File size: 25,038 Bytes
27186af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
2023-10-08 19:45:24,608 ----------------------------------------------------------------------------------------------------
2023-10-08 19:45:24,609 Model: "SequenceTagger(
  (embeddings): ByT5Embeddings(
    (model): T5EncoderModel(
      (shared): Embedding(384, 1472)
      (encoder): T5Stack(
        (embed_tokens): Embedding(384, 1472)
        (block): ModuleList(
          (0): T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                  (relative_attention_bias): Embedding(32, 6)
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
          (1-11): 11 x T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
        )
        (final_layer_norm): T5LayerNorm()
        (dropout): Dropout(p=0.1, inplace=False)
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=1472, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-08 19:45:24,609 ----------------------------------------------------------------------------------------------------
2023-10-08 19:45:24,609 MultiCorpus: 966 train + 219 dev + 204 test sentences
 - NER_HIPE_2022 Corpus: 966 train + 219 dev + 204 test sentences - /app/.flair/datasets/ner_hipe_2022/v2.1/ajmc/fr/with_doc_seperator
2023-10-08 19:45:24,609 ----------------------------------------------------------------------------------------------------
2023-10-08 19:45:24,609 Train:  966 sentences
2023-10-08 19:45:24,610         (train_with_dev=False, train_with_test=False)
2023-10-08 19:45:24,610 ----------------------------------------------------------------------------------------------------
2023-10-08 19:45:24,610 Training Params:
2023-10-08 19:45:24,610  - learning_rate: "0.00016" 
2023-10-08 19:45:24,610  - mini_batch_size: "4"
2023-10-08 19:45:24,610  - max_epochs: "10"
2023-10-08 19:45:24,610  - shuffle: "True"
2023-10-08 19:45:24,610 ----------------------------------------------------------------------------------------------------
2023-10-08 19:45:24,610 Plugins:
2023-10-08 19:45:24,610  - TensorboardLogger
2023-10-08 19:45:24,610  - LinearScheduler | warmup_fraction: '0.1'
2023-10-08 19:45:24,610 ----------------------------------------------------------------------------------------------------
2023-10-08 19:45:24,610 Final evaluation on model from best epoch (best-model.pt)
2023-10-08 19:45:24,610  - metric: "('micro avg', 'f1-score')"
2023-10-08 19:45:24,610 ----------------------------------------------------------------------------------------------------
2023-10-08 19:45:24,610 Computation:
2023-10-08 19:45:24,610  - compute on device: cuda:0
2023-10-08 19:45:24,610  - embedding storage: none
2023-10-08 19:45:24,610 ----------------------------------------------------------------------------------------------------
2023-10-08 19:45:24,610 Model training base path: "hmbench-ajmc/fr-hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax-bs4-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-2"
2023-10-08 19:45:24,611 ----------------------------------------------------------------------------------------------------
2023-10-08 19:45:24,611 ----------------------------------------------------------------------------------------------------
2023-10-08 19:45:24,611 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-08 19:45:34,945 epoch 1 - iter 24/242 - loss 3.22997625 - time (sec): 10.33 - samples/sec: 252.39 - lr: 0.000015 - momentum: 0.000000
2023-10-08 19:45:46,113 epoch 1 - iter 48/242 - loss 3.21892739 - time (sec): 21.50 - samples/sec: 251.61 - lr: 0.000031 - momentum: 0.000000
2023-10-08 19:45:55,869 epoch 1 - iter 72/242 - loss 3.20067097 - time (sec): 31.26 - samples/sec: 247.24 - lr: 0.000047 - momentum: 0.000000
2023-10-08 19:46:05,092 epoch 1 - iter 96/242 - loss 3.16152640 - time (sec): 40.48 - samples/sec: 244.64 - lr: 0.000063 - momentum: 0.000000
2023-10-08 19:46:14,956 epoch 1 - iter 120/242 - loss 3.07831714 - time (sec): 50.34 - samples/sec: 243.72 - lr: 0.000079 - momentum: 0.000000
2023-10-08 19:46:24,682 epoch 1 - iter 144/242 - loss 2.97878770 - time (sec): 60.07 - samples/sec: 242.98 - lr: 0.000095 - momentum: 0.000000
2023-10-08 19:46:34,640 epoch 1 - iter 168/242 - loss 2.86761192 - time (sec): 70.03 - samples/sec: 244.06 - lr: 0.000110 - momentum: 0.000000
2023-10-08 19:46:44,707 epoch 1 - iter 192/242 - loss 2.74954671 - time (sec): 80.10 - samples/sec: 244.87 - lr: 0.000126 - momentum: 0.000000
2023-10-08 19:46:55,158 epoch 1 - iter 216/242 - loss 2.61612478 - time (sec): 90.55 - samples/sec: 246.37 - lr: 0.000142 - momentum: 0.000000
2023-10-08 19:47:04,618 epoch 1 - iter 240/242 - loss 2.50020636 - time (sec): 100.01 - samples/sec: 245.60 - lr: 0.000158 - momentum: 0.000000
2023-10-08 19:47:05,269 ----------------------------------------------------------------------------------------------------
2023-10-08 19:47:05,269 EPOCH 1 done: loss 2.4909 - lr: 0.000158
2023-10-08 19:47:11,567 DEV : loss 1.099568247795105 - f1-score (micro avg)  0.0
2023-10-08 19:47:11,572 ----------------------------------------------------------------------------------------------------
2023-10-08 19:47:21,192 epoch 2 - iter 24/242 - loss 1.04876294 - time (sec): 9.62 - samples/sec: 241.41 - lr: 0.000158 - momentum: 0.000000
2023-10-08 19:47:30,922 epoch 2 - iter 48/242 - loss 0.95343248 - time (sec): 19.35 - samples/sec: 240.74 - lr: 0.000157 - momentum: 0.000000
2023-10-08 19:47:41,284 epoch 2 - iter 72/242 - loss 0.85835044 - time (sec): 29.71 - samples/sec: 243.85 - lr: 0.000155 - momentum: 0.000000
2023-10-08 19:47:51,320 epoch 2 - iter 96/242 - loss 0.80100060 - time (sec): 39.75 - samples/sec: 243.92 - lr: 0.000153 - momentum: 0.000000
2023-10-08 19:48:01,539 epoch 2 - iter 120/242 - loss 0.75007659 - time (sec): 49.97 - samples/sec: 242.91 - lr: 0.000151 - momentum: 0.000000
2023-10-08 19:48:11,611 epoch 2 - iter 144/242 - loss 0.71917788 - time (sec): 60.04 - samples/sec: 244.70 - lr: 0.000150 - momentum: 0.000000
2023-10-08 19:48:21,491 epoch 2 - iter 168/242 - loss 0.69316124 - time (sec): 69.92 - samples/sec: 244.66 - lr: 0.000148 - momentum: 0.000000
2023-10-08 19:48:31,322 epoch 2 - iter 192/242 - loss 0.66261978 - time (sec): 79.75 - samples/sec: 244.76 - lr: 0.000146 - momentum: 0.000000
2023-10-08 19:48:41,037 epoch 2 - iter 216/242 - loss 0.63975858 - time (sec): 89.46 - samples/sec: 243.11 - lr: 0.000144 - momentum: 0.000000
2023-10-08 19:48:51,748 epoch 2 - iter 240/242 - loss 0.60260031 - time (sec): 100.18 - samples/sec: 244.43 - lr: 0.000142 - momentum: 0.000000
2023-10-08 19:48:52,661 ----------------------------------------------------------------------------------------------------
2023-10-08 19:48:52,662 EPOCH 2 done: loss 0.5991 - lr: 0.000142
2023-10-08 19:48:59,164 DEV : loss 0.3767709732055664 - f1-score (micro avg)  0.0884
2023-10-08 19:48:59,170 saving best model
2023-10-08 19:49:00,024 ----------------------------------------------------------------------------------------------------
2023-10-08 19:49:10,356 epoch 3 - iter 24/242 - loss 0.32126961 - time (sec): 10.33 - samples/sec: 258.08 - lr: 0.000141 - momentum: 0.000000
2023-10-08 19:49:21,025 epoch 3 - iter 48/242 - loss 0.33046740 - time (sec): 21.00 - samples/sec: 254.01 - lr: 0.000139 - momentum: 0.000000
2023-10-08 19:49:31,196 epoch 3 - iter 72/242 - loss 0.32398414 - time (sec): 31.17 - samples/sec: 250.05 - lr: 0.000137 - momentum: 0.000000
2023-10-08 19:49:40,745 epoch 3 - iter 96/242 - loss 0.31704962 - time (sec): 40.72 - samples/sec: 245.76 - lr: 0.000135 - momentum: 0.000000
2023-10-08 19:49:50,344 epoch 3 - iter 120/242 - loss 0.30319337 - time (sec): 50.32 - samples/sec: 245.86 - lr: 0.000134 - momentum: 0.000000
2023-10-08 19:49:59,638 epoch 3 - iter 144/242 - loss 0.29975640 - time (sec): 59.61 - samples/sec: 243.54 - lr: 0.000132 - momentum: 0.000000
2023-10-08 19:50:09,993 epoch 3 - iter 168/242 - loss 0.29759959 - time (sec): 69.97 - samples/sec: 243.44 - lr: 0.000130 - momentum: 0.000000
2023-10-08 19:50:21,026 epoch 3 - iter 192/242 - loss 0.28435701 - time (sec): 81.00 - samples/sec: 244.14 - lr: 0.000128 - momentum: 0.000000
2023-10-08 19:50:30,810 epoch 3 - iter 216/242 - loss 0.27994173 - time (sec): 90.78 - samples/sec: 244.22 - lr: 0.000126 - momentum: 0.000000
2023-10-08 19:50:40,820 epoch 3 - iter 240/242 - loss 0.27772976 - time (sec): 100.79 - samples/sec: 244.03 - lr: 0.000125 - momentum: 0.000000
2023-10-08 19:50:41,483 ----------------------------------------------------------------------------------------------------
2023-10-08 19:50:41,483 EPOCH 3 done: loss 0.2782 - lr: 0.000125
2023-10-08 19:50:47,998 DEV : loss 0.232819601893425 - f1-score (micro avg)  0.53
2023-10-08 19:50:48,004 saving best model
2023-10-08 19:50:52,378 ----------------------------------------------------------------------------------------------------
2023-10-08 19:51:03,124 epoch 4 - iter 24/242 - loss 0.15471500 - time (sec): 10.74 - samples/sec: 247.29 - lr: 0.000123 - momentum: 0.000000
2023-10-08 19:51:13,665 epoch 4 - iter 48/242 - loss 0.16110007 - time (sec): 21.29 - samples/sec: 247.77 - lr: 0.000121 - momentum: 0.000000
2023-10-08 19:51:23,232 epoch 4 - iter 72/242 - loss 0.16918778 - time (sec): 30.85 - samples/sec: 245.46 - lr: 0.000119 - momentum: 0.000000
2023-10-08 19:51:32,860 epoch 4 - iter 96/242 - loss 0.17023718 - time (sec): 40.48 - samples/sec: 243.23 - lr: 0.000118 - momentum: 0.000000
2023-10-08 19:51:42,568 epoch 4 - iter 120/242 - loss 0.17776590 - time (sec): 50.19 - samples/sec: 243.44 - lr: 0.000116 - momentum: 0.000000
2023-10-08 19:51:52,610 epoch 4 - iter 144/242 - loss 0.17672138 - time (sec): 60.23 - samples/sec: 245.12 - lr: 0.000114 - momentum: 0.000000
2023-10-08 19:52:02,986 epoch 4 - iter 168/242 - loss 0.17895870 - time (sec): 70.61 - samples/sec: 246.05 - lr: 0.000112 - momentum: 0.000000
2023-10-08 19:52:13,174 epoch 4 - iter 192/242 - loss 0.17606903 - time (sec): 80.79 - samples/sec: 246.28 - lr: 0.000110 - momentum: 0.000000
2023-10-08 19:52:22,742 epoch 4 - iter 216/242 - loss 0.17725752 - time (sec): 90.36 - samples/sec: 244.85 - lr: 0.000109 - momentum: 0.000000
2023-10-08 19:52:33,004 epoch 4 - iter 240/242 - loss 0.17294228 - time (sec): 100.62 - samples/sec: 244.71 - lr: 0.000107 - momentum: 0.000000
2023-10-08 19:52:33,544 ----------------------------------------------------------------------------------------------------
2023-10-08 19:52:33,544 EPOCH 4 done: loss 0.1732 - lr: 0.000107
2023-10-08 19:52:40,051 DEV : loss 0.15743188560009003 - f1-score (micro avg)  0.7975
2023-10-08 19:52:40,057 saving best model
2023-10-08 19:52:44,433 ----------------------------------------------------------------------------------------------------
2023-10-08 19:52:54,068 epoch 5 - iter 24/242 - loss 0.15996377 - time (sec): 9.63 - samples/sec: 240.93 - lr: 0.000105 - momentum: 0.000000
2023-10-08 19:53:04,522 epoch 5 - iter 48/242 - loss 0.14548365 - time (sec): 20.09 - samples/sec: 250.40 - lr: 0.000103 - momentum: 0.000000
2023-10-08 19:53:13,898 epoch 5 - iter 72/242 - loss 0.13218129 - time (sec): 29.46 - samples/sec: 246.51 - lr: 0.000102 - momentum: 0.000000
2023-10-08 19:53:24,449 epoch 5 - iter 96/242 - loss 0.13047575 - time (sec): 40.01 - samples/sec: 248.86 - lr: 0.000100 - momentum: 0.000000
2023-10-08 19:53:34,463 epoch 5 - iter 120/242 - loss 0.12745750 - time (sec): 50.03 - samples/sec: 246.44 - lr: 0.000098 - momentum: 0.000000
2023-10-08 19:53:45,087 epoch 5 - iter 144/242 - loss 0.11817391 - time (sec): 60.65 - samples/sec: 247.36 - lr: 0.000096 - momentum: 0.000000
2023-10-08 19:53:55,271 epoch 5 - iter 168/242 - loss 0.11997625 - time (sec): 70.84 - samples/sec: 246.91 - lr: 0.000094 - momentum: 0.000000
2023-10-08 19:54:05,215 epoch 5 - iter 192/242 - loss 0.11890926 - time (sec): 80.78 - samples/sec: 245.26 - lr: 0.000093 - momentum: 0.000000
2023-10-08 19:54:14,902 epoch 5 - iter 216/242 - loss 0.11924436 - time (sec): 90.47 - samples/sec: 243.77 - lr: 0.000091 - momentum: 0.000000
2023-10-08 19:54:25,441 epoch 5 - iter 240/242 - loss 0.11795489 - time (sec): 101.01 - samples/sec: 243.94 - lr: 0.000089 - momentum: 0.000000
2023-10-08 19:54:25,998 ----------------------------------------------------------------------------------------------------
2023-10-08 19:54:25,998 EPOCH 5 done: loss 0.1178 - lr: 0.000089
2023-10-08 19:54:32,741 DEV : loss 0.12743264436721802 - f1-score (micro avg)  0.8208
2023-10-08 19:54:32,747 saving best model
2023-10-08 19:54:37,104 ----------------------------------------------------------------------------------------------------
2023-10-08 19:54:46,447 epoch 6 - iter 24/242 - loss 0.05946833 - time (sec): 9.34 - samples/sec: 239.14 - lr: 0.000087 - momentum: 0.000000
2023-10-08 19:54:56,509 epoch 6 - iter 48/242 - loss 0.08074757 - time (sec): 19.40 - samples/sec: 240.69 - lr: 0.000086 - momentum: 0.000000
2023-10-08 19:55:06,789 epoch 6 - iter 72/242 - loss 0.08837018 - time (sec): 29.68 - samples/sec: 243.60 - lr: 0.000084 - momentum: 0.000000
2023-10-08 19:55:15,996 epoch 6 - iter 96/242 - loss 0.08681205 - time (sec): 38.89 - samples/sec: 241.35 - lr: 0.000082 - momentum: 0.000000
2023-10-08 19:55:26,498 epoch 6 - iter 120/242 - loss 0.08911376 - time (sec): 49.39 - samples/sec: 242.35 - lr: 0.000080 - momentum: 0.000000
2023-10-08 19:55:36,029 epoch 6 - iter 144/242 - loss 0.08938334 - time (sec): 58.92 - samples/sec: 241.70 - lr: 0.000078 - momentum: 0.000000
2023-10-08 19:55:46,311 epoch 6 - iter 168/242 - loss 0.08788206 - time (sec): 69.21 - samples/sec: 241.98 - lr: 0.000077 - momentum: 0.000000
2023-10-08 19:55:57,250 epoch 6 - iter 192/242 - loss 0.08854715 - time (sec): 80.14 - samples/sec: 243.74 - lr: 0.000075 - momentum: 0.000000
2023-10-08 19:56:07,436 epoch 6 - iter 216/242 - loss 0.08459032 - time (sec): 90.33 - samples/sec: 243.30 - lr: 0.000073 - momentum: 0.000000
2023-10-08 19:56:18,092 epoch 6 - iter 240/242 - loss 0.08333726 - time (sec): 100.99 - samples/sec: 243.73 - lr: 0.000071 - momentum: 0.000000
2023-10-08 19:56:18,712 ----------------------------------------------------------------------------------------------------
2023-10-08 19:56:18,713 EPOCH 6 done: loss 0.0835 - lr: 0.000071
2023-10-08 19:56:25,205 DEV : loss 0.11654166877269745 - f1-score (micro avg)  0.8404
2023-10-08 19:56:25,211 saving best model
2023-10-08 19:56:26,155 ----------------------------------------------------------------------------------------------------
2023-10-08 19:56:36,695 epoch 7 - iter 24/242 - loss 0.06293024 - time (sec): 10.54 - samples/sec: 251.85 - lr: 0.000070 - momentum: 0.000000
2023-10-08 19:56:46,959 epoch 7 - iter 48/242 - loss 0.07168250 - time (sec): 20.80 - samples/sec: 253.91 - lr: 0.000068 - momentum: 0.000000
2023-10-08 19:56:57,446 epoch 7 - iter 72/242 - loss 0.07005661 - time (sec): 31.29 - samples/sec: 251.77 - lr: 0.000066 - momentum: 0.000000
2023-10-08 19:57:07,998 epoch 7 - iter 96/242 - loss 0.06701038 - time (sec): 41.84 - samples/sec: 251.93 - lr: 0.000064 - momentum: 0.000000
2023-10-08 19:57:17,396 epoch 7 - iter 120/242 - loss 0.06522144 - time (sec): 51.24 - samples/sec: 250.59 - lr: 0.000062 - momentum: 0.000000
2023-10-08 19:57:28,080 epoch 7 - iter 144/242 - loss 0.06970900 - time (sec): 61.92 - samples/sec: 251.18 - lr: 0.000061 - momentum: 0.000000
2023-10-08 19:57:38,403 epoch 7 - iter 168/242 - loss 0.06773139 - time (sec): 72.25 - samples/sec: 249.88 - lr: 0.000059 - momentum: 0.000000
2023-10-08 19:57:47,810 epoch 7 - iter 192/242 - loss 0.06432826 - time (sec): 81.65 - samples/sec: 247.36 - lr: 0.000057 - momentum: 0.000000
2023-10-08 19:57:58,023 epoch 7 - iter 216/242 - loss 0.06417272 - time (sec): 91.87 - samples/sec: 246.03 - lr: 0.000055 - momentum: 0.000000
2023-10-08 19:58:07,355 epoch 7 - iter 240/242 - loss 0.06233721 - time (sec): 101.20 - samples/sec: 243.34 - lr: 0.000054 - momentum: 0.000000
2023-10-08 19:58:07,907 ----------------------------------------------------------------------------------------------------
2023-10-08 19:58:07,908 EPOCH 7 done: loss 0.0623 - lr: 0.000054
2023-10-08 19:58:14,365 DEV : loss 0.12197184562683105 - f1-score (micro avg)  0.8253
2023-10-08 19:58:14,371 ----------------------------------------------------------------------------------------------------
2023-10-08 19:58:23,968 epoch 8 - iter 24/242 - loss 0.04913621 - time (sec): 9.60 - samples/sec: 240.84 - lr: 0.000052 - momentum: 0.000000
2023-10-08 19:58:33,485 epoch 8 - iter 48/242 - loss 0.04977968 - time (sec): 19.11 - samples/sec: 242.35 - lr: 0.000050 - momentum: 0.000000
2023-10-08 19:58:43,764 epoch 8 - iter 72/242 - loss 0.05146262 - time (sec): 29.39 - samples/sec: 245.95 - lr: 0.000048 - momentum: 0.000000
2023-10-08 19:58:53,956 epoch 8 - iter 96/242 - loss 0.05064168 - time (sec): 39.58 - samples/sec: 245.78 - lr: 0.000046 - momentum: 0.000000
2023-10-08 19:59:04,411 epoch 8 - iter 120/242 - loss 0.04654593 - time (sec): 50.04 - samples/sec: 245.73 - lr: 0.000045 - momentum: 0.000000
2023-10-08 19:59:13,765 epoch 8 - iter 144/242 - loss 0.05186997 - time (sec): 59.39 - samples/sec: 243.63 - lr: 0.000043 - momentum: 0.000000
2023-10-08 19:59:24,144 epoch 8 - iter 168/242 - loss 0.05262190 - time (sec): 69.77 - samples/sec: 243.31 - lr: 0.000041 - momentum: 0.000000
2023-10-08 19:59:35,045 epoch 8 - iter 192/242 - loss 0.05281831 - time (sec): 80.67 - samples/sec: 244.31 - lr: 0.000039 - momentum: 0.000000
2023-10-08 19:59:45,315 epoch 8 - iter 216/242 - loss 0.05261827 - time (sec): 90.94 - samples/sec: 243.79 - lr: 0.000038 - momentum: 0.000000
2023-10-08 19:59:55,268 epoch 8 - iter 240/242 - loss 0.05007550 - time (sec): 100.90 - samples/sec: 242.92 - lr: 0.000036 - momentum: 0.000000
2023-10-08 19:59:56,094 ----------------------------------------------------------------------------------------------------
2023-10-08 19:59:56,094 EPOCH 8 done: loss 0.0498 - lr: 0.000036
2023-10-08 20:00:02,314 DEV : loss 0.12492693960666656 - f1-score (micro avg)  0.8346
2023-10-08 20:00:02,323 ----------------------------------------------------------------------------------------------------
2023-10-08 20:00:12,018 epoch 9 - iter 24/242 - loss 0.07463564 - time (sec): 9.69 - samples/sec: 249.45 - lr: 0.000034 - momentum: 0.000000
2023-10-08 20:00:21,605 epoch 9 - iter 48/242 - loss 0.05260851 - time (sec): 19.28 - samples/sec: 252.95 - lr: 0.000032 - momentum: 0.000000
2023-10-08 20:00:31,881 epoch 9 - iter 72/242 - loss 0.04459482 - time (sec): 29.56 - samples/sec: 259.61 - lr: 0.000030 - momentum: 0.000000
2023-10-08 20:00:41,439 epoch 9 - iter 96/242 - loss 0.04243585 - time (sec): 39.11 - samples/sec: 259.67 - lr: 0.000029 - momentum: 0.000000
2023-10-08 20:00:50,313 epoch 9 - iter 120/242 - loss 0.04173357 - time (sec): 47.99 - samples/sec: 258.48 - lr: 0.000027 - momentum: 0.000000
2023-10-08 20:00:59,638 epoch 9 - iter 144/242 - loss 0.04074134 - time (sec): 57.31 - samples/sec: 257.97 - lr: 0.000025 - momentum: 0.000000
2023-10-08 20:01:09,189 epoch 9 - iter 168/242 - loss 0.03865436 - time (sec): 66.86 - samples/sec: 257.67 - lr: 0.000023 - momentum: 0.000000
2023-10-08 20:01:18,331 epoch 9 - iter 192/242 - loss 0.03967704 - time (sec): 76.01 - samples/sec: 257.96 - lr: 0.000022 - momentum: 0.000000
2023-10-08 20:01:27,743 epoch 9 - iter 216/242 - loss 0.04177349 - time (sec): 85.42 - samples/sec: 258.52 - lr: 0.000020 - momentum: 0.000000
2023-10-08 20:01:37,368 epoch 9 - iter 240/242 - loss 0.04171713 - time (sec): 95.04 - samples/sec: 259.05 - lr: 0.000018 - momentum: 0.000000
2023-10-08 20:01:37,896 ----------------------------------------------------------------------------------------------------
2023-10-08 20:01:37,896 EPOCH 9 done: loss 0.0415 - lr: 0.000018
2023-10-08 20:01:43,732 DEV : loss 0.13147075474262238 - f1-score (micro avg)  0.8279
2023-10-08 20:01:43,738 ----------------------------------------------------------------------------------------------------
2023-10-08 20:01:53,393 epoch 10 - iter 24/242 - loss 0.03253620 - time (sec): 9.65 - samples/sec: 274.91 - lr: 0.000016 - momentum: 0.000000
2023-10-08 20:02:02,377 epoch 10 - iter 48/242 - loss 0.03156519 - time (sec): 18.64 - samples/sec: 268.33 - lr: 0.000014 - momentum: 0.000000
2023-10-08 20:02:11,235 epoch 10 - iter 72/242 - loss 0.03135636 - time (sec): 27.50 - samples/sec: 265.82 - lr: 0.000013 - momentum: 0.000000
2023-10-08 20:02:20,131 epoch 10 - iter 96/242 - loss 0.03255705 - time (sec): 36.39 - samples/sec: 260.50 - lr: 0.000011 - momentum: 0.000000
2023-10-08 20:02:29,695 epoch 10 - iter 120/242 - loss 0.03206630 - time (sec): 45.96 - samples/sec: 261.75 - lr: 0.000009 - momentum: 0.000000
2023-10-08 20:02:38,449 epoch 10 - iter 144/242 - loss 0.03262375 - time (sec): 54.71 - samples/sec: 260.36 - lr: 0.000007 - momentum: 0.000000
2023-10-08 20:02:47,771 epoch 10 - iter 168/242 - loss 0.03187373 - time (sec): 64.03 - samples/sec: 259.93 - lr: 0.000006 - momentum: 0.000000
2023-10-08 20:02:57,721 epoch 10 - iter 192/242 - loss 0.03284857 - time (sec): 73.98 - samples/sec: 260.79 - lr: 0.000004 - momentum: 0.000000
2023-10-08 20:03:07,720 epoch 10 - iter 216/242 - loss 0.03825284 - time (sec): 83.98 - samples/sec: 262.77 - lr: 0.000002 - momentum: 0.000000
2023-10-08 20:03:17,458 epoch 10 - iter 240/242 - loss 0.03867135 - time (sec): 93.72 - samples/sec: 261.58 - lr: 0.000000 - momentum: 0.000000
2023-10-08 20:03:18,240 ----------------------------------------------------------------------------------------------------
2023-10-08 20:03:18,241 EPOCH 10 done: loss 0.0385 - lr: 0.000000
2023-10-08 20:03:24,206 DEV : loss 0.13405872881412506 - f1-score (micro avg)  0.8365
2023-10-08 20:03:25,084 ----------------------------------------------------------------------------------------------------
2023-10-08 20:03:25,085 Loading model from best epoch ...
2023-10-08 20:03:28,148 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-08 20:03:33,831 
Results:
- F-score (micro) 0.8114
- F-score (macro) 0.489
- Accuracy 0.717

By class:
              precision    recall  f1-score   support

        pers     0.8182    0.8417    0.8298       139
       scope     0.8310    0.9147    0.8708       129
        work     0.6957    0.8000    0.7442        80
         loc     0.0000    0.0000    0.0000         9
        date     0.0000    0.0000    0.0000         3

   micro avg     0.7931    0.8306    0.8114       360
   macro avg     0.4690    0.5113    0.4890       360
weighted avg     0.7683    0.8306    0.7978       360

2023-10-08 20:03:33,831 ----------------------------------------------------------------------------------------------------