48/121 - loss 0.02183121 - time (sec): 3.12 - samples/sec: 3222.49 - lr: 0.000009 - momentum: 0.000000
2023-10-17 10:40:40,533 epoch 8 - iter 60/121 - loss 0.02294907 - time (sec): 3.85 - samples/sec: 3239.56 - lr: 0.000008 - momentum: 0.000000
2023-10-17 10:40:41,312 epoch 8 - iter 72/121 - loss 0.02283248 - time (sec): 4.63 - samples/sec: 3244.31 - lr: 0.000008 - momentum: 0.000000
2023-10-17 10:40:42,039 epoch 8 - iter 84/121 - loss 0.02507082 - time (sec): 5.36 - samples/sec: 3259.64 - lr: 0.000008 - momentum: 0.000000
2023-10-17 10:40:42,799 epoch 8 - iter 96/121 - loss 0.02396940 - time (sec): 6.12 - samples/sec: 3244.75 - lr: 0.000008 - momentum: 0.000000
2023-10-17 10:40:43,575 epoch 8 - iter 108/121 - loss 0.02353728 - time (sec): 6.89 - samples/sec: 3224.57 - lr: 0.000007 - momentum: 0.000000
2023-10-17 10:40:44,343 epoch 8 - iter 120/121 - loss 0.02497422 - time (sec): 7.66 - samples/sec: 3211.10 - lr: 0.000007 - momentum: 0.000000
2023-10-17 10:40:44,397 ----------------------------------------------------------------------------------------------------
2023-10-17 10:40:44,398 EPOCH 8 done: loss 0.0249 - lr: 0.000007
2023-10-17 10:40:45,177 DEV : loss 0.19383026659488678 - f1-score (micro avg)  0.8306
2023-10-17 10:40:45,183 saving best model
2023-10-17 10:40:45,701 ----------------------------------------------------------------------------------------------------
2023-10-17 10:40:46,480 epoch 9 - iter 12/121 - loss 0.02257339 - time (sec): 0.77 - samples/sec: 3397.27 - lr: 0.000006 - momentum: 0.000000
2023-10-17 10:40:47,200 epoch 9 - iter 24/121 - loss 0.02788200 - time (sec): 1.48 - samples/sec: 3334.14 - lr: 0.000006 - momentum: 0.000000
2023-10-17 10:40:47,941 epoch 9 - iter 36/121 - loss 0.02369329 - time (sec): 2.23 - samples/sec: 3205.46 - lr: 0.000006 - momentum: 0.000000
2023-10-17 10:40:48,712 epoch 9 - iter 48/121 - loss 0.02520442 - time (sec): 3.00 - samples/sec: 3205.41 - lr: 0.000006 - momentum: 0.000000
2023-10-17 10:40:49,476 epoch 9 - iter 60/121 - loss 0.02227888 - time (sec): 3.76 - samples/sec: 3217.52 - lr: 0.000005 - momentum: 0.000000
2023-10-17 10:40:50,296 epoch 9 - iter 72/121 - loss 0.02140296 - time (sec): 4.58 - samples/sec: 3213.21 - lr: 0.000005 - momentum: 0.000000
2023-10-17 10:40:50,996 epoch 9 - iter 84/121 - loss 0.01988658 - time (sec): 5.28 - samples/sec: 3224.77 - lr: 0.000005 - momentum: 0.000000
2023-10-17 10:40:51,791 epoch 9 - iter 96/121 - loss 0.02156552 - time (sec): 6.08 - samples/sec: 3214.58 - lr: 0.000004 - momentum: 0.000000
2023-10-17 10:40:52,531 epoch 9 - iter 108/121 - loss 0.02013316 - time (sec): 6.82 - samples/sec: 3232.85 - lr: 0.000004 - momentum: 0.000000
2023-10-17 10:40:53,309 epoch 9 - iter 120/121 - loss 0.01851873 - time (sec): 7.59 - samples/sec: 3240.54 - lr: 0.000004 - momentum: 0.000000
2023-10-17 10:40:53,365 ----------------------------------------------------------------------------------------------------
2023-10-17 10:40:53,366 EPOCH 9 done: loss 0.0186 - lr: 0.000004
2023-10-17 10:40:54,229 DEV : loss 0.1929878145456314 - f1-score (micro avg)  0.8363
2023-10-17 10:40:54,235 saving best model
2023-10-17 10:40:54,758 ----------------------------------------------------------------------------------------------------
2023-10-17 10:40:55,485 epoch 10 - iter 12/121 - loss 0.03533969 - time (sec): 0.72 - samples/sec: 3361.11 - lr: 0.000003 - momentum: 0.000000
2023-10-17 10:40:56,257 epoch 10 - iter 24/121 - loss 0.03073965 - time (sec): 1.49 - samples/sec: 3256.62 - lr: 0.000003 - momentum: 0.000000
2023-10-17 10:40:57,027 epoch 10 - iter 36/121 - loss 0.02357388 - time (sec): 2.26 - samples/sec: 3159.50 - lr: 0.000003 - momentum: 0.000000
2023-10-17 10:40:57,804 epoch 10 - iter 48/121 - loss 0.02346600 - time (sec): 3.04 - samples/sec: 3225.02 - lr: 0.000002 - momentum: 0.000000
2023-10-17 10:40:58,572 epoch 10 - iter 60/121 - loss 0.02331925 - time (sec): 3.81 - samples/sec: 3251.15 - lr: 0.000002 - momentum: 0.000000
2023-10-17 10:40:59,365 epoch 10 - iter 72/121 - loss 0.02129171 - time (sec): 4.60 - samples/sec: 3191.76 - lr: 0.000002 - momentum: 0.000000
2023-10-17 10:41:00,107 epoch 10 - iter 84/121 - loss 0.02077126 - time (sec): 5.34 - samples/sec: 3216.04 - lr: 0.000001 - momentum: 0.000000
2023-10-17 10:41:00,884 epoch 10 - iter 96/121 - loss 0.01902530 - time (sec): 6.12 - samples/sec: 3199.96 - lr: 0.000001 - momentum: 0.000000
2023-10-17 10:41:01,678 epoch 10 - iter 108/121 - loss 0.01742089 - time (sec): 6.92 - samples/sec: 3187.95 - lr: 0.000001 - momentum: 0.000000
2023-10-17 10:41:02,493 epoch 10 - iter 120/121 - loss 0.01642575 - time (sec): 7.73 - samples/sec: 3181.68 - lr: 0.000000 - momentum: 0.000000
2023-10-17 10:41:02,541 ----------------------------------------------------------------------------------------------------
2023-10-17 10:41:02,541 EPOCH 10 done: loss 0.0164 - lr: 0.000000
2023-10-17 10:41:03,340 DEV : loss 0.19614964723587036 - f1-score (micro avg)  0.8416
2023-10-17 10:41:03,345 saving best model
2023-10-17 10:41:04,256 ----------------------------------------------------------------------------------------------------
2023-10-17 10:41:04,257 Loading model from best epoch ...
2023-10-17 10:41:05,657 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-17 10:41:06,551 
Results:
- F-score (micro) 0.8263
- F-score (macro) 0.563
- Accuracy 0.7225

By class:
              precision    recall  f1-score   support

        pers     0.8531    0.8777    0.8652       139
       scope     0.8444    0.8837    0.8636       129
        work     0.7111    0.8000    0.7529        80
         loc     0.6667    0.2222    0.3333         9
        date     0.0000    0.0000    0.0000         3

   micro avg     0.8140    0.8389    0.8263       360
   macro avg     0.6151    0.5567    0.5630       360
weighted avg     0.8067    0.8389    0.8192       360

2023-10-17 10:41:06,552 ----------------------------------------------------------------------------------------------------