File size: 25,039 Bytes
88a6874 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
2023-10-08 23:16:47,704 ----------------------------------------------------------------------------------------------------
2023-10-08 23:16:47,705 Model: "SequenceTagger(
(embeddings): ByT5Embeddings(
(model): T5EncoderModel(
(shared): Embedding(384, 1472)
(encoder): T5Stack(
(embed_tokens): Embedding(384, 1472)
(block): ModuleList(
(0): T5Block(
(layer): ModuleList(
(0): T5LayerSelfAttention(
(SelfAttention): T5Attention(
(q): Linear(in_features=1472, out_features=384, bias=False)
(k): Linear(in_features=1472, out_features=384, bias=False)
(v): Linear(in_features=1472, out_features=384, bias=False)
(o): Linear(in_features=384, out_features=1472, bias=False)
(relative_attention_bias): Embedding(32, 6)
)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)
)
(1): T5LayerFF(
(DenseReluDense): T5DenseGatedActDense(
(wi_0): Linear(in_features=1472, out_features=3584, bias=False)
(wi_1): Linear(in_features=1472, out_features=3584, bias=False)
(wo): Linear(in_features=3584, out_features=1472, bias=False)
(dropout): Dropout(p=0.1, inplace=False)
(act): NewGELUActivation()
)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
(1-11): 11 x T5Block(
(layer): ModuleList(
(0): T5LayerSelfAttention(
(SelfAttention): T5Attention(
(q): Linear(in_features=1472, out_features=384, bias=False)
(k): Linear(in_features=1472, out_features=384, bias=False)
(v): Linear(in_features=1472, out_features=384, bias=False)
(o): Linear(in_features=384, out_features=1472, bias=False)
)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)
)
(1): T5LayerFF(
(DenseReluDense): T5DenseGatedActDense(
(wi_0): Linear(in_features=1472, out_features=3584, bias=False)
(wi_1): Linear(in_features=1472, out_features=3584, bias=False)
(wo): Linear(in_features=3584, out_features=1472, bias=False)
(dropout): Dropout(p=0.1, inplace=False)
(act): NewGELUActivation()
)
(layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(final_layer_norm): T5LayerNorm()
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=1472, out_features=25, bias=True)
(loss_function): CrossEntropyLoss()
)"
2023-10-08 23:16:47,705 ----------------------------------------------------------------------------------------------------
2023-10-08 23:16:47,706 MultiCorpus: 966 train + 219 dev + 204 test sentences
- NER_HIPE_2022 Corpus: 966 train + 219 dev + 204 test sentences - /app/.flair/datasets/ner_hipe_2022/v2.1/ajmc/fr/with_doc_seperator
2023-10-08 23:16:47,706 ----------------------------------------------------------------------------------------------------
2023-10-08 23:16:47,706 Train: 966 sentences
2023-10-08 23:16:47,706 (train_with_dev=False, train_with_test=False)
2023-10-08 23:16:47,706 ----------------------------------------------------------------------------------------------------
2023-10-08 23:16:47,706 Training Params:
2023-10-08 23:16:47,706 - learning_rate: "0.00016"
2023-10-08 23:16:47,706 - mini_batch_size: "4"
2023-10-08 23:16:47,706 - max_epochs: "10"
2023-10-08 23:16:47,706 - shuffle: "True"
2023-10-08 23:16:47,706 ----------------------------------------------------------------------------------------------------
2023-10-08 23:16:47,706 Plugins:
2023-10-08 23:16:47,706 - TensorboardLogger
2023-10-08 23:16:47,706 - LinearScheduler | warmup_fraction: '0.1'
2023-10-08 23:16:47,706 ----------------------------------------------------------------------------------------------------
2023-10-08 23:16:47,706 Final evaluation on model from best epoch (best-model.pt)
2023-10-08 23:16:47,706 - metric: "('micro avg', 'f1-score')"
2023-10-08 23:16:47,707 ----------------------------------------------------------------------------------------------------
2023-10-08 23:16:47,707 Computation:
2023-10-08 23:16:47,707 - compute on device: cuda:0
2023-10-08 23:16:47,707 - embedding storage: none
2023-10-08 23:16:47,707 ----------------------------------------------------------------------------------------------------
2023-10-08 23:16:47,707 Model training base path: "hmbench-ajmc/fr-hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax-bs4-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-5"
2023-10-08 23:16:47,707 ----------------------------------------------------------------------------------------------------
2023-10-08 23:16:47,707 ----------------------------------------------------------------------------------------------------
2023-10-08 23:16:47,707 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-08 23:16:56,686 epoch 1 - iter 24/242 - loss 3.23915124 - time (sec): 8.98 - samples/sec: 255.50 - lr: 0.000015 - momentum: 0.000000
2023-10-08 23:17:06,554 epoch 1 - iter 48/242 - loss 3.22546569 - time (sec): 18.85 - samples/sec: 268.01 - lr: 0.000031 - momentum: 0.000000
2023-10-08 23:17:16,352 epoch 1 - iter 72/242 - loss 3.20262177 - time (sec): 28.64 - samples/sec: 269.51 - lr: 0.000047 - momentum: 0.000000
2023-10-08 23:17:25,768 epoch 1 - iter 96/242 - loss 3.15888174 - time (sec): 38.06 - samples/sec: 265.34 - lr: 0.000063 - momentum: 0.000000
2023-10-08 23:17:35,279 epoch 1 - iter 120/242 - loss 3.07509975 - time (sec): 47.57 - samples/sec: 266.72 - lr: 0.000079 - momentum: 0.000000
2023-10-08 23:17:44,356 epoch 1 - iter 144/242 - loss 2.97812763 - time (sec): 56.65 - samples/sec: 264.90 - lr: 0.000095 - momentum: 0.000000
2023-10-08 23:17:53,600 epoch 1 - iter 168/242 - loss 2.86385060 - time (sec): 65.89 - samples/sec: 266.80 - lr: 0.000110 - momentum: 0.000000
2023-10-08 23:18:02,645 epoch 1 - iter 192/242 - loss 2.75171464 - time (sec): 74.94 - samples/sec: 265.69 - lr: 0.000126 - momentum: 0.000000
2023-10-08 23:18:11,837 epoch 1 - iter 216/242 - loss 2.63706419 - time (sec): 84.13 - samples/sec: 263.61 - lr: 0.000142 - momentum: 0.000000
2023-10-08 23:18:21,299 epoch 1 - iter 240/242 - loss 2.51038471 - time (sec): 93.59 - samples/sec: 262.75 - lr: 0.000158 - momentum: 0.000000
2023-10-08 23:18:21,957 ----------------------------------------------------------------------------------------------------
2023-10-08 23:18:21,957 EPOCH 1 done: loss 2.5016 - lr: 0.000158
2023-10-08 23:18:27,818 DEV : loss 1.079971194267273 - f1-score (micro avg) 0.0
2023-10-08 23:18:27,824 ----------------------------------------------------------------------------------------------------
2023-10-08 23:18:37,431 epoch 2 - iter 24/242 - loss 1.01756734 - time (sec): 9.61 - samples/sec: 257.67 - lr: 0.000158 - momentum: 0.000000
2023-10-08 23:18:47,040 epoch 2 - iter 48/242 - loss 0.84586341 - time (sec): 19.21 - samples/sec: 262.99 - lr: 0.000157 - momentum: 0.000000
2023-10-08 23:18:55,942 epoch 2 - iter 72/242 - loss 0.80030243 - time (sec): 28.12 - samples/sec: 258.18 - lr: 0.000155 - momentum: 0.000000
2023-10-08 23:19:04,952 epoch 2 - iter 96/242 - loss 0.73412891 - time (sec): 37.13 - samples/sec: 257.47 - lr: 0.000153 - momentum: 0.000000
2023-10-08 23:19:14,107 epoch 2 - iter 120/242 - loss 0.70354425 - time (sec): 46.28 - samples/sec: 256.80 - lr: 0.000151 - momentum: 0.000000
2023-10-08 23:19:23,347 epoch 2 - iter 144/242 - loss 0.69760704 - time (sec): 55.52 - samples/sec: 256.25 - lr: 0.000150 - momentum: 0.000000
2023-10-08 23:19:32,249 epoch 2 - iter 168/242 - loss 0.68240983 - time (sec): 64.42 - samples/sec: 255.44 - lr: 0.000148 - momentum: 0.000000
2023-10-08 23:19:41,636 epoch 2 - iter 192/242 - loss 0.65096524 - time (sec): 73.81 - samples/sec: 257.19 - lr: 0.000146 - momentum: 0.000000
2023-10-08 23:19:51,662 epoch 2 - iter 216/242 - loss 0.62153433 - time (sec): 83.84 - samples/sec: 259.32 - lr: 0.000144 - momentum: 0.000000
2023-10-08 23:20:01,577 epoch 2 - iter 240/242 - loss 0.59708481 - time (sec): 93.75 - samples/sec: 262.60 - lr: 0.000142 - momentum: 0.000000
2023-10-08 23:20:02,119 ----------------------------------------------------------------------------------------------------
2023-10-08 23:20:02,119 EPOCH 2 done: loss 0.5954 - lr: 0.000142
2023-10-08 23:20:07,885 DEV : loss 0.36621710658073425 - f1-score (micro avg) 0.185
2023-10-08 23:20:07,891 saving best model
2023-10-08 23:20:08,756 ----------------------------------------------------------------------------------------------------
2023-10-08 23:20:18,050 epoch 3 - iter 24/242 - loss 0.35950188 - time (sec): 9.29 - samples/sec: 252.16 - lr: 0.000141 - momentum: 0.000000
2023-10-08 23:20:27,966 epoch 3 - iter 48/242 - loss 0.29823828 - time (sec): 19.21 - samples/sec: 264.79 - lr: 0.000139 - momentum: 0.000000
2023-10-08 23:20:37,393 epoch 3 - iter 72/242 - loss 0.29752598 - time (sec): 28.63 - samples/sec: 263.46 - lr: 0.000137 - momentum: 0.000000
2023-10-08 23:20:46,914 epoch 3 - iter 96/242 - loss 0.29599846 - time (sec): 38.16 - samples/sec: 264.78 - lr: 0.000135 - momentum: 0.000000
2023-10-08 23:20:56,382 epoch 3 - iter 120/242 - loss 0.29052825 - time (sec): 47.62 - samples/sec: 264.84 - lr: 0.000134 - momentum: 0.000000
2023-10-08 23:21:05,437 epoch 3 - iter 144/242 - loss 0.29051562 - time (sec): 56.68 - samples/sec: 262.94 - lr: 0.000132 - momentum: 0.000000
2023-10-08 23:21:14,707 epoch 3 - iter 168/242 - loss 0.28108395 - time (sec): 65.95 - samples/sec: 261.72 - lr: 0.000130 - momentum: 0.000000
2023-10-08 23:21:24,422 epoch 3 - iter 192/242 - loss 0.27070285 - time (sec): 75.66 - samples/sec: 262.71 - lr: 0.000128 - momentum: 0.000000
2023-10-08 23:21:33,244 epoch 3 - iter 216/242 - loss 0.26836798 - time (sec): 84.49 - samples/sec: 261.35 - lr: 0.000126 - momentum: 0.000000
2023-10-08 23:21:42,731 epoch 3 - iter 240/242 - loss 0.26309788 - time (sec): 93.97 - samples/sec: 262.21 - lr: 0.000125 - momentum: 0.000000
2023-10-08 23:21:43,283 ----------------------------------------------------------------------------------------------------
2023-10-08 23:21:43,283 EPOCH 3 done: loss 0.2626 - lr: 0.000125
2023-10-08 23:21:49,085 DEV : loss 0.20921547710895538 - f1-score (micro avg) 0.6216
2023-10-08 23:21:49,091 saving best model
2023-10-08 23:21:49,986 ----------------------------------------------------------------------------------------------------
2023-10-08 23:21:59,848 epoch 4 - iter 24/242 - loss 0.19937278 - time (sec): 9.86 - samples/sec: 275.96 - lr: 0.000123 - momentum: 0.000000
2023-10-08 23:22:09,820 epoch 4 - iter 48/242 - loss 0.20959392 - time (sec): 19.83 - samples/sec: 273.55 - lr: 0.000121 - momentum: 0.000000
2023-10-08 23:22:19,075 epoch 4 - iter 72/242 - loss 0.18266325 - time (sec): 29.09 - samples/sec: 266.85 - lr: 0.000119 - momentum: 0.000000
2023-10-08 23:22:29,185 epoch 4 - iter 96/242 - loss 0.17559324 - time (sec): 39.20 - samples/sec: 264.48 - lr: 0.000118 - momentum: 0.000000
2023-10-08 23:22:38,943 epoch 4 - iter 120/242 - loss 0.17056546 - time (sec): 48.96 - samples/sec: 263.67 - lr: 0.000116 - momentum: 0.000000
2023-10-08 23:22:48,102 epoch 4 - iter 144/242 - loss 0.17146465 - time (sec): 58.11 - samples/sec: 261.79 - lr: 0.000114 - momentum: 0.000000
2023-10-08 23:22:56,854 epoch 4 - iter 168/242 - loss 0.16628588 - time (sec): 66.87 - samples/sec: 259.95 - lr: 0.000112 - momentum: 0.000000
2023-10-08 23:23:06,396 epoch 4 - iter 192/242 - loss 0.16339488 - time (sec): 76.41 - samples/sec: 260.14 - lr: 0.000110 - momentum: 0.000000
2023-10-08 23:23:15,662 epoch 4 - iter 216/242 - loss 0.15709292 - time (sec): 85.67 - samples/sec: 259.09 - lr: 0.000109 - momentum: 0.000000
2023-10-08 23:23:24,937 epoch 4 - iter 240/242 - loss 0.15254959 - time (sec): 94.95 - samples/sec: 258.70 - lr: 0.000107 - momentum: 0.000000
2023-10-08 23:23:25,605 ----------------------------------------------------------------------------------------------------
2023-10-08 23:23:25,605 EPOCH 4 done: loss 0.1526 - lr: 0.000107
2023-10-08 23:23:31,733 DEV : loss 0.1503736525774002 - f1-score (micro avg) 0.8296
2023-10-08 23:23:31,738 saving best model
2023-10-08 23:23:32,825 ----------------------------------------------------------------------------------------------------
2023-10-08 23:23:42,613 epoch 5 - iter 24/242 - loss 0.13336685 - time (sec): 9.79 - samples/sec: 260.25 - lr: 0.000105 - momentum: 0.000000
2023-10-08 23:23:52,065 epoch 5 - iter 48/242 - loss 0.10805870 - time (sec): 19.24 - samples/sec: 253.46 - lr: 0.000103 - momentum: 0.000000
2023-10-08 23:24:01,993 epoch 5 - iter 72/242 - loss 0.10522684 - time (sec): 29.17 - samples/sec: 251.14 - lr: 0.000102 - momentum: 0.000000
2023-10-08 23:24:11,456 epoch 5 - iter 96/242 - loss 0.09751095 - time (sec): 38.63 - samples/sec: 250.61 - lr: 0.000100 - momentum: 0.000000
2023-10-08 23:24:21,194 epoch 5 - iter 120/242 - loss 0.10180240 - time (sec): 48.37 - samples/sec: 250.50 - lr: 0.000098 - momentum: 0.000000
2023-10-08 23:24:30,785 epoch 5 - iter 144/242 - loss 0.10278967 - time (sec): 57.96 - samples/sec: 248.95 - lr: 0.000096 - momentum: 0.000000
2023-10-08 23:24:40,680 epoch 5 - iter 168/242 - loss 0.10716189 - time (sec): 67.85 - samples/sec: 248.36 - lr: 0.000094 - momentum: 0.000000
2023-10-08 23:24:51,090 epoch 5 - iter 192/242 - loss 0.10576312 - time (sec): 78.26 - samples/sec: 249.02 - lr: 0.000093 - momentum: 0.000000
2023-10-08 23:25:01,502 epoch 5 - iter 216/242 - loss 0.10513146 - time (sec): 88.68 - samples/sec: 249.18 - lr: 0.000091 - momentum: 0.000000
2023-10-08 23:25:11,442 epoch 5 - iter 240/242 - loss 0.10084590 - time (sec): 98.62 - samples/sec: 248.70 - lr: 0.000089 - momentum: 0.000000
2023-10-08 23:25:12,224 ----------------------------------------------------------------------------------------------------
2023-10-08 23:25:12,225 EPOCH 5 done: loss 0.1003 - lr: 0.000089
2023-10-08 23:25:18,599 DEV : loss 0.13417156040668488 - f1-score (micro avg) 0.8175
2023-10-08 23:25:18,604 ----------------------------------------------------------------------------------------------------
2023-10-08 23:25:28,360 epoch 6 - iter 24/242 - loss 0.08491531 - time (sec): 9.75 - samples/sec: 251.08 - lr: 0.000087 - momentum: 0.000000
2023-10-08 23:25:38,991 epoch 6 - iter 48/242 - loss 0.07418088 - time (sec): 20.39 - samples/sec: 254.54 - lr: 0.000086 - momentum: 0.000000
2023-10-08 23:25:49,035 epoch 6 - iter 72/242 - loss 0.07920203 - time (sec): 30.43 - samples/sec: 251.73 - lr: 0.000084 - momentum: 0.000000
2023-10-08 23:25:59,078 epoch 6 - iter 96/242 - loss 0.07319054 - time (sec): 40.47 - samples/sec: 248.62 - lr: 0.000082 - momentum: 0.000000
2023-10-08 23:26:09,795 epoch 6 - iter 120/242 - loss 0.06921767 - time (sec): 51.19 - samples/sec: 247.28 - lr: 0.000080 - momentum: 0.000000
2023-10-08 23:26:19,241 epoch 6 - iter 144/242 - loss 0.06870799 - time (sec): 60.64 - samples/sec: 250.68 - lr: 0.000078 - momentum: 0.000000
2023-10-08 23:26:29,070 epoch 6 - iter 168/242 - loss 0.06861629 - time (sec): 70.46 - samples/sec: 252.04 - lr: 0.000077 - momentum: 0.000000
2023-10-08 23:26:38,252 epoch 6 - iter 192/242 - loss 0.06870233 - time (sec): 79.65 - samples/sec: 252.53 - lr: 0.000075 - momentum: 0.000000
2023-10-08 23:26:47,202 epoch 6 - iter 216/242 - loss 0.06991614 - time (sec): 88.60 - samples/sec: 251.46 - lr: 0.000073 - momentum: 0.000000
2023-10-08 23:26:56,516 epoch 6 - iter 240/242 - loss 0.06934364 - time (sec): 97.91 - samples/sec: 251.51 - lr: 0.000071 - momentum: 0.000000
2023-10-08 23:26:57,042 ----------------------------------------------------------------------------------------------------
2023-10-08 23:26:57,043 EPOCH 6 done: loss 0.0693 - lr: 0.000071
2023-10-08 23:27:02,928 DEV : loss 0.132174551486969 - f1-score (micro avg) 0.8375
2023-10-08 23:27:02,934 saving best model
2023-10-08 23:27:03,847 ----------------------------------------------------------------------------------------------------
2023-10-08 23:27:13,106 epoch 7 - iter 24/242 - loss 0.07042745 - time (sec): 9.26 - samples/sec: 254.06 - lr: 0.000070 - momentum: 0.000000
2023-10-08 23:27:22,314 epoch 7 - iter 48/242 - loss 0.07049752 - time (sec): 18.47 - samples/sec: 253.00 - lr: 0.000068 - momentum: 0.000000
2023-10-08 23:27:31,268 epoch 7 - iter 72/242 - loss 0.06167805 - time (sec): 27.42 - samples/sec: 252.88 - lr: 0.000066 - momentum: 0.000000
2023-10-08 23:27:41,041 epoch 7 - iter 96/242 - loss 0.05608674 - time (sec): 37.19 - samples/sec: 257.55 - lr: 0.000064 - momentum: 0.000000
2023-10-08 23:27:50,332 epoch 7 - iter 120/242 - loss 0.05525729 - time (sec): 46.48 - samples/sec: 259.79 - lr: 0.000062 - momentum: 0.000000
2023-10-08 23:27:59,952 epoch 7 - iter 144/242 - loss 0.04968835 - time (sec): 56.10 - samples/sec: 259.52 - lr: 0.000061 - momentum: 0.000000
2023-10-08 23:28:09,362 epoch 7 - iter 168/242 - loss 0.04954527 - time (sec): 65.51 - samples/sec: 258.72 - lr: 0.000059 - momentum: 0.000000
2023-10-08 23:28:18,978 epoch 7 - iter 192/242 - loss 0.05136589 - time (sec): 75.13 - samples/sec: 260.08 - lr: 0.000057 - momentum: 0.000000
2023-10-08 23:28:28,800 epoch 7 - iter 216/242 - loss 0.05068956 - time (sec): 84.95 - samples/sec: 260.35 - lr: 0.000055 - momentum: 0.000000
2023-10-08 23:28:38,041 epoch 7 - iter 240/242 - loss 0.05158986 - time (sec): 94.19 - samples/sec: 260.80 - lr: 0.000054 - momentum: 0.000000
2023-10-08 23:28:38,662 ----------------------------------------------------------------------------------------------------
2023-10-08 23:28:38,663 EPOCH 7 done: loss 0.0513 - lr: 0.000054
2023-10-08 23:28:44,423 DEV : loss 0.13093389570713043 - f1-score (micro avg) 0.8201
2023-10-08 23:28:44,429 ----------------------------------------------------------------------------------------------------
2023-10-08 23:28:53,805 epoch 8 - iter 24/242 - loss 0.03824659 - time (sec): 9.37 - samples/sec: 262.09 - lr: 0.000052 - momentum: 0.000000
2023-10-08 23:29:03,033 epoch 8 - iter 48/242 - loss 0.04184396 - time (sec): 18.60 - samples/sec: 261.79 - lr: 0.000050 - momentum: 0.000000
2023-10-08 23:29:12,274 epoch 8 - iter 72/242 - loss 0.05415154 - time (sec): 27.84 - samples/sec: 260.63 - lr: 0.000048 - momentum: 0.000000
2023-10-08 23:29:21,478 epoch 8 - iter 96/242 - loss 0.04767935 - time (sec): 37.05 - samples/sec: 261.47 - lr: 0.000046 - momentum: 0.000000
2023-10-08 23:29:31,081 epoch 8 - iter 120/242 - loss 0.04619751 - time (sec): 46.65 - samples/sec: 262.54 - lr: 0.000045 - momentum: 0.000000
2023-10-08 23:29:40,300 epoch 8 - iter 144/242 - loss 0.04396737 - time (sec): 55.87 - samples/sec: 263.13 - lr: 0.000043 - momentum: 0.000000
2023-10-08 23:29:50,002 epoch 8 - iter 168/242 - loss 0.04174366 - time (sec): 65.57 - samples/sec: 263.92 - lr: 0.000041 - momentum: 0.000000
2023-10-08 23:29:59,702 epoch 8 - iter 192/242 - loss 0.04237328 - time (sec): 75.27 - samples/sec: 264.37 - lr: 0.000039 - momentum: 0.000000
2023-10-08 23:30:09,215 epoch 8 - iter 216/242 - loss 0.03993499 - time (sec): 84.79 - samples/sec: 264.15 - lr: 0.000038 - momentum: 0.000000
2023-10-08 23:30:18,111 epoch 8 - iter 240/242 - loss 0.04045820 - time (sec): 93.68 - samples/sec: 262.42 - lr: 0.000036 - momentum: 0.000000
2023-10-08 23:30:18,731 ----------------------------------------------------------------------------------------------------
2023-10-08 23:30:18,731 EPOCH 8 done: loss 0.0405 - lr: 0.000036
2023-10-08 23:30:24,546 DEV : loss 0.14306265115737915 - f1-score (micro avg) 0.8296
2023-10-08 23:30:24,552 ----------------------------------------------------------------------------------------------------
2023-10-08 23:30:34,013 epoch 9 - iter 24/242 - loss 0.03298364 - time (sec): 9.46 - samples/sec: 241.43 - lr: 0.000034 - momentum: 0.000000
2023-10-08 23:30:44,240 epoch 9 - iter 48/242 - loss 0.03143181 - time (sec): 19.69 - samples/sec: 261.40 - lr: 0.000032 - momentum: 0.000000
2023-10-08 23:30:53,583 epoch 9 - iter 72/242 - loss 0.03109793 - time (sec): 29.03 - samples/sec: 263.28 - lr: 0.000030 - momentum: 0.000000
2023-10-08 23:31:03,165 epoch 9 - iter 96/242 - loss 0.02776311 - time (sec): 38.61 - samples/sec: 261.89 - lr: 0.000029 - momentum: 0.000000
2023-10-08 23:31:12,620 epoch 9 - iter 120/242 - loss 0.02893952 - time (sec): 48.07 - samples/sec: 260.89 - lr: 0.000027 - momentum: 0.000000
2023-10-08 23:31:22,035 epoch 9 - iter 144/242 - loss 0.02808601 - time (sec): 57.48 - samples/sec: 261.65 - lr: 0.000025 - momentum: 0.000000
2023-10-08 23:31:31,002 epoch 9 - iter 168/242 - loss 0.03101637 - time (sec): 66.45 - samples/sec: 259.99 - lr: 0.000023 - momentum: 0.000000
2023-10-08 23:31:40,261 epoch 9 - iter 192/242 - loss 0.03087273 - time (sec): 75.71 - samples/sec: 258.62 - lr: 0.000022 - momentum: 0.000000
2023-10-08 23:31:49,537 epoch 9 - iter 216/242 - loss 0.03304254 - time (sec): 84.98 - samples/sec: 258.63 - lr: 0.000020 - momentum: 0.000000
2023-10-08 23:31:59,418 epoch 9 - iter 240/242 - loss 0.03419530 - time (sec): 94.87 - samples/sec: 259.44 - lr: 0.000018 - momentum: 0.000000
2023-10-08 23:31:59,968 ----------------------------------------------------------------------------------------------------
2023-10-08 23:31:59,969 EPOCH 9 done: loss 0.0340 - lr: 0.000018
2023-10-08 23:32:05,952 DEV : loss 0.15046241879463196 - f1-score (micro avg) 0.812
2023-10-08 23:32:05,958 ----------------------------------------------------------------------------------------------------
2023-10-08 23:32:15,038 epoch 10 - iter 24/242 - loss 0.03676048 - time (sec): 9.08 - samples/sec: 254.11 - lr: 0.000016 - momentum: 0.000000
2023-10-08 23:32:24,674 epoch 10 - iter 48/242 - loss 0.02715581 - time (sec): 18.71 - samples/sec: 256.92 - lr: 0.000014 - momentum: 0.000000
2023-10-08 23:32:34,672 epoch 10 - iter 72/242 - loss 0.03106681 - time (sec): 28.71 - samples/sec: 257.03 - lr: 0.000013 - momentum: 0.000000
2023-10-08 23:32:44,579 epoch 10 - iter 96/242 - loss 0.03478316 - time (sec): 38.62 - samples/sec: 254.95 - lr: 0.000011 - momentum: 0.000000
2023-10-08 23:32:54,405 epoch 10 - iter 120/242 - loss 0.03385505 - time (sec): 48.44 - samples/sec: 255.26 - lr: 0.000009 - momentum: 0.000000
2023-10-08 23:33:04,455 epoch 10 - iter 144/242 - loss 0.03265163 - time (sec): 58.50 - samples/sec: 255.85 - lr: 0.000007 - momentum: 0.000000
2023-10-08 23:33:14,449 epoch 10 - iter 168/242 - loss 0.03299652 - time (sec): 68.49 - samples/sec: 255.76 - lr: 0.000006 - momentum: 0.000000
2023-10-08 23:33:23,340 epoch 10 - iter 192/242 - loss 0.03125589 - time (sec): 77.38 - samples/sec: 253.15 - lr: 0.000004 - momentum: 0.000000
2023-10-08 23:33:33,278 epoch 10 - iter 216/242 - loss 0.03156172 - time (sec): 87.32 - samples/sec: 251.71 - lr: 0.000002 - momentum: 0.000000
2023-10-08 23:33:43,528 epoch 10 - iter 240/242 - loss 0.03115999 - time (sec): 97.57 - samples/sec: 251.75 - lr: 0.000000 - momentum: 0.000000
2023-10-08 23:33:44,227 ----------------------------------------------------------------------------------------------------
2023-10-08 23:33:44,228 EPOCH 10 done: loss 0.0312 - lr: 0.000000
2023-10-08 23:33:50,694 DEV : loss 0.15445925295352936 - f1-score (micro avg) 0.8175
2023-10-08 23:33:51,726 ----------------------------------------------------------------------------------------------------
2023-10-08 23:33:51,727 Loading model from best epoch ...
2023-10-08 23:33:54,397 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-08 23:34:00,723
Results:
- F-score (micro) 0.806
- F-score (macro) 0.4034
- Accuracy 0.6956
By class:
precision recall f1-score support
pers 0.8369 0.8489 0.8429 139
scope 0.8417 0.9070 0.8731 129
work 0.6458 0.7750 0.7045 80
loc 0.0000 0.0000 0.0000 9
date 0.0000 0.0000 0.0000 3
object 0.0000 0.0000 0.0000 0
micro avg 0.7878 0.8250 0.8060 360
macro avg 0.3874 0.4218 0.4034 360
weighted avg 0.7683 0.8250 0.7949 360
2023-10-08 23:34:00,723 ----------------------------------------------------------------------------------------------------
|