File size: 25,155 Bytes
3f675fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
2023-10-06 14:11:25,611 ----------------------------------------------------------------------------------------------------
2023-10-06 14:11:25,612 Model: "SequenceTagger(
  (embeddings): ByT5Embeddings(
    (model): T5EncoderModel(
      (shared): Embedding(384, 1472)
      (encoder): T5Stack(
        (embed_tokens): Embedding(384, 1472)
        (block): ModuleList(
          (0): T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                  (relative_attention_bias): Embedding(32, 6)
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
          (1-11): 11 x T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
        )
        (final_layer_norm): T5LayerNorm()
        (dropout): Dropout(p=0.1, inplace=False)
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=1472, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-06 14:11:25,612 ----------------------------------------------------------------------------------------------------
2023-10-06 14:11:25,612 MultiCorpus: 1214 train + 266 dev + 251 test sentences
 - NER_HIPE_2022 Corpus: 1214 train + 266 dev + 251 test sentences - /app/.flair/datasets/ner_hipe_2022/v2.1/ajmc/en/with_doc_seperator
2023-10-06 14:11:25,612 ----------------------------------------------------------------------------------------------------
2023-10-06 14:11:25,612 Train:  1214 sentences
2023-10-06 14:11:25,612         (train_with_dev=False, train_with_test=False)
2023-10-06 14:11:25,612 ----------------------------------------------------------------------------------------------------
2023-10-06 14:11:25,613 Training Params:
2023-10-06 14:11:25,613  - learning_rate: "0.00016" 
2023-10-06 14:11:25,613  - mini_batch_size: "4"
2023-10-06 14:11:25,613  - max_epochs: "10"
2023-10-06 14:11:25,613  - shuffle: "True"
2023-10-06 14:11:25,613 ----------------------------------------------------------------------------------------------------
2023-10-06 14:11:25,613 Plugins:
2023-10-06 14:11:25,613  - TensorboardLogger
2023-10-06 14:11:25,613  - LinearScheduler | warmup_fraction: '0.1'
2023-10-06 14:11:25,613 ----------------------------------------------------------------------------------------------------
2023-10-06 14:11:25,613 Final evaluation on model from best epoch (best-model.pt)
2023-10-06 14:11:25,613  - metric: "('micro avg', 'f1-score')"
2023-10-06 14:11:25,613 ----------------------------------------------------------------------------------------------------
2023-10-06 14:11:25,613 Computation:
2023-10-06 14:11:25,613  - compute on device: cuda:0
2023-10-06 14:11:25,613  - embedding storage: none
2023-10-06 14:11:25,613 ----------------------------------------------------------------------------------------------------
2023-10-06 14:11:25,613 Model training base path: "hmbench-ajmc/en-hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax-bs4-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-4"
2023-10-06 14:11:25,613 ----------------------------------------------------------------------------------------------------
2023-10-06 14:11:25,613 ----------------------------------------------------------------------------------------------------
2023-10-06 14:11:25,614 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-06 14:11:36,883 epoch 1 - iter 30/304 - loss 3.24794717 - time (sec): 11.27 - samples/sec: 271.92 - lr: 0.000015 - momentum: 0.000000
2023-10-06 14:11:48,388 epoch 1 - iter 60/304 - loss 3.23649970 - time (sec): 22.77 - samples/sec: 271.03 - lr: 0.000031 - momentum: 0.000000
2023-10-06 14:11:59,480 epoch 1 - iter 90/304 - loss 3.21188821 - time (sec): 33.86 - samples/sec: 270.37 - lr: 0.000047 - momentum: 0.000000
2023-10-06 14:12:10,887 epoch 1 - iter 120/304 - loss 3.13757647 - time (sec): 45.27 - samples/sec: 270.54 - lr: 0.000063 - momentum: 0.000000
2023-10-06 14:12:22,654 epoch 1 - iter 150/304 - loss 3.02078335 - time (sec): 57.04 - samples/sec: 272.02 - lr: 0.000078 - momentum: 0.000000
2023-10-06 14:12:34,042 epoch 1 - iter 180/304 - loss 2.90736795 - time (sec): 68.43 - samples/sec: 271.43 - lr: 0.000094 - momentum: 0.000000
2023-10-06 14:12:45,083 epoch 1 - iter 210/304 - loss 2.78130427 - time (sec): 79.47 - samples/sec: 270.54 - lr: 0.000110 - momentum: 0.000000
2023-10-06 14:12:56,244 epoch 1 - iter 240/304 - loss 2.64825607 - time (sec): 90.63 - samples/sec: 269.30 - lr: 0.000126 - momentum: 0.000000
2023-10-06 14:13:08,193 epoch 1 - iter 270/304 - loss 2.48837414 - time (sec): 102.58 - samples/sec: 270.25 - lr: 0.000142 - momentum: 0.000000
2023-10-06 14:13:18,910 epoch 1 - iter 300/304 - loss 2.34919296 - time (sec): 113.29 - samples/sec: 269.78 - lr: 0.000157 - momentum: 0.000000
2023-10-06 14:13:20,396 ----------------------------------------------------------------------------------------------------
2023-10-06 14:13:20,397 EPOCH 1 done: loss 2.3323 - lr: 0.000157
2023-10-06 14:13:27,220 DEV : loss 0.8810060620307922 - f1-score (micro avg)  0.0
2023-10-06 14:13:27,227 ----------------------------------------------------------------------------------------------------
2023-10-06 14:13:38,873 epoch 2 - iter 30/304 - loss 0.74122896 - time (sec): 11.65 - samples/sec: 276.51 - lr: 0.000158 - momentum: 0.000000
2023-10-06 14:13:50,109 epoch 2 - iter 60/304 - loss 0.68607239 - time (sec): 22.88 - samples/sec: 272.36 - lr: 0.000157 - momentum: 0.000000
2023-10-06 14:14:01,460 epoch 2 - iter 90/304 - loss 0.66330841 - time (sec): 34.23 - samples/sec: 271.12 - lr: 0.000155 - momentum: 0.000000
2023-10-06 14:14:13,021 epoch 2 - iter 120/304 - loss 0.62361761 - time (sec): 45.79 - samples/sec: 274.36 - lr: 0.000153 - momentum: 0.000000
2023-10-06 14:14:23,948 epoch 2 - iter 150/304 - loss 0.60082612 - time (sec): 56.72 - samples/sec: 273.75 - lr: 0.000151 - momentum: 0.000000
2023-10-06 14:14:35,282 epoch 2 - iter 180/304 - loss 0.56186732 - time (sec): 68.05 - samples/sec: 272.54 - lr: 0.000150 - momentum: 0.000000
2023-10-06 14:14:46,549 epoch 2 - iter 210/304 - loss 0.54139779 - time (sec): 79.32 - samples/sec: 272.38 - lr: 0.000148 - momentum: 0.000000
2023-10-06 14:14:57,495 epoch 2 - iter 240/304 - loss 0.51007846 - time (sec): 90.27 - samples/sec: 272.36 - lr: 0.000146 - momentum: 0.000000
2023-10-06 14:15:09,184 epoch 2 - iter 270/304 - loss 0.49170617 - time (sec): 101.96 - samples/sec: 273.59 - lr: 0.000144 - momentum: 0.000000
2023-10-06 14:15:20,178 epoch 2 - iter 300/304 - loss 0.47259793 - time (sec): 112.95 - samples/sec: 272.11 - lr: 0.000143 - momentum: 0.000000
2023-10-06 14:15:21,353 ----------------------------------------------------------------------------------------------------
2023-10-06 14:15:21,353 EPOCH 2 done: loss 0.4708 - lr: 0.000143
2023-10-06 14:15:28,534 DEV : loss 0.3191007077693939 - f1-score (micro avg)  0.4907
2023-10-06 14:15:28,543 saving best model
2023-10-06 14:15:29,413 ----------------------------------------------------------------------------------------------------
2023-10-06 14:15:40,687 epoch 3 - iter 30/304 - loss 0.22409010 - time (sec): 11.27 - samples/sec: 264.63 - lr: 0.000141 - momentum: 0.000000
2023-10-06 14:15:52,371 epoch 3 - iter 60/304 - loss 0.22786621 - time (sec): 22.96 - samples/sec: 268.94 - lr: 0.000139 - momentum: 0.000000
2023-10-06 14:16:03,169 epoch 3 - iter 90/304 - loss 0.23089277 - time (sec): 33.75 - samples/sec: 263.73 - lr: 0.000137 - momentum: 0.000000
2023-10-06 14:16:14,285 epoch 3 - iter 120/304 - loss 0.23250409 - time (sec): 44.87 - samples/sec: 262.94 - lr: 0.000135 - momentum: 0.000000
2023-10-06 14:16:26,187 epoch 3 - iter 150/304 - loss 0.22008502 - time (sec): 56.77 - samples/sec: 266.63 - lr: 0.000134 - momentum: 0.000000
2023-10-06 14:16:37,381 epoch 3 - iter 180/304 - loss 0.21586374 - time (sec): 67.97 - samples/sec: 265.25 - lr: 0.000132 - momentum: 0.000000
2023-10-06 14:16:49,144 epoch 3 - iter 210/304 - loss 0.20951350 - time (sec): 79.73 - samples/sec: 267.41 - lr: 0.000130 - momentum: 0.000000
2023-10-06 14:17:00,811 epoch 3 - iter 240/304 - loss 0.20749487 - time (sec): 91.40 - samples/sec: 267.39 - lr: 0.000128 - momentum: 0.000000
2023-10-06 14:17:12,634 epoch 3 - iter 270/304 - loss 0.20252725 - time (sec): 103.22 - samples/sec: 267.93 - lr: 0.000127 - momentum: 0.000000
2023-10-06 14:17:23,905 epoch 3 - iter 300/304 - loss 0.19933893 - time (sec): 114.49 - samples/sec: 266.80 - lr: 0.000125 - momentum: 0.000000
2023-10-06 14:17:25,518 ----------------------------------------------------------------------------------------------------
2023-10-06 14:17:25,518 EPOCH 3 done: loss 0.1990 - lr: 0.000125
2023-10-06 14:17:33,399 DEV : loss 0.18546858429908752 - f1-score (micro avg)  0.6987
2023-10-06 14:17:33,407 saving best model
2023-10-06 14:17:37,766 ----------------------------------------------------------------------------------------------------
2023-10-06 14:17:49,248 epoch 4 - iter 30/304 - loss 0.13091282 - time (sec): 11.48 - samples/sec: 256.89 - lr: 0.000123 - momentum: 0.000000
2023-10-06 14:18:01,293 epoch 4 - iter 60/304 - loss 0.12913109 - time (sec): 23.53 - samples/sec: 261.17 - lr: 0.000121 - momentum: 0.000000
2023-10-06 14:18:12,651 epoch 4 - iter 90/304 - loss 0.12301054 - time (sec): 34.88 - samples/sec: 256.29 - lr: 0.000119 - momentum: 0.000000
2023-10-06 14:18:24,503 epoch 4 - iter 120/304 - loss 0.11594677 - time (sec): 46.73 - samples/sec: 254.76 - lr: 0.000118 - momentum: 0.000000
2023-10-06 14:18:36,414 epoch 4 - iter 150/304 - loss 0.11223834 - time (sec): 58.65 - samples/sec: 253.88 - lr: 0.000116 - momentum: 0.000000
2023-10-06 14:18:48,710 epoch 4 - iter 180/304 - loss 0.11360638 - time (sec): 70.94 - samples/sec: 254.05 - lr: 0.000114 - momentum: 0.000000
2023-10-06 14:19:01,112 epoch 4 - iter 210/304 - loss 0.11598109 - time (sec): 83.34 - samples/sec: 255.32 - lr: 0.000112 - momentum: 0.000000
2023-10-06 14:19:13,227 epoch 4 - iter 240/304 - loss 0.11480521 - time (sec): 95.46 - samples/sec: 255.52 - lr: 0.000111 - momentum: 0.000000
2023-10-06 14:19:25,625 epoch 4 - iter 270/304 - loss 0.11435502 - time (sec): 107.86 - samples/sec: 256.28 - lr: 0.000109 - momentum: 0.000000
2023-10-06 14:19:37,641 epoch 4 - iter 300/304 - loss 0.11002677 - time (sec): 119.87 - samples/sec: 256.46 - lr: 0.000107 - momentum: 0.000000
2023-10-06 14:19:38,872 ----------------------------------------------------------------------------------------------------
2023-10-06 14:19:38,873 EPOCH 4 done: loss 0.1096 - lr: 0.000107
2023-10-06 14:19:46,800 DEV : loss 0.1540684998035431 - f1-score (micro avg)  0.8169
2023-10-06 14:19:46,809 saving best model
2023-10-06 14:19:51,173 ----------------------------------------------------------------------------------------------------
2023-10-06 14:20:02,875 epoch 5 - iter 30/304 - loss 0.06569301 - time (sec): 11.70 - samples/sec: 253.60 - lr: 0.000105 - momentum: 0.000000
2023-10-06 14:20:15,213 epoch 5 - iter 60/304 - loss 0.06515493 - time (sec): 24.04 - samples/sec: 260.50 - lr: 0.000103 - momentum: 0.000000
2023-10-06 14:20:27,606 epoch 5 - iter 90/304 - loss 0.06435294 - time (sec): 36.43 - samples/sec: 257.99 - lr: 0.000102 - momentum: 0.000000
2023-10-06 14:20:39,487 epoch 5 - iter 120/304 - loss 0.06345297 - time (sec): 48.31 - samples/sec: 255.22 - lr: 0.000100 - momentum: 0.000000
2023-10-06 14:20:51,426 epoch 5 - iter 150/304 - loss 0.06293608 - time (sec): 60.25 - samples/sec: 254.97 - lr: 0.000098 - momentum: 0.000000
2023-10-06 14:21:04,316 epoch 5 - iter 180/304 - loss 0.06304714 - time (sec): 73.14 - samples/sec: 256.54 - lr: 0.000096 - momentum: 0.000000
2023-10-06 14:21:16,681 epoch 5 - iter 210/304 - loss 0.07005881 - time (sec): 85.51 - samples/sec: 257.33 - lr: 0.000094 - momentum: 0.000000
2023-10-06 14:21:28,657 epoch 5 - iter 240/304 - loss 0.07079656 - time (sec): 97.48 - samples/sec: 255.02 - lr: 0.000093 - momentum: 0.000000
2023-10-06 14:21:40,448 epoch 5 - iter 270/304 - loss 0.06829423 - time (sec): 109.27 - samples/sec: 254.92 - lr: 0.000091 - momentum: 0.000000
2023-10-06 14:21:51,676 epoch 5 - iter 300/304 - loss 0.06782035 - time (sec): 120.50 - samples/sec: 253.91 - lr: 0.000089 - momentum: 0.000000
2023-10-06 14:21:53,203 ----------------------------------------------------------------------------------------------------
2023-10-06 14:21:53,204 EPOCH 5 done: loss 0.0681 - lr: 0.000089
2023-10-06 14:22:01,230 DEV : loss 0.14909522235393524 - f1-score (micro avg)  0.8284
2023-10-06 14:22:01,238 saving best model
2023-10-06 14:22:05,592 ----------------------------------------------------------------------------------------------------
2023-10-06 14:22:17,219 epoch 6 - iter 30/304 - loss 0.02579684 - time (sec): 11.63 - samples/sec: 253.40 - lr: 0.000087 - momentum: 0.000000
2023-10-06 14:22:28,885 epoch 6 - iter 60/304 - loss 0.03871116 - time (sec): 23.29 - samples/sec: 250.65 - lr: 0.000085 - momentum: 0.000000
2023-10-06 14:22:40,696 epoch 6 - iter 90/304 - loss 0.03597576 - time (sec): 35.10 - samples/sec: 249.02 - lr: 0.000084 - momentum: 0.000000
2023-10-06 14:22:52,987 epoch 6 - iter 120/304 - loss 0.04134854 - time (sec): 47.39 - samples/sec: 251.11 - lr: 0.000082 - momentum: 0.000000
2023-10-06 14:23:05,126 epoch 6 - iter 150/304 - loss 0.03971115 - time (sec): 59.53 - samples/sec: 253.00 - lr: 0.000080 - momentum: 0.000000
2023-10-06 14:23:17,267 epoch 6 - iter 180/304 - loss 0.04314250 - time (sec): 71.67 - samples/sec: 253.75 - lr: 0.000078 - momentum: 0.000000
2023-10-06 14:23:29,160 epoch 6 - iter 210/304 - loss 0.04971771 - time (sec): 83.57 - samples/sec: 254.08 - lr: 0.000077 - momentum: 0.000000
2023-10-06 14:23:41,053 epoch 6 - iter 240/304 - loss 0.05075503 - time (sec): 95.46 - samples/sec: 253.45 - lr: 0.000075 - momentum: 0.000000
2023-10-06 14:23:52,975 epoch 6 - iter 270/304 - loss 0.05062134 - time (sec): 107.38 - samples/sec: 253.36 - lr: 0.000073 - momentum: 0.000000
2023-10-06 14:24:05,473 epoch 6 - iter 300/304 - loss 0.04896354 - time (sec): 119.88 - samples/sec: 254.14 - lr: 0.000071 - momentum: 0.000000
2023-10-06 14:24:07,244 ----------------------------------------------------------------------------------------------------
2023-10-06 14:24:07,244 EPOCH 6 done: loss 0.0503 - lr: 0.000071
2023-10-06 14:24:15,275 DEV : loss 0.1544189751148224 - f1-score (micro avg)  0.8257
2023-10-06 14:24:15,282 ----------------------------------------------------------------------------------------------------
2023-10-06 14:24:28,110 epoch 7 - iter 30/304 - loss 0.06052569 - time (sec): 12.83 - samples/sec: 269.91 - lr: 0.000069 - momentum: 0.000000
2023-10-06 14:24:40,058 epoch 7 - iter 60/304 - loss 0.04475238 - time (sec): 24.77 - samples/sec: 259.51 - lr: 0.000068 - momentum: 0.000000
2023-10-06 14:24:51,827 epoch 7 - iter 90/304 - loss 0.04355562 - time (sec): 36.54 - samples/sec: 259.31 - lr: 0.000066 - momentum: 0.000000
2023-10-06 14:25:03,072 epoch 7 - iter 120/304 - loss 0.04393992 - time (sec): 47.79 - samples/sec: 253.95 - lr: 0.000064 - momentum: 0.000000
2023-10-06 14:25:15,495 epoch 7 - iter 150/304 - loss 0.04278608 - time (sec): 60.21 - samples/sec: 254.55 - lr: 0.000062 - momentum: 0.000000
2023-10-06 14:25:27,238 epoch 7 - iter 180/304 - loss 0.03979482 - time (sec): 71.95 - samples/sec: 253.66 - lr: 0.000061 - momentum: 0.000000
2023-10-06 14:25:39,338 epoch 7 - iter 210/304 - loss 0.03687164 - time (sec): 84.05 - samples/sec: 253.43 - lr: 0.000059 - momentum: 0.000000
2023-10-06 14:25:51,070 epoch 7 - iter 240/304 - loss 0.03885836 - time (sec): 95.79 - samples/sec: 253.28 - lr: 0.000057 - momentum: 0.000000
2023-10-06 14:26:03,398 epoch 7 - iter 270/304 - loss 0.03622058 - time (sec): 108.11 - samples/sec: 254.27 - lr: 0.000055 - momentum: 0.000000
2023-10-06 14:26:15,655 epoch 7 - iter 300/304 - loss 0.03868131 - time (sec): 120.37 - samples/sec: 254.71 - lr: 0.000054 - momentum: 0.000000
2023-10-06 14:26:17,064 ----------------------------------------------------------------------------------------------------
2023-10-06 14:26:17,065 EPOCH 7 done: loss 0.0383 - lr: 0.000054
2023-10-06 14:26:25,110 DEV : loss 0.15451328456401825 - f1-score (micro avg)  0.8367
2023-10-06 14:26:25,118 saving best model
2023-10-06 14:26:29,468 ----------------------------------------------------------------------------------------------------
2023-10-06 14:26:41,475 epoch 8 - iter 30/304 - loss 0.02165609 - time (sec): 12.01 - samples/sec: 254.30 - lr: 0.000052 - momentum: 0.000000
2023-10-06 14:26:53,772 epoch 8 - iter 60/304 - loss 0.04272985 - time (sec): 24.30 - samples/sec: 256.60 - lr: 0.000050 - momentum: 0.000000
2023-10-06 14:27:05,779 epoch 8 - iter 90/304 - loss 0.03773130 - time (sec): 36.31 - samples/sec: 255.44 - lr: 0.000048 - momentum: 0.000000
2023-10-06 14:27:18,542 epoch 8 - iter 120/304 - loss 0.03506583 - time (sec): 49.07 - samples/sec: 257.66 - lr: 0.000046 - momentum: 0.000000
2023-10-06 14:27:30,602 epoch 8 - iter 150/304 - loss 0.03570404 - time (sec): 61.13 - samples/sec: 256.42 - lr: 0.000045 - momentum: 0.000000
2023-10-06 14:27:41,936 epoch 8 - iter 180/304 - loss 0.03432633 - time (sec): 72.47 - samples/sec: 254.27 - lr: 0.000043 - momentum: 0.000000
2023-10-06 14:27:53,914 epoch 8 - iter 210/304 - loss 0.03452223 - time (sec): 84.44 - samples/sec: 253.22 - lr: 0.000041 - momentum: 0.000000
2023-10-06 14:28:05,627 epoch 8 - iter 240/304 - loss 0.03310915 - time (sec): 96.16 - samples/sec: 252.85 - lr: 0.000039 - momentum: 0.000000
2023-10-06 14:28:17,751 epoch 8 - iter 270/304 - loss 0.03337918 - time (sec): 108.28 - samples/sec: 253.27 - lr: 0.000038 - momentum: 0.000000
2023-10-06 14:28:30,045 epoch 8 - iter 300/304 - loss 0.03190035 - time (sec): 120.58 - samples/sec: 253.70 - lr: 0.000036 - momentum: 0.000000
2023-10-06 14:28:31,609 ----------------------------------------------------------------------------------------------------
2023-10-06 14:28:31,609 EPOCH 8 done: loss 0.0315 - lr: 0.000036
2023-10-06 14:28:39,657 DEV : loss 0.1636699140071869 - f1-score (micro avg)  0.837
2023-10-06 14:28:39,666 saving best model
2023-10-06 14:28:44,025 ----------------------------------------------------------------------------------------------------
2023-10-06 14:28:56,685 epoch 9 - iter 30/304 - loss 0.01426336 - time (sec): 12.66 - samples/sec: 262.21 - lr: 0.000034 - momentum: 0.000000
2023-10-06 14:29:09,194 epoch 9 - iter 60/304 - loss 0.01439267 - time (sec): 25.17 - samples/sec: 259.14 - lr: 0.000032 - momentum: 0.000000
2023-10-06 14:29:20,744 epoch 9 - iter 90/304 - loss 0.01983298 - time (sec): 36.72 - samples/sec: 253.67 - lr: 0.000030 - momentum: 0.000000
2023-10-06 14:29:33,082 epoch 9 - iter 120/304 - loss 0.01866103 - time (sec): 49.06 - samples/sec: 254.65 - lr: 0.000029 - momentum: 0.000000
2023-10-06 14:29:45,307 epoch 9 - iter 150/304 - loss 0.02460981 - time (sec): 61.28 - samples/sec: 255.99 - lr: 0.000027 - momentum: 0.000000
2023-10-06 14:29:57,380 epoch 9 - iter 180/304 - loss 0.02524037 - time (sec): 73.35 - samples/sec: 255.68 - lr: 0.000025 - momentum: 0.000000
2023-10-06 14:30:09,567 epoch 9 - iter 210/304 - loss 0.02667408 - time (sec): 85.54 - samples/sec: 256.38 - lr: 0.000023 - momentum: 0.000000
2023-10-06 14:30:20,750 epoch 9 - iter 240/304 - loss 0.02742361 - time (sec): 96.72 - samples/sec: 255.42 - lr: 0.000022 - momentum: 0.000000
2023-10-06 14:30:32,314 epoch 9 - iter 270/304 - loss 0.02776823 - time (sec): 108.29 - samples/sec: 256.06 - lr: 0.000020 - momentum: 0.000000
2023-10-06 14:30:43,325 epoch 9 - iter 300/304 - loss 0.02735437 - time (sec): 119.30 - samples/sec: 256.23 - lr: 0.000018 - momentum: 0.000000
2023-10-06 14:30:44,855 ----------------------------------------------------------------------------------------------------
2023-10-06 14:30:44,856 EPOCH 9 done: loss 0.0270 - lr: 0.000018
2023-10-06 14:30:52,100 DEV : loss 0.16385288536548615 - f1-score (micro avg)  0.8431
2023-10-06 14:30:52,108 saving best model
2023-10-06 14:30:53,032 ----------------------------------------------------------------------------------------------------
2023-10-06 14:31:04,431 epoch 10 - iter 30/304 - loss 0.02745366 - time (sec): 11.40 - samples/sec: 262.51 - lr: 0.000016 - momentum: 0.000000
2023-10-06 14:31:15,791 epoch 10 - iter 60/304 - loss 0.02565244 - time (sec): 22.76 - samples/sec: 265.62 - lr: 0.000014 - momentum: 0.000000
2023-10-06 14:31:27,018 epoch 10 - iter 90/304 - loss 0.02200870 - time (sec): 33.98 - samples/sec: 266.83 - lr: 0.000013 - momentum: 0.000000
2023-10-06 14:31:38,453 epoch 10 - iter 120/304 - loss 0.02154119 - time (sec): 45.42 - samples/sec: 264.38 - lr: 0.000011 - momentum: 0.000000
2023-10-06 14:31:49,351 epoch 10 - iter 150/304 - loss 0.01862176 - time (sec): 56.32 - samples/sec: 261.87 - lr: 0.000009 - momentum: 0.000000
2023-10-06 14:32:01,026 epoch 10 - iter 180/304 - loss 0.02338622 - time (sec): 67.99 - samples/sec: 263.48 - lr: 0.000007 - momentum: 0.000000
2023-10-06 14:32:12,148 epoch 10 - iter 210/304 - loss 0.02194682 - time (sec): 79.11 - samples/sec: 264.10 - lr: 0.000006 - momentum: 0.000000
2023-10-06 14:32:23,856 epoch 10 - iter 240/304 - loss 0.02236526 - time (sec): 90.82 - samples/sec: 265.65 - lr: 0.000004 - momentum: 0.000000
2023-10-06 14:32:35,435 epoch 10 - iter 270/304 - loss 0.02102846 - time (sec): 102.40 - samples/sec: 267.80 - lr: 0.000002 - momentum: 0.000000
2023-10-06 14:32:47,064 epoch 10 - iter 300/304 - loss 0.02123298 - time (sec): 114.03 - samples/sec: 268.67 - lr: 0.000000 - momentum: 0.000000
2023-10-06 14:32:48,418 ----------------------------------------------------------------------------------------------------
2023-10-06 14:32:48,418 EPOCH 10 done: loss 0.0224 - lr: 0.000000
2023-10-06 14:32:55,632 DEV : loss 0.16673216223716736 - f1-score (micro avg)  0.841
2023-10-06 14:32:56,519 ----------------------------------------------------------------------------------------------------
2023-10-06 14:32:56,520 Loading model from best epoch ...
2023-10-06 14:33:00,143 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-date, B-date, E-date, I-date, S-object, B-object, E-object, I-object
2023-10-06 14:33:06,776 
Results:
- F-score (micro) 0.8082
- F-score (macro) 0.6229
- Accuracy 0.6843

By class:
              precision    recall  f1-score   support

       scope     0.7722    0.8079    0.7896       151
        pers     0.7778    0.9479    0.8545        96
        work     0.7523    0.8632    0.8039        95
         loc     0.6667    0.6667    0.6667         3
        date     0.0000    0.0000    0.0000         3

   micro avg     0.7674    0.8534    0.8082       348
   macro avg     0.5938    0.6571    0.6229       348
weighted avg     0.7607    0.8534    0.8036       348

2023-10-06 14:33:06,776 ----------------------------------------------------------------------------------------------------