File size: 24,937 Bytes
002f360
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
2023-10-08 23:34:23,888 ----------------------------------------------------------------------------------------------------
2023-10-08 23:34:23,890 Model: "SequenceTagger(
  (embeddings): ByT5Embeddings(
    (model): T5EncoderModel(
      (shared): Embedding(384, 1472)
      (encoder): T5Stack(
        (embed_tokens): Embedding(384, 1472)
        (block): ModuleList(
          (0): T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                  (relative_attention_bias): Embedding(32, 6)
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
          (1-11): 11 x T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
        )
        (final_layer_norm): T5LayerNorm()
        (dropout): Dropout(p=0.1, inplace=False)
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=1472, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-08 23:34:23,890 ----------------------------------------------------------------------------------------------------
2023-10-08 23:34:23,890 MultiCorpus: 966 train + 219 dev + 204 test sentences
 - NER_HIPE_2022 Corpus: 966 train + 219 dev + 204 test sentences - /app/.flair/datasets/ner_hipe_2022/v2.1/ajmc/fr/with_doc_seperator
2023-10-08 23:34:23,890 ----------------------------------------------------------------------------------------------------
2023-10-08 23:34:23,890 Train:  966 sentences
2023-10-08 23:34:23,890         (train_with_dev=False, train_with_test=False)
2023-10-08 23:34:23,890 ----------------------------------------------------------------------------------------------------
2023-10-08 23:34:23,890 Training Params:
2023-10-08 23:34:23,890  - learning_rate: "0.00015" 
2023-10-08 23:34:23,890  - mini_batch_size: "8"
2023-10-08 23:34:23,890  - max_epochs: "10"
2023-10-08 23:34:23,890  - shuffle: "True"
2023-10-08 23:34:23,890 ----------------------------------------------------------------------------------------------------
2023-10-08 23:34:23,890 Plugins:
2023-10-08 23:34:23,891  - TensorboardLogger
2023-10-08 23:34:23,891  - LinearScheduler | warmup_fraction: '0.1'
2023-10-08 23:34:23,891 ----------------------------------------------------------------------------------------------------
2023-10-08 23:34:23,891 Final evaluation on model from best epoch (best-model.pt)
2023-10-08 23:34:23,891  - metric: "('micro avg', 'f1-score')"
2023-10-08 23:34:23,891 ----------------------------------------------------------------------------------------------------
2023-10-08 23:34:23,891 Computation:
2023-10-08 23:34:23,891  - compute on device: cuda:0
2023-10-08 23:34:23,891  - embedding storage: none
2023-10-08 23:34:23,891 ----------------------------------------------------------------------------------------------------
2023-10-08 23:34:23,891 Model training base path: "hmbench-ajmc/fr-hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax-bs8-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-5"
2023-10-08 23:34:23,891 ----------------------------------------------------------------------------------------------------
2023-10-08 23:34:23,891 ----------------------------------------------------------------------------------------------------
2023-10-08 23:34:23,891 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-08 23:34:32,778 epoch 1 - iter 12/121 - loss 3.24017889 - time (sec): 8.89 - samples/sec: 258.16 - lr: 0.000014 - momentum: 0.000000
2023-10-08 23:34:42,632 epoch 1 - iter 24/121 - loss 3.23366481 - time (sec): 18.74 - samples/sec: 269.53 - lr: 0.000029 - momentum: 0.000000
2023-10-08 23:34:52,336 epoch 1 - iter 36/121 - loss 3.22367203 - time (sec): 28.44 - samples/sec: 271.42 - lr: 0.000043 - momentum: 0.000000
2023-10-08 23:35:01,746 epoch 1 - iter 48/121 - loss 3.20730354 - time (sec): 37.85 - samples/sec: 266.79 - lr: 0.000058 - momentum: 0.000000
2023-10-08 23:35:11,211 epoch 1 - iter 60/121 - loss 3.17435023 - time (sec): 47.32 - samples/sec: 268.14 - lr: 0.000073 - momentum: 0.000000
2023-10-08 23:35:20,140 epoch 1 - iter 72/121 - loss 3.12585276 - time (sec): 56.25 - samples/sec: 266.78 - lr: 0.000088 - momentum: 0.000000
2023-10-08 23:35:29,472 epoch 1 - iter 84/121 - loss 3.05911175 - time (sec): 65.58 - samples/sec: 268.07 - lr: 0.000103 - momentum: 0.000000
2023-10-08 23:35:38,423 epoch 1 - iter 96/121 - loss 2.98937366 - time (sec): 74.53 - samples/sec: 267.14 - lr: 0.000118 - momentum: 0.000000
2023-10-08 23:35:47,528 epoch 1 - iter 108/121 - loss 2.91543096 - time (sec): 83.64 - samples/sec: 265.16 - lr: 0.000133 - momentum: 0.000000
2023-10-08 23:35:56,942 epoch 1 - iter 120/121 - loss 2.83441714 - time (sec): 93.05 - samples/sec: 264.28 - lr: 0.000148 - momentum: 0.000000
2023-10-08 23:35:57,594 ----------------------------------------------------------------------------------------------------
2023-10-08 23:35:57,594 EPOCH 1 done: loss 2.8287 - lr: 0.000148
2023-10-08 23:36:03,894 DEV : loss 1.865909457206726 - f1-score (micro avg)  0.0
2023-10-08 23:36:03,899 ----------------------------------------------------------------------------------------------------
2023-10-08 23:36:13,707 epoch 2 - iter 12/121 - loss 1.82988856 - time (sec): 9.81 - samples/sec: 252.40 - lr: 0.000148 - momentum: 0.000000
2023-10-08 23:36:23,287 epoch 2 - iter 24/121 - loss 1.70061483 - time (sec): 19.39 - samples/sec: 260.65 - lr: 0.000147 - momentum: 0.000000
2023-10-08 23:36:32,140 epoch 2 - iter 36/121 - loss 1.62437798 - time (sec): 28.24 - samples/sec: 257.05 - lr: 0.000145 - momentum: 0.000000
2023-10-08 23:36:41,051 epoch 2 - iter 48/121 - loss 1.52599380 - time (sec): 37.15 - samples/sec: 257.31 - lr: 0.000144 - momentum: 0.000000
2023-10-08 23:36:50,363 epoch 2 - iter 60/121 - loss 1.43660909 - time (sec): 46.46 - samples/sec: 255.80 - lr: 0.000142 - momentum: 0.000000
2023-10-08 23:36:59,592 epoch 2 - iter 72/121 - loss 1.37023102 - time (sec): 55.69 - samples/sec: 255.46 - lr: 0.000140 - momentum: 0.000000
2023-10-08 23:37:08,394 epoch 2 - iter 84/121 - loss 1.30900136 - time (sec): 64.49 - samples/sec: 255.16 - lr: 0.000139 - momentum: 0.000000
2023-10-08 23:37:17,797 epoch 2 - iter 96/121 - loss 1.23447583 - time (sec): 73.90 - samples/sec: 256.89 - lr: 0.000137 - momentum: 0.000000
2023-10-08 23:37:27,844 epoch 2 - iter 108/121 - loss 1.16765337 - time (sec): 83.94 - samples/sec: 258.99 - lr: 0.000135 - momentum: 0.000000
2023-10-08 23:37:37,761 epoch 2 - iter 120/121 - loss 1.11224056 - time (sec): 93.86 - samples/sec: 262.29 - lr: 0.000134 - momentum: 0.000000
2023-10-08 23:37:38,273 ----------------------------------------------------------------------------------------------------
2023-10-08 23:37:38,273 EPOCH 2 done: loss 1.1093 - lr: 0.000134
2023-10-08 23:37:44,716 DEV : loss 0.6599521636962891 - f1-score (micro avg)  0.0
2023-10-08 23:37:44,723 ----------------------------------------------------------------------------------------------------
2023-10-08 23:37:53,805 epoch 3 - iter 12/121 - loss 0.66795242 - time (sec): 9.08 - samples/sec: 258.00 - lr: 0.000132 - momentum: 0.000000
2023-10-08 23:38:03,763 epoch 3 - iter 24/121 - loss 0.57765494 - time (sec): 19.04 - samples/sec: 267.13 - lr: 0.000130 - momentum: 0.000000
2023-10-08 23:38:13,177 epoch 3 - iter 36/121 - loss 0.58939285 - time (sec): 28.45 - samples/sec: 265.13 - lr: 0.000129 - momentum: 0.000000
2023-10-08 23:38:22,673 epoch 3 - iter 48/121 - loss 0.59008148 - time (sec): 37.95 - samples/sec: 266.23 - lr: 0.000127 - momentum: 0.000000
2023-10-08 23:38:32,149 epoch 3 - iter 60/121 - loss 0.59041910 - time (sec): 47.43 - samples/sec: 265.96 - lr: 0.000125 - momentum: 0.000000
2023-10-08 23:38:41,186 epoch 3 - iter 72/121 - loss 0.59060120 - time (sec): 56.46 - samples/sec: 263.95 - lr: 0.000124 - momentum: 0.000000
2023-10-08 23:38:50,402 epoch 3 - iter 84/121 - loss 0.56699050 - time (sec): 65.68 - samples/sec: 262.80 - lr: 0.000122 - momentum: 0.000000
2023-10-08 23:39:00,139 epoch 3 - iter 96/121 - loss 0.54734552 - time (sec): 75.42 - samples/sec: 263.58 - lr: 0.000120 - momentum: 0.000000
2023-10-08 23:39:08,891 epoch 3 - iter 108/121 - loss 0.53838536 - time (sec): 84.17 - samples/sec: 262.33 - lr: 0.000119 - momentum: 0.000000
2023-10-08 23:39:18,361 epoch 3 - iter 120/121 - loss 0.52998391 - time (sec): 93.64 - samples/sec: 263.15 - lr: 0.000117 - momentum: 0.000000
2023-10-08 23:39:18,899 ----------------------------------------------------------------------------------------------------
2023-10-08 23:39:18,899 EPOCH 3 done: loss 0.5291 - lr: 0.000117
2023-10-08 23:39:25,550 DEV : loss 0.3969781696796417 - f1-score (micro avg)  0.0
2023-10-08 23:39:25,557 ----------------------------------------------------------------------------------------------------
2023-10-08 23:39:35,472 epoch 4 - iter 12/121 - loss 0.38272330 - time (sec): 9.91 - samples/sec: 274.49 - lr: 0.000115 - momentum: 0.000000
2023-10-08 23:39:45,398 epoch 4 - iter 24/121 - loss 0.39630310 - time (sec): 19.84 - samples/sec: 273.45 - lr: 0.000114 - momentum: 0.000000
2023-10-08 23:39:54,512 epoch 4 - iter 36/121 - loss 0.36093487 - time (sec): 28.95 - samples/sec: 268.09 - lr: 0.000112 - momentum: 0.000000
2023-10-08 23:40:04,530 epoch 4 - iter 48/121 - loss 0.35342633 - time (sec): 38.97 - samples/sec: 266.02 - lr: 0.000110 - momentum: 0.000000
2023-10-08 23:40:14,229 epoch 4 - iter 60/121 - loss 0.34983137 - time (sec): 48.67 - samples/sec: 265.22 - lr: 0.000109 - momentum: 0.000000
2023-10-08 23:40:23,213 epoch 4 - iter 72/121 - loss 0.35500506 - time (sec): 57.65 - samples/sec: 263.88 - lr: 0.000107 - momentum: 0.000000
2023-10-08 23:40:31,803 epoch 4 - iter 84/121 - loss 0.34761176 - time (sec): 66.24 - samples/sec: 262.39 - lr: 0.000105 - momentum: 0.000000
2023-10-08 23:40:41,187 epoch 4 - iter 96/121 - loss 0.34047462 - time (sec): 75.63 - samples/sec: 262.83 - lr: 0.000104 - momentum: 0.000000
2023-10-08 23:40:50,246 epoch 4 - iter 108/121 - loss 0.33251375 - time (sec): 84.69 - samples/sec: 262.11 - lr: 0.000102 - momentum: 0.000000
2023-10-08 23:40:59,213 epoch 4 - iter 120/121 - loss 0.32254317 - time (sec): 93.65 - samples/sec: 262.27 - lr: 0.000101 - momentum: 0.000000
2023-10-08 23:40:59,856 ----------------------------------------------------------------------------------------------------
2023-10-08 23:40:59,857 EPOCH 4 done: loss 0.3228 - lr: 0.000101
2023-10-08 23:41:06,377 DEV : loss 0.2733049690723419 - f1-score (micro avg)  0.4662
2023-10-08 23:41:06,385 saving best model
2023-10-08 23:41:07,265 ----------------------------------------------------------------------------------------------------
2023-10-08 23:41:16,917 epoch 5 - iter 12/121 - loss 0.28853168 - time (sec): 9.65 - samples/sec: 263.94 - lr: 0.000099 - momentum: 0.000000
2023-10-08 23:41:25,961 epoch 5 - iter 24/121 - loss 0.23595621 - time (sec): 18.69 - samples/sec: 260.84 - lr: 0.000097 - momentum: 0.000000
2023-10-08 23:41:35,553 epoch 5 - iter 36/121 - loss 0.23653503 - time (sec): 28.29 - samples/sec: 258.97 - lr: 0.000095 - momentum: 0.000000
2023-10-08 23:41:44,553 epoch 5 - iter 48/121 - loss 0.22403941 - time (sec): 37.29 - samples/sec: 259.64 - lr: 0.000094 - momentum: 0.000000
2023-10-08 23:41:53,779 epoch 5 - iter 60/121 - loss 0.22717697 - time (sec): 46.51 - samples/sec: 260.49 - lr: 0.000092 - momentum: 0.000000
2023-10-08 23:42:02,805 epoch 5 - iter 72/121 - loss 0.23024853 - time (sec): 55.54 - samples/sec: 259.80 - lr: 0.000091 - momentum: 0.000000
2023-10-08 23:42:12,086 epoch 5 - iter 84/121 - loss 0.23713059 - time (sec): 64.82 - samples/sec: 259.99 - lr: 0.000089 - momentum: 0.000000
2023-10-08 23:42:21,895 epoch 5 - iter 96/121 - loss 0.23487341 - time (sec): 74.63 - samples/sec: 261.15 - lr: 0.000087 - momentum: 0.000000
2023-10-08 23:42:31,641 epoch 5 - iter 108/121 - loss 0.23401748 - time (sec): 84.37 - samples/sec: 261.88 - lr: 0.000086 - momentum: 0.000000
2023-10-08 23:42:40,945 epoch 5 - iter 120/121 - loss 0.22746030 - time (sec): 93.68 - samples/sec: 261.81 - lr: 0.000084 - momentum: 0.000000
2023-10-08 23:42:41,671 ----------------------------------------------------------------------------------------------------
2023-10-08 23:42:41,671 EPOCH 5 done: loss 0.2270 - lr: 0.000084
2023-10-08 23:42:48,196 DEV : loss 0.21299438178539276 - f1-score (micro avg)  0.6084
2023-10-08 23:42:48,202 saving best model
2023-10-08 23:42:52,580 ----------------------------------------------------------------------------------------------------
2023-10-08 23:43:01,768 epoch 6 - iter 12/121 - loss 0.20543145 - time (sec): 9.19 - samples/sec: 266.58 - lr: 0.000082 - momentum: 0.000000
2023-10-08 23:43:11,706 epoch 6 - iter 24/121 - loss 0.19076741 - time (sec): 19.12 - samples/sec: 271.32 - lr: 0.000081 - momentum: 0.000000
2023-10-08 23:43:20,980 epoch 6 - iter 36/121 - loss 0.19650215 - time (sec): 28.40 - samples/sec: 269.73 - lr: 0.000079 - momentum: 0.000000
2023-10-08 23:43:30,235 epoch 6 - iter 48/121 - loss 0.18904959 - time (sec): 37.65 - samples/sec: 267.23 - lr: 0.000077 - momentum: 0.000000
2023-10-08 23:43:40,393 epoch 6 - iter 60/121 - loss 0.18069900 - time (sec): 47.81 - samples/sec: 264.75 - lr: 0.000076 - momentum: 0.000000
2023-10-08 23:43:49,509 epoch 6 - iter 72/121 - loss 0.17923457 - time (sec): 56.93 - samples/sec: 267.01 - lr: 0.000074 - momentum: 0.000000
2023-10-08 23:43:59,118 epoch 6 - iter 84/121 - loss 0.17895962 - time (sec): 66.54 - samples/sec: 266.92 - lr: 0.000072 - momentum: 0.000000
2023-10-08 23:44:08,097 epoch 6 - iter 96/121 - loss 0.17558585 - time (sec): 75.52 - samples/sec: 266.34 - lr: 0.000071 - momentum: 0.000000
2023-10-08 23:44:16,813 epoch 6 - iter 108/121 - loss 0.17561514 - time (sec): 84.23 - samples/sec: 264.48 - lr: 0.000069 - momentum: 0.000000
2023-10-08 23:44:26,016 epoch 6 - iter 120/121 - loss 0.17486140 - time (sec): 93.43 - samples/sec: 263.55 - lr: 0.000067 - momentum: 0.000000
2023-10-08 23:44:26,515 ----------------------------------------------------------------------------------------------------
2023-10-08 23:44:26,516 EPOCH 6 done: loss 0.1750 - lr: 0.000067
2023-10-08 23:44:33,002 DEV : loss 0.1774875372648239 - f1-score (micro avg)  0.7266
2023-10-08 23:44:33,008 saving best model
2023-10-08 23:44:37,887 ----------------------------------------------------------------------------------------------------
2023-10-08 23:44:46,853 epoch 7 - iter 12/121 - loss 0.15820431 - time (sec): 8.97 - samples/sec: 262.34 - lr: 0.000066 - momentum: 0.000000
2023-10-08 23:44:55,909 epoch 7 - iter 24/121 - loss 0.16596847 - time (sec): 18.02 - samples/sec: 259.25 - lr: 0.000064 - momentum: 0.000000
2023-10-08 23:45:04,694 epoch 7 - iter 36/121 - loss 0.15533406 - time (sec): 26.81 - samples/sec: 258.67 - lr: 0.000062 - momentum: 0.000000
2023-10-08 23:45:14,414 epoch 7 - iter 48/121 - loss 0.14849612 - time (sec): 36.53 - samples/sec: 262.25 - lr: 0.000061 - momentum: 0.000000
2023-10-08 23:45:23,620 epoch 7 - iter 60/121 - loss 0.14917696 - time (sec): 45.73 - samples/sec: 264.06 - lr: 0.000059 - momentum: 0.000000
2023-10-08 23:45:33,084 epoch 7 - iter 72/121 - loss 0.14147734 - time (sec): 55.20 - samples/sec: 263.79 - lr: 0.000057 - momentum: 0.000000
2023-10-08 23:45:42,561 epoch 7 - iter 84/121 - loss 0.13644284 - time (sec): 64.67 - samples/sec: 262.09 - lr: 0.000056 - momentum: 0.000000
2023-10-08 23:45:52,135 epoch 7 - iter 96/121 - loss 0.13506282 - time (sec): 74.25 - samples/sec: 263.18 - lr: 0.000054 - momentum: 0.000000
2023-10-08 23:46:02,002 epoch 7 - iter 108/121 - loss 0.13473976 - time (sec): 84.11 - samples/sec: 262.94 - lr: 0.000052 - momentum: 0.000000
2023-10-08 23:46:11,175 epoch 7 - iter 120/121 - loss 0.13772286 - time (sec): 93.29 - samples/sec: 263.34 - lr: 0.000051 - momentum: 0.000000
2023-10-08 23:46:11,785 ----------------------------------------------------------------------------------------------------
2023-10-08 23:46:11,786 EPOCH 7 done: loss 0.1373 - lr: 0.000051
2023-10-08 23:46:18,296 DEV : loss 0.15338008105754852 - f1-score (micro avg)  0.842
2023-10-08 23:46:18,302 saving best model
2023-10-08 23:46:22,671 ----------------------------------------------------------------------------------------------------
2023-10-08 23:46:32,037 epoch 8 - iter 12/121 - loss 0.11148768 - time (sec): 9.36 - samples/sec: 262.38 - lr: 0.000049 - momentum: 0.000000
2023-10-08 23:46:41,192 epoch 8 - iter 24/121 - loss 0.11910156 - time (sec): 18.52 - samples/sec: 262.97 - lr: 0.000047 - momentum: 0.000000
2023-10-08 23:46:50,425 epoch 8 - iter 36/121 - loss 0.12923502 - time (sec): 27.75 - samples/sec: 261.49 - lr: 0.000046 - momentum: 0.000000
2023-10-08 23:46:59,623 epoch 8 - iter 48/121 - loss 0.12796695 - time (sec): 36.95 - samples/sec: 262.16 - lr: 0.000044 - momentum: 0.000000
2023-10-08 23:47:09,242 epoch 8 - iter 60/121 - loss 0.12207759 - time (sec): 46.57 - samples/sec: 263.01 - lr: 0.000042 - momentum: 0.000000
2023-10-08 23:47:18,465 epoch 8 - iter 72/121 - loss 0.11942277 - time (sec): 55.79 - samples/sec: 263.50 - lr: 0.000041 - momentum: 0.000000
2023-10-08 23:47:28,252 epoch 8 - iter 84/121 - loss 0.11435017 - time (sec): 65.58 - samples/sec: 263.90 - lr: 0.000039 - momentum: 0.000000
2023-10-08 23:47:38,022 epoch 8 - iter 96/121 - loss 0.11382818 - time (sec): 75.35 - samples/sec: 264.10 - lr: 0.000038 - momentum: 0.000000
2023-10-08 23:47:47,763 epoch 8 - iter 108/121 - loss 0.11198754 - time (sec): 85.09 - samples/sec: 263.20 - lr: 0.000036 - momentum: 0.000000
2023-10-08 23:47:56,645 epoch 8 - iter 120/121 - loss 0.11242524 - time (sec): 93.97 - samples/sec: 261.61 - lr: 0.000034 - momentum: 0.000000
2023-10-08 23:47:57,247 ----------------------------------------------------------------------------------------------------
2023-10-08 23:47:57,248 EPOCH 8 done: loss 0.1128 - lr: 0.000034
2023-10-08 23:48:03,852 DEV : loss 0.14283686876296997 - f1-score (micro avg)  0.8227
2023-10-08 23:48:03,858 ----------------------------------------------------------------------------------------------------
2023-10-08 23:48:13,211 epoch 9 - iter 12/121 - loss 0.10396974 - time (sec): 9.35 - samples/sec: 244.25 - lr: 0.000032 - momentum: 0.000000
2023-10-08 23:48:23,568 epoch 9 - iter 24/121 - loss 0.09710433 - time (sec): 19.71 - samples/sec: 261.11 - lr: 0.000031 - momentum: 0.000000
2023-10-08 23:48:32,954 epoch 9 - iter 36/121 - loss 0.09513445 - time (sec): 29.09 - samples/sec: 262.70 - lr: 0.000029 - momentum: 0.000000
2023-10-08 23:48:42,580 epoch 9 - iter 48/121 - loss 0.09058182 - time (sec): 38.72 - samples/sec: 261.16 - lr: 0.000028 - momentum: 0.000000
2023-10-08 23:48:52,022 epoch 9 - iter 60/121 - loss 0.09108372 - time (sec): 48.16 - samples/sec: 260.37 - lr: 0.000026 - momentum: 0.000000
2023-10-08 23:49:01,360 epoch 9 - iter 72/121 - loss 0.09190391 - time (sec): 57.50 - samples/sec: 261.56 - lr: 0.000024 - momentum: 0.000000
2023-10-08 23:49:10,170 epoch 9 - iter 84/121 - loss 0.09588537 - time (sec): 66.31 - samples/sec: 260.53 - lr: 0.000023 - momentum: 0.000000
2023-10-08 23:49:19,362 epoch 9 - iter 96/121 - loss 0.09700172 - time (sec): 75.50 - samples/sec: 259.33 - lr: 0.000021 - momentum: 0.000000
2023-10-08 23:49:28,627 epoch 9 - iter 108/121 - loss 0.09918562 - time (sec): 84.77 - samples/sec: 259.28 - lr: 0.000019 - momentum: 0.000000
2023-10-08 23:49:38,372 epoch 9 - iter 120/121 - loss 0.10076070 - time (sec): 94.51 - samples/sec: 260.41 - lr: 0.000018 - momentum: 0.000000
2023-10-08 23:49:38,893 ----------------------------------------------------------------------------------------------------
2023-10-08 23:49:38,893 EPOCH 9 done: loss 0.1003 - lr: 0.000018
2023-10-08 23:49:45,492 DEV : loss 0.1380492001771927 - f1-score (micro avg)  0.8354
2023-10-08 23:49:45,498 ----------------------------------------------------------------------------------------------------
2023-10-08 23:49:54,373 epoch 10 - iter 12/121 - loss 0.10280380 - time (sec): 8.87 - samples/sec: 260.00 - lr: 0.000016 - momentum: 0.000000
2023-10-08 23:50:03,805 epoch 10 - iter 24/121 - loss 0.09500688 - time (sec): 18.30 - samples/sec: 262.66 - lr: 0.000014 - momentum: 0.000000
2023-10-08 23:50:13,553 epoch 10 - iter 36/121 - loss 0.09699027 - time (sec): 28.05 - samples/sec: 263.07 - lr: 0.000013 - momentum: 0.000000
2023-10-08 23:50:23,171 epoch 10 - iter 48/121 - loss 0.09566332 - time (sec): 37.67 - samples/sec: 261.36 - lr: 0.000011 - momentum: 0.000000
2023-10-08 23:50:32,652 epoch 10 - iter 60/121 - loss 0.09384200 - time (sec): 47.15 - samples/sec: 262.26 - lr: 0.000009 - momentum: 0.000000
2023-10-08 23:50:42,319 epoch 10 - iter 72/121 - loss 0.09581268 - time (sec): 56.82 - samples/sec: 263.40 - lr: 0.000008 - momentum: 0.000000
2023-10-08 23:50:51,898 epoch 10 - iter 84/121 - loss 0.09664381 - time (sec): 66.40 - samples/sec: 263.82 - lr: 0.000006 - momentum: 0.000000
2023-10-08 23:51:00,278 epoch 10 - iter 96/121 - loss 0.09499539 - time (sec): 74.78 - samples/sec: 261.96 - lr: 0.000004 - momentum: 0.000000
2023-10-08 23:51:09,871 epoch 10 - iter 108/121 - loss 0.09536038 - time (sec): 84.37 - samples/sec: 260.50 - lr: 0.000003 - momentum: 0.000000
2023-10-08 23:51:19,558 epoch 10 - iter 120/121 - loss 0.09302861 - time (sec): 94.06 - samples/sec: 261.15 - lr: 0.000001 - momentum: 0.000000
2023-10-08 23:51:20,206 ----------------------------------------------------------------------------------------------------
2023-10-08 23:51:20,207 EPOCH 10 done: loss 0.0931 - lr: 0.000001
2023-10-08 23:51:26,721 DEV : loss 0.1366628259420395 - f1-score (micro avg)  0.8307
2023-10-08 23:51:27,596 ----------------------------------------------------------------------------------------------------
2023-10-08 23:51:27,597 Loading model from best epoch ...
2023-10-08 23:51:30,275 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-08 23:51:36,836 
Results:
- F-score (micro) 0.7862
- F-score (macro) 0.4704
- Accuracy 0.682

By class:
              precision    recall  f1-score   support

        pers     0.8069    0.8417    0.8239       139
       scope     0.7881    0.9225    0.8500       129
        work     0.6186    0.7500    0.6780        80
         loc     0.0000    0.0000    0.0000         9
        date     0.0000    0.0000    0.0000         3

   micro avg     0.7532    0.8222    0.7862       360
   macro avg     0.4427    0.5028    0.4704       360
weighted avg     0.7314    0.8222    0.7734       360

2023-10-08 23:51:36,836 ----------------------------------------------------------------------------------------------------