File size: 25,156 Bytes
cbdac7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
2023-10-06 15:14:54,549 ----------------------------------------------------------------------------------------------------
2023-10-06 15:14:54,550 Model: "SequenceTagger(
  (embeddings): ByT5Embeddings(
    (model): T5EncoderModel(
      (shared): Embedding(384, 1472)
      (encoder): T5Stack(
        (embed_tokens): Embedding(384, 1472)
        (block): ModuleList(
          (0): T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                  (relative_attention_bias): Embedding(32, 6)
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
          (1-11): 11 x T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
        )
        (final_layer_norm): T5LayerNorm()
        (dropout): Dropout(p=0.1, inplace=False)
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=1472, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-06 15:14:54,550 ----------------------------------------------------------------------------------------------------
2023-10-06 15:14:54,551 MultiCorpus: 1214 train + 266 dev + 251 test sentences
 - NER_HIPE_2022 Corpus: 1214 train + 266 dev + 251 test sentences - /app/.flair/datasets/ner_hipe_2022/v2.1/ajmc/en/with_doc_seperator
2023-10-06 15:14:54,551 ----------------------------------------------------------------------------------------------------
2023-10-06 15:14:54,551 Train:  1214 sentences
2023-10-06 15:14:54,551         (train_with_dev=False, train_with_test=False)
2023-10-06 15:14:54,551 ----------------------------------------------------------------------------------------------------
2023-10-06 15:14:54,551 Training Params:
2023-10-06 15:14:54,551  - learning_rate: "0.00015" 
2023-10-06 15:14:54,551  - mini_batch_size: "4"
2023-10-06 15:14:54,551  - max_epochs: "10"
2023-10-06 15:14:54,551  - shuffle: "True"
2023-10-06 15:14:54,551 ----------------------------------------------------------------------------------------------------
2023-10-06 15:14:54,551 Plugins:
2023-10-06 15:14:54,551  - TensorboardLogger
2023-10-06 15:14:54,551  - LinearScheduler | warmup_fraction: '0.1'
2023-10-06 15:14:54,551 ----------------------------------------------------------------------------------------------------
2023-10-06 15:14:54,551 Final evaluation on model from best epoch (best-model.pt)
2023-10-06 15:14:54,551  - metric: "('micro avg', 'f1-score')"
2023-10-06 15:14:54,551 ----------------------------------------------------------------------------------------------------
2023-10-06 15:14:54,552 Computation:
2023-10-06 15:14:54,552  - compute on device: cuda:0
2023-10-06 15:14:54,552  - embedding storage: none
2023-10-06 15:14:54,552 ----------------------------------------------------------------------------------------------------
2023-10-06 15:14:54,552 Model training base path: "hmbench-ajmc/en-hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax-bs4-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-5"
2023-10-06 15:14:54,552 ----------------------------------------------------------------------------------------------------
2023-10-06 15:14:54,552 ----------------------------------------------------------------------------------------------------
2023-10-06 15:14:54,552 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-06 15:15:06,477 epoch 1 - iter 30/304 - loss 3.23343998 - time (sec): 11.92 - samples/sec: 268.11 - lr: 0.000014 - momentum: 0.000000
2023-10-06 15:15:17,847 epoch 1 - iter 60/304 - loss 3.22288360 - time (sec): 23.29 - samples/sec: 264.57 - lr: 0.000029 - momentum: 0.000000
2023-10-06 15:15:29,460 epoch 1 - iter 90/304 - loss 3.19705274 - time (sec): 34.91 - samples/sec: 256.68 - lr: 0.000044 - momentum: 0.000000
2023-10-06 15:15:41,241 epoch 1 - iter 120/304 - loss 3.13184691 - time (sec): 46.69 - samples/sec: 255.61 - lr: 0.000059 - momentum: 0.000000
2023-10-06 15:15:52,963 epoch 1 - iter 150/304 - loss 3.03341121 - time (sec): 58.41 - samples/sec: 254.94 - lr: 0.000074 - momentum: 0.000000
2023-10-06 15:16:05,924 epoch 1 - iter 180/304 - loss 2.90838872 - time (sec): 71.37 - samples/sec: 256.59 - lr: 0.000088 - momentum: 0.000000
2023-10-06 15:16:16,857 epoch 1 - iter 210/304 - loss 2.80542255 - time (sec): 82.30 - samples/sec: 253.58 - lr: 0.000103 - momentum: 0.000000
2023-10-06 15:16:29,245 epoch 1 - iter 240/304 - loss 2.66521471 - time (sec): 94.69 - samples/sec: 253.98 - lr: 0.000118 - momentum: 0.000000
2023-10-06 15:16:41,369 epoch 1 - iter 270/304 - loss 2.51887914 - time (sec): 106.82 - samples/sec: 254.87 - lr: 0.000133 - momentum: 0.000000
2023-10-06 15:16:53,851 epoch 1 - iter 300/304 - loss 2.36748077 - time (sec): 119.30 - samples/sec: 256.24 - lr: 0.000148 - momentum: 0.000000
2023-10-06 15:16:55,437 ----------------------------------------------------------------------------------------------------
2023-10-06 15:16:55,437 EPOCH 1 done: loss 2.3481 - lr: 0.000148
2023-10-06 15:17:03,270 DEV : loss 0.9383919835090637 - f1-score (micro avg)  0.0
2023-10-06 15:17:03,278 ----------------------------------------------------------------------------------------------------
2023-10-06 15:17:15,100 epoch 2 - iter 30/304 - loss 0.83648571 - time (sec): 11.82 - samples/sec: 259.23 - lr: 0.000148 - momentum: 0.000000
2023-10-06 15:17:26,764 epoch 2 - iter 60/304 - loss 0.76649649 - time (sec): 23.48 - samples/sec: 259.62 - lr: 0.000147 - momentum: 0.000000
2023-10-06 15:17:39,176 epoch 2 - iter 90/304 - loss 0.74619072 - time (sec): 35.90 - samples/sec: 259.50 - lr: 0.000145 - momentum: 0.000000
2023-10-06 15:17:51,335 epoch 2 - iter 120/304 - loss 0.70922269 - time (sec): 48.06 - samples/sec: 260.51 - lr: 0.000143 - momentum: 0.000000
2023-10-06 15:18:02,189 epoch 2 - iter 150/304 - loss 0.66968302 - time (sec): 58.91 - samples/sec: 255.92 - lr: 0.000142 - momentum: 0.000000
2023-10-06 15:18:13,839 epoch 2 - iter 180/304 - loss 0.61907359 - time (sec): 70.56 - samples/sec: 256.62 - lr: 0.000140 - momentum: 0.000000
2023-10-06 15:18:26,033 epoch 2 - iter 210/304 - loss 0.59912542 - time (sec): 82.75 - samples/sec: 255.28 - lr: 0.000139 - momentum: 0.000000
2023-10-06 15:18:38,038 epoch 2 - iter 240/304 - loss 0.56612844 - time (sec): 94.76 - samples/sec: 256.12 - lr: 0.000137 - momentum: 0.000000
2023-10-06 15:18:50,269 epoch 2 - iter 270/304 - loss 0.53713759 - time (sec): 106.99 - samples/sec: 256.87 - lr: 0.000135 - momentum: 0.000000
2023-10-06 15:19:02,163 epoch 2 - iter 300/304 - loss 0.51203772 - time (sec): 118.88 - samples/sec: 257.54 - lr: 0.000134 - momentum: 0.000000
2023-10-06 15:19:03,653 ----------------------------------------------------------------------------------------------------
2023-10-06 15:19:03,653 EPOCH 2 done: loss 0.5116 - lr: 0.000134
2023-10-06 15:19:11,497 DEV : loss 0.3360927402973175 - f1-score (micro avg)  0.4839
2023-10-06 15:19:11,505 saving best model
2023-10-06 15:19:12,492 ----------------------------------------------------------------------------------------------------
2023-10-06 15:19:24,035 epoch 3 - iter 30/304 - loss 0.34846495 - time (sec): 11.54 - samples/sec: 250.32 - lr: 0.000132 - momentum: 0.000000
2023-10-06 15:19:35,707 epoch 3 - iter 60/304 - loss 0.29775882 - time (sec): 23.21 - samples/sec: 252.45 - lr: 0.000130 - momentum: 0.000000
2023-10-06 15:19:46,823 epoch 3 - iter 90/304 - loss 0.27016891 - time (sec): 34.33 - samples/sec: 250.66 - lr: 0.000128 - momentum: 0.000000
2023-10-06 15:19:59,541 epoch 3 - iter 120/304 - loss 0.26645099 - time (sec): 47.05 - samples/sec: 254.47 - lr: 0.000127 - momentum: 0.000000
2023-10-06 15:20:11,289 epoch 3 - iter 150/304 - loss 0.25301882 - time (sec): 58.80 - samples/sec: 253.29 - lr: 0.000125 - momentum: 0.000000
2023-10-06 15:20:23,403 epoch 3 - iter 180/304 - loss 0.24885049 - time (sec): 70.91 - samples/sec: 253.23 - lr: 0.000124 - momentum: 0.000000
2023-10-06 15:20:35,584 epoch 3 - iter 210/304 - loss 0.23877391 - time (sec): 83.09 - samples/sec: 253.89 - lr: 0.000122 - momentum: 0.000000
2023-10-06 15:20:47,834 epoch 3 - iter 240/304 - loss 0.23063199 - time (sec): 95.34 - samples/sec: 254.60 - lr: 0.000120 - momentum: 0.000000
2023-10-06 15:20:59,711 epoch 3 - iter 270/304 - loss 0.22124203 - time (sec): 107.22 - samples/sec: 254.68 - lr: 0.000119 - momentum: 0.000000
2023-10-06 15:21:11,967 epoch 3 - iter 300/304 - loss 0.21317194 - time (sec): 119.47 - samples/sec: 255.63 - lr: 0.000117 - momentum: 0.000000
2023-10-06 15:21:13,656 ----------------------------------------------------------------------------------------------------
2023-10-06 15:21:13,656 EPOCH 3 done: loss 0.2127 - lr: 0.000117
2023-10-06 15:21:21,677 DEV : loss 0.19596518576145172 - f1-score (micro avg)  0.6897
2023-10-06 15:21:21,685 saving best model
2023-10-06 15:21:25,879 ----------------------------------------------------------------------------------------------------
2023-10-06 15:21:38,154 epoch 4 - iter 30/304 - loss 0.16356280 - time (sec): 12.27 - samples/sec: 257.95 - lr: 0.000115 - momentum: 0.000000
2023-10-06 15:21:49,440 epoch 4 - iter 60/304 - loss 0.15394459 - time (sec): 23.56 - samples/sec: 251.28 - lr: 0.000113 - momentum: 0.000000
2023-10-06 15:22:01,355 epoch 4 - iter 90/304 - loss 0.14506530 - time (sec): 35.47 - samples/sec: 252.52 - lr: 0.000112 - momentum: 0.000000
2023-10-06 15:22:13,307 epoch 4 - iter 120/304 - loss 0.13973248 - time (sec): 47.43 - samples/sec: 253.42 - lr: 0.000110 - momentum: 0.000000
2023-10-06 15:22:25,445 epoch 4 - iter 150/304 - loss 0.13837821 - time (sec): 59.57 - samples/sec: 253.71 - lr: 0.000109 - momentum: 0.000000
2023-10-06 15:22:37,347 epoch 4 - iter 180/304 - loss 0.13092858 - time (sec): 71.47 - samples/sec: 254.19 - lr: 0.000107 - momentum: 0.000000
2023-10-06 15:22:48,932 epoch 4 - iter 210/304 - loss 0.12807551 - time (sec): 83.05 - samples/sec: 253.80 - lr: 0.000105 - momentum: 0.000000
2023-10-06 15:23:01,772 epoch 4 - iter 240/304 - loss 0.12378548 - time (sec): 95.89 - samples/sec: 256.80 - lr: 0.000104 - momentum: 0.000000
2023-10-06 15:23:14,397 epoch 4 - iter 270/304 - loss 0.12188333 - time (sec): 108.52 - samples/sec: 257.16 - lr: 0.000102 - momentum: 0.000000
2023-10-06 15:23:25,691 epoch 4 - iter 300/304 - loss 0.11711521 - time (sec): 119.81 - samples/sec: 255.83 - lr: 0.000100 - momentum: 0.000000
2023-10-06 15:23:27,076 ----------------------------------------------------------------------------------------------------
2023-10-06 15:23:27,077 EPOCH 4 done: loss 0.1165 - lr: 0.000100
2023-10-06 15:23:34,950 DEV : loss 0.14813771843910217 - f1-score (micro avg)  0.7958
2023-10-06 15:23:34,958 saving best model
2023-10-06 15:23:39,268 ----------------------------------------------------------------------------------------------------
2023-10-06 15:23:51,238 epoch 5 - iter 30/304 - loss 0.05189033 - time (sec): 11.97 - samples/sec: 256.91 - lr: 0.000098 - momentum: 0.000000
2023-10-06 15:24:02,832 epoch 5 - iter 60/304 - loss 0.07692114 - time (sec): 23.56 - samples/sec: 257.49 - lr: 0.000097 - momentum: 0.000000
2023-10-06 15:24:15,080 epoch 5 - iter 90/304 - loss 0.07768443 - time (sec): 35.81 - samples/sec: 258.38 - lr: 0.000095 - momentum: 0.000000
2023-10-06 15:24:27,053 epoch 5 - iter 120/304 - loss 0.07680150 - time (sec): 47.78 - samples/sec: 259.83 - lr: 0.000094 - momentum: 0.000000
2023-10-06 15:24:39,247 epoch 5 - iter 150/304 - loss 0.08172290 - time (sec): 59.98 - samples/sec: 260.31 - lr: 0.000092 - momentum: 0.000000
2023-10-06 15:24:50,853 epoch 5 - iter 180/304 - loss 0.07660559 - time (sec): 71.58 - samples/sec: 259.08 - lr: 0.000090 - momentum: 0.000000
2023-10-06 15:25:03,175 epoch 5 - iter 210/304 - loss 0.07248568 - time (sec): 83.91 - samples/sec: 259.14 - lr: 0.000089 - momentum: 0.000000
2023-10-06 15:25:15,136 epoch 5 - iter 240/304 - loss 0.07334292 - time (sec): 95.87 - samples/sec: 259.80 - lr: 0.000087 - momentum: 0.000000
2023-10-06 15:25:26,971 epoch 5 - iter 270/304 - loss 0.07069816 - time (sec): 107.70 - samples/sec: 258.59 - lr: 0.000085 - momentum: 0.000000
2023-10-06 15:25:38,568 epoch 5 - iter 300/304 - loss 0.07232378 - time (sec): 119.30 - samples/sec: 257.86 - lr: 0.000084 - momentum: 0.000000
2023-10-06 15:25:39,696 ----------------------------------------------------------------------------------------------------
2023-10-06 15:25:39,697 EPOCH 5 done: loss 0.0719 - lr: 0.000084
2023-10-06 15:25:47,674 DEV : loss 0.14675813913345337 - f1-score (micro avg)  0.7995
2023-10-06 15:25:47,683 saving best model
2023-10-06 15:25:52,000 ----------------------------------------------------------------------------------------------------
2023-10-06 15:26:03,984 epoch 6 - iter 30/304 - loss 0.08138966 - time (sec): 11.98 - samples/sec: 265.72 - lr: 0.000082 - momentum: 0.000000
2023-10-06 15:26:16,058 epoch 6 - iter 60/304 - loss 0.06957171 - time (sec): 24.06 - samples/sec: 267.62 - lr: 0.000080 - momentum: 0.000000
2023-10-06 15:26:27,991 epoch 6 - iter 90/304 - loss 0.06031100 - time (sec): 35.99 - samples/sec: 270.50 - lr: 0.000079 - momentum: 0.000000
2023-10-06 15:26:39,420 epoch 6 - iter 120/304 - loss 0.05820154 - time (sec): 47.42 - samples/sec: 270.86 - lr: 0.000077 - momentum: 0.000000
2023-10-06 15:26:50,563 epoch 6 - iter 150/304 - loss 0.05286555 - time (sec): 58.56 - samples/sec: 271.87 - lr: 0.000075 - momentum: 0.000000
2023-10-06 15:27:00,994 epoch 6 - iter 180/304 - loss 0.04973384 - time (sec): 68.99 - samples/sec: 269.38 - lr: 0.000074 - momentum: 0.000000
2023-10-06 15:27:12,623 epoch 6 - iter 210/304 - loss 0.05049495 - time (sec): 80.62 - samples/sec: 270.82 - lr: 0.000072 - momentum: 0.000000
2023-10-06 15:27:23,331 epoch 6 - iter 240/304 - loss 0.05100559 - time (sec): 91.33 - samples/sec: 270.37 - lr: 0.000070 - momentum: 0.000000
2023-10-06 15:27:34,415 epoch 6 - iter 270/304 - loss 0.04940749 - time (sec): 102.41 - samples/sec: 269.52 - lr: 0.000069 - momentum: 0.000000
2023-10-06 15:27:45,754 epoch 6 - iter 300/304 - loss 0.05137662 - time (sec): 113.75 - samples/sec: 269.68 - lr: 0.000067 - momentum: 0.000000
2023-10-06 15:27:46,967 ----------------------------------------------------------------------------------------------------
2023-10-06 15:27:46,968 EPOCH 6 done: loss 0.0525 - lr: 0.000067
2023-10-06 15:27:54,072 DEV : loss 0.1478758007287979 - f1-score (micro avg)  0.8151
2023-10-06 15:27:54,080 saving best model
2023-10-06 15:27:58,409 ----------------------------------------------------------------------------------------------------
2023-10-06 15:28:09,207 epoch 7 - iter 30/304 - loss 0.02944793 - time (sec): 10.80 - samples/sec: 265.64 - lr: 0.000065 - momentum: 0.000000
2023-10-06 15:28:19,973 epoch 7 - iter 60/304 - loss 0.03347190 - time (sec): 21.56 - samples/sec: 266.85 - lr: 0.000063 - momentum: 0.000000
2023-10-06 15:28:31,176 epoch 7 - iter 90/304 - loss 0.02834258 - time (sec): 32.77 - samples/sec: 267.36 - lr: 0.000062 - momentum: 0.000000
2023-10-06 15:28:42,314 epoch 7 - iter 120/304 - loss 0.03031835 - time (sec): 43.90 - samples/sec: 269.43 - lr: 0.000060 - momentum: 0.000000
2023-10-06 15:28:53,456 epoch 7 - iter 150/304 - loss 0.02974656 - time (sec): 55.04 - samples/sec: 269.16 - lr: 0.000059 - momentum: 0.000000
2023-10-06 15:29:05,155 epoch 7 - iter 180/304 - loss 0.03371158 - time (sec): 66.74 - samples/sec: 271.20 - lr: 0.000057 - momentum: 0.000000
2023-10-06 15:29:16,354 epoch 7 - iter 210/304 - loss 0.03208932 - time (sec): 77.94 - samples/sec: 272.03 - lr: 0.000055 - momentum: 0.000000
2023-10-06 15:29:27,622 epoch 7 - iter 240/304 - loss 0.03349765 - time (sec): 89.21 - samples/sec: 270.88 - lr: 0.000054 - momentum: 0.000000
2023-10-06 15:29:39,306 epoch 7 - iter 270/304 - loss 0.03330430 - time (sec): 100.90 - samples/sec: 272.61 - lr: 0.000052 - momentum: 0.000000
2023-10-06 15:29:50,864 epoch 7 - iter 300/304 - loss 0.04026473 - time (sec): 112.45 - samples/sec: 272.22 - lr: 0.000050 - momentum: 0.000000
2023-10-06 15:29:52,226 ----------------------------------------------------------------------------------------------------
2023-10-06 15:29:52,226 EPOCH 7 done: loss 0.0398 - lr: 0.000050
2023-10-06 15:29:59,692 DEV : loss 0.15869873762130737 - f1-score (micro avg)  0.8254
2023-10-06 15:29:59,700 saving best model
2023-10-06 15:30:04,025 ----------------------------------------------------------------------------------------------------
2023-10-06 15:30:15,233 epoch 8 - iter 30/304 - loss 0.04093775 - time (sec): 11.21 - samples/sec: 270.27 - lr: 0.000048 - momentum: 0.000000
2023-10-06 15:30:26,471 epoch 8 - iter 60/304 - loss 0.04151933 - time (sec): 22.44 - samples/sec: 266.16 - lr: 0.000047 - momentum: 0.000000
2023-10-06 15:30:37,321 epoch 8 - iter 90/304 - loss 0.03716224 - time (sec): 33.30 - samples/sec: 261.21 - lr: 0.000045 - momentum: 0.000000
2023-10-06 15:30:48,960 epoch 8 - iter 120/304 - loss 0.03713580 - time (sec): 44.93 - samples/sec: 262.01 - lr: 0.000044 - momentum: 0.000000
2023-10-06 15:31:01,047 epoch 8 - iter 150/304 - loss 0.03630827 - time (sec): 57.02 - samples/sec: 262.85 - lr: 0.000042 - momentum: 0.000000
2023-10-06 15:31:12,792 epoch 8 - iter 180/304 - loss 0.03460352 - time (sec): 68.77 - samples/sec: 261.06 - lr: 0.000040 - momentum: 0.000000
2023-10-06 15:31:25,105 epoch 8 - iter 210/304 - loss 0.03214098 - time (sec): 81.08 - samples/sec: 261.36 - lr: 0.000039 - momentum: 0.000000
2023-10-06 15:31:37,569 epoch 8 - iter 240/304 - loss 0.03134757 - time (sec): 93.54 - samples/sec: 262.97 - lr: 0.000037 - momentum: 0.000000
2023-10-06 15:31:49,741 epoch 8 - iter 270/304 - loss 0.03276907 - time (sec): 105.72 - samples/sec: 262.73 - lr: 0.000035 - momentum: 0.000000
2023-10-06 15:32:00,861 epoch 8 - iter 300/304 - loss 0.03405317 - time (sec): 116.83 - samples/sec: 261.69 - lr: 0.000034 - momentum: 0.000000
2023-10-06 15:32:02,424 ----------------------------------------------------------------------------------------------------
2023-10-06 15:32:02,424 EPOCH 8 done: loss 0.0339 - lr: 0.000034
2023-10-06 15:32:09,779 DEV : loss 0.1572294384241104 - f1-score (micro avg)  0.837
2023-10-06 15:32:09,791 saving best model
2023-10-06 15:32:14,497 ----------------------------------------------------------------------------------------------------
2023-10-06 15:32:26,418 epoch 9 - iter 30/304 - loss 0.03926648 - time (sec): 11.92 - samples/sec: 283.50 - lr: 0.000032 - momentum: 0.000000
2023-10-06 15:32:37,728 epoch 9 - iter 60/304 - loss 0.03292966 - time (sec): 23.23 - samples/sec: 282.53 - lr: 0.000030 - momentum: 0.000000
2023-10-06 15:32:48,745 epoch 9 - iter 90/304 - loss 0.03106427 - time (sec): 34.25 - samples/sec: 278.04 - lr: 0.000029 - momentum: 0.000000
2023-10-06 15:32:59,485 epoch 9 - iter 120/304 - loss 0.03029571 - time (sec): 44.99 - samples/sec: 275.64 - lr: 0.000027 - momentum: 0.000000
2023-10-06 15:33:10,627 epoch 9 - iter 150/304 - loss 0.02641133 - time (sec): 56.13 - samples/sec: 273.14 - lr: 0.000025 - momentum: 0.000000
2023-10-06 15:33:22,017 epoch 9 - iter 180/304 - loss 0.02607911 - time (sec): 67.52 - samples/sec: 273.51 - lr: 0.000024 - momentum: 0.000000
2023-10-06 15:33:33,639 epoch 9 - iter 210/304 - loss 0.02502963 - time (sec): 79.14 - samples/sec: 273.97 - lr: 0.000022 - momentum: 0.000000
2023-10-06 15:33:44,669 epoch 9 - iter 240/304 - loss 0.02840878 - time (sec): 90.17 - samples/sec: 272.65 - lr: 0.000020 - momentum: 0.000000
2023-10-06 15:33:55,629 epoch 9 - iter 270/304 - loss 0.02606547 - time (sec): 101.13 - samples/sec: 272.82 - lr: 0.000019 - momentum: 0.000000
2023-10-06 15:34:06,757 epoch 9 - iter 300/304 - loss 0.02663716 - time (sec): 112.26 - samples/sec: 272.69 - lr: 0.000017 - momentum: 0.000000
2023-10-06 15:34:08,047 ----------------------------------------------------------------------------------------------------
2023-10-06 15:34:08,047 EPOCH 9 done: loss 0.0270 - lr: 0.000017
2023-10-06 15:34:15,070 DEV : loss 0.16326496005058289 - f1-score (micro avg)  0.8359
2023-10-06 15:34:15,077 ----------------------------------------------------------------------------------------------------
2023-10-06 15:34:25,865 epoch 10 - iter 30/304 - loss 0.03134249 - time (sec): 10.79 - samples/sec: 266.42 - lr: 0.000015 - momentum: 0.000000
2023-10-06 15:34:38,025 epoch 10 - iter 60/304 - loss 0.02757941 - time (sec): 22.95 - samples/sec: 277.85 - lr: 0.000014 - momentum: 0.000000
2023-10-06 15:34:49,214 epoch 10 - iter 90/304 - loss 0.02547701 - time (sec): 34.14 - samples/sec: 274.40 - lr: 0.000012 - momentum: 0.000000
2023-10-06 15:35:00,419 epoch 10 - iter 120/304 - loss 0.02355033 - time (sec): 45.34 - samples/sec: 272.55 - lr: 0.000010 - momentum: 0.000000
2023-10-06 15:35:11,177 epoch 10 - iter 150/304 - loss 0.02498782 - time (sec): 56.10 - samples/sec: 269.65 - lr: 0.000009 - momentum: 0.000000
2023-10-06 15:35:22,614 epoch 10 - iter 180/304 - loss 0.02443102 - time (sec): 67.54 - samples/sec: 270.51 - lr: 0.000007 - momentum: 0.000000
2023-10-06 15:35:33,818 epoch 10 - iter 210/304 - loss 0.02205130 - time (sec): 78.74 - samples/sec: 267.78 - lr: 0.000005 - momentum: 0.000000
2023-10-06 15:35:45,708 epoch 10 - iter 240/304 - loss 0.02222944 - time (sec): 90.63 - samples/sec: 268.27 - lr: 0.000004 - momentum: 0.000000
2023-10-06 15:35:57,393 epoch 10 - iter 270/304 - loss 0.02155449 - time (sec): 102.31 - samples/sec: 268.74 - lr: 0.000002 - momentum: 0.000000
2023-10-06 15:36:09,165 epoch 10 - iter 300/304 - loss 0.02313283 - time (sec): 114.09 - samples/sec: 269.33 - lr: 0.000000 - momentum: 0.000000
2023-10-06 15:36:10,383 ----------------------------------------------------------------------------------------------------
2023-10-06 15:36:10,383 EPOCH 10 done: loss 0.0237 - lr: 0.000000
2023-10-06 15:36:18,002 DEV : loss 0.16279256343841553 - f1-score (micro avg)  0.8302
2023-10-06 15:36:18,831 ----------------------------------------------------------------------------------------------------
2023-10-06 15:36:18,832 Loading model from best epoch ...
2023-10-06 15:36:21,516 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-date, B-date, E-date, I-date, S-object, B-object, E-object, I-object
2023-10-06 15:36:28,563 
Results:
- F-score (micro) 0.8104
- F-score (macro) 0.6512
- Accuracy 0.686

By class:
              precision    recall  f1-score   support

       scope     0.7707    0.8013    0.7857       151
        work     0.7321    0.8632    0.7923        95
        pers     0.8257    0.9375    0.8780        96
         loc     1.0000    0.6667    0.8000         3
        date     0.0000    0.0000    0.0000         3

   micro avg     0.7763    0.8477    0.8104       348
   macro avg     0.6657    0.6537    0.6512       348
weighted avg     0.7707    0.8477    0.8063       348

2023-10-06 15:36:28,563 ----------------------------------------------------------------------------------------------------