File size: 25,039 Bytes
88a6874
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
2023-10-08 23:16:47,704 ----------------------------------------------------------------------------------------------------
2023-10-08 23:16:47,705 Model: "SequenceTagger(
  (embeddings): ByT5Embeddings(
    (model): T5EncoderModel(
      (shared): Embedding(384, 1472)
      (encoder): T5Stack(
        (embed_tokens): Embedding(384, 1472)
        (block): ModuleList(
          (0): T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                  (relative_attention_bias): Embedding(32, 6)
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
          (1-11): 11 x T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
        )
        (final_layer_norm): T5LayerNorm()
        (dropout): Dropout(p=0.1, inplace=False)
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=1472, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-08 23:16:47,705 ----------------------------------------------------------------------------------------------------
2023-10-08 23:16:47,706 MultiCorpus: 966 train + 219 dev + 204 test sentences
 - NER_HIPE_2022 Corpus: 966 train + 219 dev + 204 test sentences - /app/.flair/datasets/ner_hipe_2022/v2.1/ajmc/fr/with_doc_seperator
2023-10-08 23:16:47,706 ----------------------------------------------------------------------------------------------------
2023-10-08 23:16:47,706 Train:  966 sentences
2023-10-08 23:16:47,706         (train_with_dev=False, train_with_test=False)
2023-10-08 23:16:47,706 ----------------------------------------------------------------------------------------------------
2023-10-08 23:16:47,706 Training Params:
2023-10-08 23:16:47,706  - learning_rate: "0.00016" 
2023-10-08 23:16:47,706  - mini_batch_size: "4"
2023-10-08 23:16:47,706  - max_epochs: "10"
2023-10-08 23:16:47,706  - shuffle: "True"
2023-10-08 23:16:47,706 ----------------------------------------------------------------------------------------------------
2023-10-08 23:16:47,706 Plugins:
2023-10-08 23:16:47,706  - TensorboardLogger
2023-10-08 23:16:47,706  - LinearScheduler | warmup_fraction: '0.1'
2023-10-08 23:16:47,706 ----------------------------------------------------------------------------------------------------
2023-10-08 23:16:47,706 Final evaluation on model from best epoch (best-model.pt)
2023-10-08 23:16:47,706  - metric: "('micro avg', 'f1-score')"
2023-10-08 23:16:47,707 ----------------------------------------------------------------------------------------------------
2023-10-08 23:16:47,707 Computation:
2023-10-08 23:16:47,707  - compute on device: cuda:0
2023-10-08 23:16:47,707  - embedding storage: none
2023-10-08 23:16:47,707 ----------------------------------------------------------------------------------------------------
2023-10-08 23:16:47,707 Model training base path: "hmbench-ajmc/fr-hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax-bs4-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-5"
2023-10-08 23:16:47,707 ----------------------------------------------------------------------------------------------------
2023-10-08 23:16:47,707 ----------------------------------------------------------------------------------------------------
2023-10-08 23:16:47,707 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-08 23:16:56,686 epoch 1 - iter 24/242 - loss 3.23915124 - time (sec): 8.98 - samples/sec: 255.50 - lr: 0.000015 - momentum: 0.000000
2023-10-08 23:17:06,554 epoch 1 - iter 48/242 - loss 3.22546569 - time (sec): 18.85 - samples/sec: 268.01 - lr: 0.000031 - momentum: 0.000000
2023-10-08 23:17:16,352 epoch 1 - iter 72/242 - loss 3.20262177 - time (sec): 28.64 - samples/sec: 269.51 - lr: 0.000047 - momentum: 0.000000
2023-10-08 23:17:25,768 epoch 1 - iter 96/242 - loss 3.15888174 - time (sec): 38.06 - samples/sec: 265.34 - lr: 0.000063 - momentum: 0.000000
2023-10-08 23:17:35,279 epoch 1 - iter 120/242 - loss 3.07509975 - time (sec): 47.57 - samples/sec: 266.72 - lr: 0.000079 - momentum: 0.000000
2023-10-08 23:17:44,356 epoch 1 - iter 144/242 - loss 2.97812763 - time (sec): 56.65 - samples/sec: 264.90 - lr: 0.000095 - momentum: 0.000000
2023-10-08 23:17:53,600 epoch 1 - iter 168/242 - loss 2.86385060 - time (sec): 65.89 - samples/sec: 266.80 - lr: 0.000110 - momentum: 0.000000
2023-10-08 23:18:02,645 epoch 1 - iter 192/242 - loss 2.75171464 - time (sec): 74.94 - samples/sec: 265.69 - lr: 0.000126 - momentum: 0.000000
2023-10-08 23:18:11,837 epoch 1 - iter 216/242 - loss 2.63706419 - time (sec): 84.13 - samples/sec: 263.61 - lr: 0.000142 - momentum: 0.000000
2023-10-08 23:18:21,299 epoch 1 - iter 240/242 - loss 2.51038471 - time (sec): 93.59 - samples/sec: 262.75 - lr: 0.000158 - momentum: 0.000000
2023-10-08 23:18:21,957 ----------------------------------------------------------------------------------------------------
2023-10-08 23:18:21,957 EPOCH 1 done: loss 2.5016 - lr: 0.000158
2023-10-08 23:18:27,818 DEV : loss 1.079971194267273 - f1-score (micro avg)  0.0
2023-10-08 23:18:27,824 ----------------------------------------------------------------------------------------------------
2023-10-08 23:18:37,431 epoch 2 - iter 24/242 - loss 1.01756734 - time (sec): 9.61 - samples/sec: 257.67 - lr: 0.000158 - momentum: 0.000000
2023-10-08 23:18:47,040 epoch 2 - iter 48/242 - loss 0.84586341 - time (sec): 19.21 - samples/sec: 262.99 - lr: 0.000157 - momentum: 0.000000
2023-10-08 23:18:55,942 epoch 2 - iter 72/242 - loss 0.80030243 - time (sec): 28.12 - samples/sec: 258.18 - lr: 0.000155 - momentum: 0.000000
2023-10-08 23:19:04,952 epoch 2 - iter 96/242 - loss 0.73412891 - time (sec): 37.13 - samples/sec: 257.47 - lr: 0.000153 - momentum: 0.000000
2023-10-08 23:19:14,107 epoch 2 - iter 120/242 - loss 0.70354425 - time (sec): 46.28 - samples/sec: 256.80 - lr: 0.000151 - momentum: 0.000000
2023-10-08 23:19:23,347 epoch 2 - iter 144/242 - loss 0.69760704 - time (sec): 55.52 - samples/sec: 256.25 - lr: 0.000150 - momentum: 0.000000
2023-10-08 23:19:32,249 epoch 2 - iter 168/242 - loss 0.68240983 - time (sec): 64.42 - samples/sec: 255.44 - lr: 0.000148 - momentum: 0.000000
2023-10-08 23:19:41,636 epoch 2 - iter 192/242 - loss 0.65096524 - time (sec): 73.81 - samples/sec: 257.19 - lr: 0.000146 - momentum: 0.000000
2023-10-08 23:19:51,662 epoch 2 - iter 216/242 - loss 0.62153433 - time (sec): 83.84 - samples/sec: 259.32 - lr: 0.000144 - momentum: 0.000000
2023-10-08 23:20:01,577 epoch 2 - iter 240/242 - loss 0.59708481 - time (sec): 93.75 - samples/sec: 262.60 - lr: 0.000142 - momentum: 0.000000
2023-10-08 23:20:02,119 ----------------------------------------------------------------------------------------------------
2023-10-08 23:20:02,119 EPOCH 2 done: loss 0.5954 - lr: 0.000142
2023-10-08 23:20:07,885 DEV : loss 0.36621710658073425 - f1-score (micro avg)  0.185
2023-10-08 23:20:07,891 saving best model
2023-10-08 23:20:08,756 ----------------------------------------------------------------------------------------------------
2023-10-08 23:20:18,050 epoch 3 - iter 24/242 - loss 0.35950188 - time (sec): 9.29 - samples/sec: 252.16 - lr: 0.000141 - momentum: 0.000000
2023-10-08 23:20:27,966 epoch 3 - iter 48/242 - loss 0.29823828 - time (sec): 19.21 - samples/sec: 264.79 - lr: 0.000139 - momentum: 0.000000
2023-10-08 23:20:37,393 epoch 3 - iter 72/242 - loss 0.29752598 - time (sec): 28.63 - samples/sec: 263.46 - lr: 0.000137 - momentum: 0.000000
2023-10-08 23:20:46,914 epoch 3 - iter 96/242 - loss 0.29599846 - time (sec): 38.16 - samples/sec: 264.78 - lr: 0.000135 - momentum: 0.000000
2023-10-08 23:20:56,382 epoch 3 - iter 120/242 - loss 0.29052825 - time (sec): 47.62 - samples/sec: 264.84 - lr: 0.000134 - momentum: 0.000000
2023-10-08 23:21:05,437 epoch 3 - iter 144/242 - loss 0.29051562 - time (sec): 56.68 - samples/sec: 262.94 - lr: 0.000132 - momentum: 0.000000
2023-10-08 23:21:14,707 epoch 3 - iter 168/242 - loss 0.28108395 - time (sec): 65.95 - samples/sec: 261.72 - lr: 0.000130 - momentum: 0.000000
2023-10-08 23:21:24,422 epoch 3 - iter 192/242 - loss 0.27070285 - time (sec): 75.66 - samples/sec: 262.71 - lr: 0.000128 - momentum: 0.000000
2023-10-08 23:21:33,244 epoch 3 - iter 216/242 - loss 0.26836798 - time (sec): 84.49 - samples/sec: 261.35 - lr: 0.000126 - momentum: 0.000000
2023-10-08 23:21:42,731 epoch 3 - iter 240/242 - loss 0.26309788 - time (sec): 93.97 - samples/sec: 262.21 - lr: 0.000125 - momentum: 0.000000
2023-10-08 23:21:43,283 ----------------------------------------------------------------------------------------------------
2023-10-08 23:21:43,283 EPOCH 3 done: loss 0.2626 - lr: 0.000125
2023-10-08 23:21:49,085 DEV : loss 0.20921547710895538 - f1-score (micro avg)  0.6216
2023-10-08 23:21:49,091 saving best model
2023-10-08 23:21:49,986 ----------------------------------------------------------------------------------------------------
2023-10-08 23:21:59,848 epoch 4 - iter 24/242 - loss 0.19937278 - time (sec): 9.86 - samples/sec: 275.96 - lr: 0.000123 - momentum: 0.000000
2023-10-08 23:22:09,820 epoch 4 - iter 48/242 - loss 0.20959392 - time (sec): 19.83 - samples/sec: 273.55 - lr: 0.000121 - momentum: 0.000000
2023-10-08 23:22:19,075 epoch 4 - iter 72/242 - loss 0.18266325 - time (sec): 29.09 - samples/sec: 266.85 - lr: 0.000119 - momentum: 0.000000
2023-10-08 23:22:29,185 epoch 4 - iter 96/242 - loss 0.17559324 - time (sec): 39.20 - samples/sec: 264.48 - lr: 0.000118 - momentum: 0.000000
2023-10-08 23:22:38,943 epoch 4 - iter 120/242 - loss 0.17056546 - time (sec): 48.96 - samples/sec: 263.67 - lr: 0.000116 - momentum: 0.000000
2023-10-08 23:22:48,102 epoch 4 - iter 144/242 - loss 0.17146465 - time (sec): 58.11 - samples/sec: 261.79 - lr: 0.000114 - momentum: 0.000000
2023-10-08 23:22:56,854 epoch 4 - iter 168/242 - loss 0.16628588 - time (sec): 66.87 - samples/sec: 259.95 - lr: 0.000112 - momentum: 0.000000
2023-10-08 23:23:06,396 epoch 4 - iter 192/242 - loss 0.16339488 - time (sec): 76.41 - samples/sec: 260.14 - lr: 0.000110 - momentum: 0.000000
2023-10-08 23:23:15,662 epoch 4 - iter 216/242 - loss 0.15709292 - time (sec): 85.67 - samples/sec: 259.09 - lr: 0.000109 - momentum: 0.000000
2023-10-08 23:23:24,937 epoch 4 - iter 240/242 - loss 0.15254959 - time (sec): 94.95 - samples/sec: 258.70 - lr: 0.000107 - momentum: 0.000000
2023-10-08 23:23:25,605 ----------------------------------------------------------------------------------------------------
2023-10-08 23:23:25,605 EPOCH 4 done: loss 0.1526 - lr: 0.000107
2023-10-08 23:23:31,733 DEV : loss 0.1503736525774002 - f1-score (micro avg)  0.8296
2023-10-08 23:23:31,738 saving best model
2023-10-08 23:23:32,825 ----------------------------------------------------------------------------------------------------
2023-10-08 23:23:42,613 epoch 5 - iter 24/242 - loss 0.13336685 - time (sec): 9.79 - samples/sec: 260.25 - lr: 0.000105 - momentum: 0.000000
2023-10-08 23:23:52,065 epoch 5 - iter 48/242 - loss 0.10805870 - time (sec): 19.24 - samples/sec: 253.46 - lr: 0.000103 - momentum: 0.000000
2023-10-08 23:24:01,993 epoch 5 - iter 72/242 - loss 0.10522684 - time (sec): 29.17 - samples/sec: 251.14 - lr: 0.000102 - momentum: 0.000000
2023-10-08 23:24:11,456 epoch 5 - iter 96/242 - loss 0.09751095 - time (sec): 38.63 - samples/sec: 250.61 - lr: 0.000100 - momentum: 0.000000
2023-10-08 23:24:21,194 epoch 5 - iter 120/242 - loss 0.10180240 - time (sec): 48.37 - samples/sec: 250.50 - lr: 0.000098 - momentum: 0.000000
2023-10-08 23:24:30,785 epoch 5 - iter 144/242 - loss 0.10278967 - time (sec): 57.96 - samples/sec: 248.95 - lr: 0.000096 - momentum: 0.000000
2023-10-08 23:24:40,680 epoch 5 - iter 168/242 - loss 0.10716189 - time (sec): 67.85 - samples/sec: 248.36 - lr: 0.000094 - momentum: 0.000000
2023-10-08 23:24:51,090 epoch 5 - iter 192/242 - loss 0.10576312 - time (sec): 78.26 - samples/sec: 249.02 - lr: 0.000093 - momentum: 0.000000
2023-10-08 23:25:01,502 epoch 5 - iter 216/242 - loss 0.10513146 - time (sec): 88.68 - samples/sec: 249.18 - lr: 0.000091 - momentum: 0.000000
2023-10-08 23:25:11,442 epoch 5 - iter 240/242 - loss 0.10084590 - time (sec): 98.62 - samples/sec: 248.70 - lr: 0.000089 - momentum: 0.000000
2023-10-08 23:25:12,224 ----------------------------------------------------------------------------------------------------
2023-10-08 23:25:12,225 EPOCH 5 done: loss 0.1003 - lr: 0.000089
2023-10-08 23:25:18,599 DEV : loss 0.13417156040668488 - f1-score (micro avg)  0.8175
2023-10-08 23:25:18,604 ----------------------------------------------------------------------------------------------------
2023-10-08 23:25:28,360 epoch 6 - iter 24/242 - loss 0.08491531 - time (sec): 9.75 - samples/sec: 251.08 - lr: 0.000087 - momentum: 0.000000
2023-10-08 23:25:38,991 epoch 6 - iter 48/242 - loss 0.07418088 - time (sec): 20.39 - samples/sec: 254.54 - lr: 0.000086 - momentum: 0.000000
2023-10-08 23:25:49,035 epoch 6 - iter 72/242 - loss 0.07920203 - time (sec): 30.43 - samples/sec: 251.73 - lr: 0.000084 - momentum: 0.000000
2023-10-08 23:25:59,078 epoch 6 - iter 96/242 - loss 0.07319054 - time (sec): 40.47 - samples/sec: 248.62 - lr: 0.000082 - momentum: 0.000000
2023-10-08 23:26:09,795 epoch 6 - iter 120/242 - loss 0.06921767 - time (sec): 51.19 - samples/sec: 247.28 - lr: 0.000080 - momentum: 0.000000
2023-10-08 23:26:19,241 epoch 6 - iter 144/242 - loss 0.06870799 - time (sec): 60.64 - samples/sec: 250.68 - lr: 0.000078 - momentum: 0.000000
2023-10-08 23:26:29,070 epoch 6 - iter 168/242 - loss 0.06861629 - time (sec): 70.46 - samples/sec: 252.04 - lr: 0.000077 - momentum: 0.000000
2023-10-08 23:26:38,252 epoch 6 - iter 192/242 - loss 0.06870233 - time (sec): 79.65 - samples/sec: 252.53 - lr: 0.000075 - momentum: 0.000000
2023-10-08 23:26:47,202 epoch 6 - iter 216/242 - loss 0.06991614 - time (sec): 88.60 - samples/sec: 251.46 - lr: 0.000073 - momentum: 0.000000
2023-10-08 23:26:56,516 epoch 6 - iter 240/242 - loss 0.06934364 - time (sec): 97.91 - samples/sec: 251.51 - lr: 0.000071 - momentum: 0.000000
2023-10-08 23:26:57,042 ----------------------------------------------------------------------------------------------------
2023-10-08 23:26:57,043 EPOCH 6 done: loss 0.0693 - lr: 0.000071
2023-10-08 23:27:02,928 DEV : loss 0.132174551486969 - f1-score (micro avg)  0.8375
2023-10-08 23:27:02,934 saving best model
2023-10-08 23:27:03,847 ----------------------------------------------------------------------------------------------------
2023-10-08 23:27:13,106 epoch 7 - iter 24/242 - loss 0.07042745 - time (sec): 9.26 - samples/sec: 254.06 - lr: 0.000070 - momentum: 0.000000
2023-10-08 23:27:22,314 epoch 7 - iter 48/242 - loss 0.07049752 - time (sec): 18.47 - samples/sec: 253.00 - lr: 0.000068 - momentum: 0.000000
2023-10-08 23:27:31,268 epoch 7 - iter 72/242 - loss 0.06167805 - time (sec): 27.42 - samples/sec: 252.88 - lr: 0.000066 - momentum: 0.000000
2023-10-08 23:27:41,041 epoch 7 - iter 96/242 - loss 0.05608674 - time (sec): 37.19 - samples/sec: 257.55 - lr: 0.000064 - momentum: 0.000000
2023-10-08 23:27:50,332 epoch 7 - iter 120/242 - loss 0.05525729 - time (sec): 46.48 - samples/sec: 259.79 - lr: 0.000062 - momentum: 0.000000
2023-10-08 23:27:59,952 epoch 7 - iter 144/242 - loss 0.04968835 - time (sec): 56.10 - samples/sec: 259.52 - lr: 0.000061 - momentum: 0.000000
2023-10-08 23:28:09,362 epoch 7 - iter 168/242 - loss 0.04954527 - time (sec): 65.51 - samples/sec: 258.72 - lr: 0.000059 - momentum: 0.000000
2023-10-08 23:28:18,978 epoch 7 - iter 192/242 - loss 0.05136589 - time (sec): 75.13 - samples/sec: 260.08 - lr: 0.000057 - momentum: 0.000000
2023-10-08 23:28:28,800 epoch 7 - iter 216/242 - loss 0.05068956 - time (sec): 84.95 - samples/sec: 260.35 - lr: 0.000055 - momentum: 0.000000
2023-10-08 23:28:38,041 epoch 7 - iter 240/242 - loss 0.05158986 - time (sec): 94.19 - samples/sec: 260.80 - lr: 0.000054 - momentum: 0.000000
2023-10-08 23:28:38,662 ----------------------------------------------------------------------------------------------------
2023-10-08 23:28:38,663 EPOCH 7 done: loss 0.0513 - lr: 0.000054
2023-10-08 23:28:44,423 DEV : loss 0.13093389570713043 - f1-score (micro avg)  0.8201
2023-10-08 23:28:44,429 ----------------------------------------------------------------------------------------------------
2023-10-08 23:28:53,805 epoch 8 - iter 24/242 - loss 0.03824659 - time (sec): 9.37 - samples/sec: 262.09 - lr: 0.000052 - momentum: 0.000000
2023-10-08 23:29:03,033 epoch 8 - iter 48/242 - loss 0.04184396 - time (sec): 18.60 - samples/sec: 261.79 - lr: 0.000050 - momentum: 0.000000
2023-10-08 23:29:12,274 epoch 8 - iter 72/242 - loss 0.05415154 - time (sec): 27.84 - samples/sec: 260.63 - lr: 0.000048 - momentum: 0.000000
2023-10-08 23:29:21,478 epoch 8 - iter 96/242 - loss 0.04767935 - time (sec): 37.05 - samples/sec: 261.47 - lr: 0.000046 - momentum: 0.000000
2023-10-08 23:29:31,081 epoch 8 - iter 120/242 - loss 0.04619751 - time (sec): 46.65 - samples/sec: 262.54 - lr: 0.000045 - momentum: 0.000000
2023-10-08 23:29:40,300 epoch 8 - iter 144/242 - loss 0.04396737 - time (sec): 55.87 - samples/sec: 263.13 - lr: 0.000043 - momentum: 0.000000
2023-10-08 23:29:50,002 epoch 8 - iter 168/242 - loss 0.04174366 - time (sec): 65.57 - samples/sec: 263.92 - lr: 0.000041 - momentum: 0.000000
2023-10-08 23:29:59,702 epoch 8 - iter 192/242 - loss 0.04237328 - time (sec): 75.27 - samples/sec: 264.37 - lr: 0.000039 - momentum: 0.000000
2023-10-08 23:30:09,215 epoch 8 - iter 216/242 - loss 0.03993499 - time (sec): 84.79 - samples/sec: 264.15 - lr: 0.000038 - momentum: 0.000000
2023-10-08 23:30:18,111 epoch 8 - iter 240/242 - loss 0.04045820 - time (sec): 93.68 - samples/sec: 262.42 - lr: 0.000036 - momentum: 0.000000
2023-10-08 23:30:18,731 ----------------------------------------------------------------------------------------------------
2023-10-08 23:30:18,731 EPOCH 8 done: loss 0.0405 - lr: 0.000036
2023-10-08 23:30:24,546 DEV : loss 0.14306265115737915 - f1-score (micro avg)  0.8296
2023-10-08 23:30:24,552 ----------------------------------------------------------------------------------------------------
2023-10-08 23:30:34,013 epoch 9 - iter 24/242 - loss 0.03298364 - time (sec): 9.46 - samples/sec: 241.43 - lr: 0.000034 - momentum: 0.000000
2023-10-08 23:30:44,240 epoch 9 - iter 48/242 - loss 0.03143181 - time (sec): 19.69 - samples/sec: 261.40 - lr: 0.000032 - momentum: 0.000000
2023-10-08 23:30:53,583 epoch 9 - iter 72/242 - loss 0.03109793 - time (sec): 29.03 - samples/sec: 263.28 - lr: 0.000030 - momentum: 0.000000
2023-10-08 23:31:03,165 epoch 9 - iter 96/242 - loss 0.02776311 - time (sec): 38.61 - samples/sec: 261.89 - lr: 0.000029 - momentum: 0.000000
2023-10-08 23:31:12,620 epoch 9 - iter 120/242 - loss 0.02893952 - time (sec): 48.07 - samples/sec: 260.89 - lr: 0.000027 - momentum: 0.000000
2023-10-08 23:31:22,035 epoch 9 - iter 144/242 - loss 0.02808601 - time (sec): 57.48 - samples/sec: 261.65 - lr: 0.000025 - momentum: 0.000000
2023-10-08 23:31:31,002 epoch 9 - iter 168/242 - loss 0.03101637 - time (sec): 66.45 - samples/sec: 259.99 - lr: 0.000023 - momentum: 0.000000
2023-10-08 23:31:40,261 epoch 9 - iter 192/242 - loss 0.03087273 - time (sec): 75.71 - samples/sec: 258.62 - lr: 0.000022 - momentum: 0.000000
2023-10-08 23:31:49,537 epoch 9 - iter 216/242 - loss 0.03304254 - time (sec): 84.98 - samples/sec: 258.63 - lr: 0.000020 - momentum: 0.000000
2023-10-08 23:31:59,418 epoch 9 - iter 240/242 - loss 0.03419530 - time (sec): 94.87 - samples/sec: 259.44 - lr: 0.000018 - momentum: 0.000000
2023-10-08 23:31:59,968 ----------------------------------------------------------------------------------------------------
2023-10-08 23:31:59,969 EPOCH 9 done: loss 0.0340 - lr: 0.000018
2023-10-08 23:32:05,952 DEV : loss 0.15046241879463196 - f1-score (micro avg)  0.812
2023-10-08 23:32:05,958 ----------------------------------------------------------------------------------------------------
2023-10-08 23:32:15,038 epoch 10 - iter 24/242 - loss 0.03676048 - time (sec): 9.08 - samples/sec: 254.11 - lr: 0.000016 - momentum: 0.000000
2023-10-08 23:32:24,674 epoch 10 - iter 48/242 - loss 0.02715581 - time (sec): 18.71 - samples/sec: 256.92 - lr: 0.000014 - momentum: 0.000000
2023-10-08 23:32:34,672 epoch 10 - iter 72/242 - loss 0.03106681 - time (sec): 28.71 - samples/sec: 257.03 - lr: 0.000013 - momentum: 0.000000
2023-10-08 23:32:44,579 epoch 10 - iter 96/242 - loss 0.03478316 - time (sec): 38.62 - samples/sec: 254.95 - lr: 0.000011 - momentum: 0.000000
2023-10-08 23:32:54,405 epoch 10 - iter 120/242 - loss 0.03385505 - time (sec): 48.44 - samples/sec: 255.26 - lr: 0.000009 - momentum: 0.000000
2023-10-08 23:33:04,455 epoch 10 - iter 144/242 - loss 0.03265163 - time (sec): 58.50 - samples/sec: 255.85 - lr: 0.000007 - momentum: 0.000000
2023-10-08 23:33:14,449 epoch 10 - iter 168/242 - loss 0.03299652 - time (sec): 68.49 - samples/sec: 255.76 - lr: 0.000006 - momentum: 0.000000
2023-10-08 23:33:23,340 epoch 10 - iter 192/242 - loss 0.03125589 - time (sec): 77.38 - samples/sec: 253.15 - lr: 0.000004 - momentum: 0.000000
2023-10-08 23:33:33,278 epoch 10 - iter 216/242 - loss 0.03156172 - time (sec): 87.32 - samples/sec: 251.71 - lr: 0.000002 - momentum: 0.000000
2023-10-08 23:33:43,528 epoch 10 - iter 240/242 - loss 0.03115999 - time (sec): 97.57 - samples/sec: 251.75 - lr: 0.000000 - momentum: 0.000000
2023-10-08 23:33:44,227 ----------------------------------------------------------------------------------------------------
2023-10-08 23:33:44,228 EPOCH 10 done: loss 0.0312 - lr: 0.000000
2023-10-08 23:33:50,694 DEV : loss 0.15445925295352936 - f1-score (micro avg)  0.8175
2023-10-08 23:33:51,726 ----------------------------------------------------------------------------------------------------
2023-10-08 23:33:51,727 Loading model from best epoch ...
2023-10-08 23:33:54,397 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-08 23:34:00,723 
Results:
- F-score (micro) 0.806
- F-score (macro) 0.4034
- Accuracy 0.6956

By class:
              precision    recall  f1-score   support

        pers     0.8369    0.8489    0.8429       139
       scope     0.8417    0.9070    0.8731       129
        work     0.6458    0.7750    0.7045        80
         loc     0.0000    0.0000    0.0000         9
        date     0.0000    0.0000    0.0000         3
      object     0.0000    0.0000    0.0000         0

   micro avg     0.7878    0.8250    0.8060       360
   macro avg     0.3874    0.4218    0.4034       360
weighted avg     0.7683    0.8250    0.7949       360

2023-10-08 23:34:00,723 ----------------------------------------------------------------------------------------------------