File size: 23,897 Bytes
9627751 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
2023-10-13 09:11:34,164 ----------------------------------------------------------------------------------------------------
2023-10-13 09:11:34,165 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(32001, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=25, bias=True)
(loss_function): CrossEntropyLoss()
)"
2023-10-13 09:11:34,165 ----------------------------------------------------------------------------------------------------
2023-10-13 09:11:34,165 MultiCorpus: 1214 train + 266 dev + 251 test sentences
- NER_HIPE_2022 Corpus: 1214 train + 266 dev + 251 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/en/with_doc_seperator
2023-10-13 09:11:34,165 ----------------------------------------------------------------------------------------------------
2023-10-13 09:11:34,166 Train: 1214 sentences
2023-10-13 09:11:34,166 (train_with_dev=False, train_with_test=False)
2023-10-13 09:11:34,166 ----------------------------------------------------------------------------------------------------
2023-10-13 09:11:34,166 Training Params:
2023-10-13 09:11:34,166 - learning_rate: "3e-05"
2023-10-13 09:11:34,166 - mini_batch_size: "4"
2023-10-13 09:11:34,166 - max_epochs: "10"
2023-10-13 09:11:34,166 - shuffle: "True"
2023-10-13 09:11:34,166 ----------------------------------------------------------------------------------------------------
2023-10-13 09:11:34,166 Plugins:
2023-10-13 09:11:34,166 - LinearScheduler | warmup_fraction: '0.1'
2023-10-13 09:11:34,166 ----------------------------------------------------------------------------------------------------
2023-10-13 09:11:34,166 Final evaluation on model from best epoch (best-model.pt)
2023-10-13 09:11:34,166 - metric: "('micro avg', 'f1-score')"
2023-10-13 09:11:34,166 ----------------------------------------------------------------------------------------------------
2023-10-13 09:11:34,166 Computation:
2023-10-13 09:11:34,166 - compute on device: cuda:0
2023-10-13 09:11:34,166 - embedding storage: none
2023-10-13 09:11:34,166 ----------------------------------------------------------------------------------------------------
2023-10-13 09:11:34,166 Model training base path: "hmbench-ajmc/en-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2"
2023-10-13 09:11:34,166 ----------------------------------------------------------------------------------------------------
2023-10-13 09:11:34,166 ----------------------------------------------------------------------------------------------------
2023-10-13 09:11:35,576 epoch 1 - iter 30/304 - loss 3.35375126 - time (sec): 1.41 - samples/sec: 2181.26 - lr: 0.000003 - momentum: 0.000000
2023-10-13 09:11:36,887 epoch 1 - iter 60/304 - loss 2.95856678 - time (sec): 2.72 - samples/sec: 2324.09 - lr: 0.000006 - momentum: 0.000000
2023-10-13 09:11:38,204 epoch 1 - iter 90/304 - loss 2.26373515 - time (sec): 4.04 - samples/sec: 2333.05 - lr: 0.000009 - momentum: 0.000000
2023-10-13 09:11:39,515 epoch 1 - iter 120/304 - loss 1.90301912 - time (sec): 5.35 - samples/sec: 2295.26 - lr: 0.000012 - momentum: 0.000000
2023-10-13 09:11:40,828 epoch 1 - iter 150/304 - loss 1.63730036 - time (sec): 6.66 - samples/sec: 2328.35 - lr: 0.000015 - momentum: 0.000000
2023-10-13 09:11:42,128 epoch 1 - iter 180/304 - loss 1.44861964 - time (sec): 7.96 - samples/sec: 2314.20 - lr: 0.000018 - momentum: 0.000000
2023-10-13 09:11:43,445 epoch 1 - iter 210/304 - loss 1.29232475 - time (sec): 9.28 - samples/sec: 2302.80 - lr: 0.000021 - momentum: 0.000000
2023-10-13 09:11:44,775 epoch 1 - iter 240/304 - loss 1.17915743 - time (sec): 10.61 - samples/sec: 2300.40 - lr: 0.000024 - momentum: 0.000000
2023-10-13 09:11:46,095 epoch 1 - iter 270/304 - loss 1.08551974 - time (sec): 11.93 - samples/sec: 2293.21 - lr: 0.000027 - momentum: 0.000000
2023-10-13 09:11:47,410 epoch 1 - iter 300/304 - loss 1.00236337 - time (sec): 13.24 - samples/sec: 2309.81 - lr: 0.000030 - momentum: 0.000000
2023-10-13 09:11:47,587 ----------------------------------------------------------------------------------------------------
2023-10-13 09:11:47,587 EPOCH 1 done: loss 0.9936 - lr: 0.000030
2023-10-13 09:11:48,584 DEV : loss 0.2579602897167206 - f1-score (micro avg) 0.4773
2023-10-13 09:11:48,589 saving best model
2023-10-13 09:11:48,954 ----------------------------------------------------------------------------------------------------
2023-10-13 09:11:50,414 epoch 2 - iter 30/304 - loss 0.27558021 - time (sec): 1.46 - samples/sec: 2040.19 - lr: 0.000030 - momentum: 0.000000
2023-10-13 09:11:51,866 epoch 2 - iter 60/304 - loss 0.24334816 - time (sec): 2.91 - samples/sec: 2070.02 - lr: 0.000029 - momentum: 0.000000
2023-10-13 09:11:53,355 epoch 2 - iter 90/304 - loss 0.20641996 - time (sec): 4.40 - samples/sec: 2062.78 - lr: 0.000029 - momentum: 0.000000
2023-10-13 09:11:54,768 epoch 2 - iter 120/304 - loss 0.20667576 - time (sec): 5.81 - samples/sec: 2088.44 - lr: 0.000029 - momentum: 0.000000
2023-10-13 09:11:56,148 epoch 2 - iter 150/304 - loss 0.19291693 - time (sec): 7.19 - samples/sec: 2134.07 - lr: 0.000028 - momentum: 0.000000
2023-10-13 09:11:57,479 epoch 2 - iter 180/304 - loss 0.18565077 - time (sec): 8.52 - samples/sec: 2142.09 - lr: 0.000028 - momentum: 0.000000
2023-10-13 09:11:58,816 epoch 2 - iter 210/304 - loss 0.17594776 - time (sec): 9.86 - samples/sec: 2185.21 - lr: 0.000028 - momentum: 0.000000
2023-10-13 09:12:00,120 epoch 2 - iter 240/304 - loss 0.16750310 - time (sec): 11.16 - samples/sec: 2214.63 - lr: 0.000027 - momentum: 0.000000
2023-10-13 09:12:01,435 epoch 2 - iter 270/304 - loss 0.16907637 - time (sec): 12.48 - samples/sec: 2227.95 - lr: 0.000027 - momentum: 0.000000
2023-10-13 09:12:02,752 epoch 2 - iter 300/304 - loss 0.16188542 - time (sec): 13.80 - samples/sec: 2231.51 - lr: 0.000027 - momentum: 0.000000
2023-10-13 09:12:02,924 ----------------------------------------------------------------------------------------------------
2023-10-13 09:12:02,925 EPOCH 2 done: loss 0.1622 - lr: 0.000027
2023-10-13 09:12:03,976 DEV : loss 0.14629144966602325 - f1-score (micro avg) 0.8153
2023-10-13 09:12:03,986 saving best model
2023-10-13 09:12:04,499 ----------------------------------------------------------------------------------------------------
2023-10-13 09:12:05,891 epoch 3 - iter 30/304 - loss 0.05968550 - time (sec): 1.39 - samples/sec: 2190.17 - lr: 0.000026 - momentum: 0.000000
2023-10-13 09:12:07,227 epoch 3 - iter 60/304 - loss 0.06661242 - time (sec): 2.72 - samples/sec: 2235.46 - lr: 0.000026 - momentum: 0.000000
2023-10-13 09:12:08,541 epoch 3 - iter 90/304 - loss 0.07023246 - time (sec): 4.04 - samples/sec: 2324.92 - lr: 0.000026 - momentum: 0.000000
2023-10-13 09:12:09,852 epoch 3 - iter 120/304 - loss 0.06898371 - time (sec): 5.35 - samples/sec: 2301.97 - lr: 0.000025 - momentum: 0.000000
2023-10-13 09:12:11,165 epoch 3 - iter 150/304 - loss 0.07165433 - time (sec): 6.66 - samples/sec: 2299.15 - lr: 0.000025 - momentum: 0.000000
2023-10-13 09:12:12,471 epoch 3 - iter 180/304 - loss 0.07808419 - time (sec): 7.97 - samples/sec: 2282.30 - lr: 0.000025 - momentum: 0.000000
2023-10-13 09:12:13,808 epoch 3 - iter 210/304 - loss 0.08536130 - time (sec): 9.31 - samples/sec: 2294.60 - lr: 0.000024 - momentum: 0.000000
2023-10-13 09:12:15,143 epoch 3 - iter 240/304 - loss 0.08939663 - time (sec): 10.64 - samples/sec: 2288.75 - lr: 0.000024 - momentum: 0.000000
2023-10-13 09:12:16,498 epoch 3 - iter 270/304 - loss 0.08897527 - time (sec): 12.00 - samples/sec: 2314.40 - lr: 0.000024 - momentum: 0.000000
2023-10-13 09:12:17,828 epoch 3 - iter 300/304 - loss 0.09180584 - time (sec): 13.32 - samples/sec: 2292.68 - lr: 0.000023 - momentum: 0.000000
2023-10-13 09:12:18,004 ----------------------------------------------------------------------------------------------------
2023-10-13 09:12:18,004 EPOCH 3 done: loss 0.0914 - lr: 0.000023
2023-10-13 09:12:18,999 DEV : loss 0.16112016141414642 - f1-score (micro avg) 0.7892
2023-10-13 09:12:19,007 ----------------------------------------------------------------------------------------------------
2023-10-13 09:12:20,582 epoch 4 - iter 30/304 - loss 0.04115302 - time (sec): 1.57 - samples/sec: 2039.80 - lr: 0.000023 - momentum: 0.000000
2023-10-13 09:12:22,196 epoch 4 - iter 60/304 - loss 0.03239643 - time (sec): 3.19 - samples/sec: 1970.78 - lr: 0.000023 - momentum: 0.000000
2023-10-13 09:12:23,552 epoch 4 - iter 90/304 - loss 0.05223740 - time (sec): 4.54 - samples/sec: 2037.80 - lr: 0.000022 - momentum: 0.000000
2023-10-13 09:12:24,864 epoch 4 - iter 120/304 - loss 0.04822337 - time (sec): 5.85 - samples/sec: 2078.61 - lr: 0.000022 - momentum: 0.000000
2023-10-13 09:12:26,184 epoch 4 - iter 150/304 - loss 0.04568180 - time (sec): 7.17 - samples/sec: 2139.95 - lr: 0.000022 - momentum: 0.000000
2023-10-13 09:12:27,484 epoch 4 - iter 180/304 - loss 0.05593238 - time (sec): 8.48 - samples/sec: 2165.17 - lr: 0.000021 - momentum: 0.000000
2023-10-13 09:12:28,819 epoch 4 - iter 210/304 - loss 0.05875782 - time (sec): 9.81 - samples/sec: 2183.31 - lr: 0.000021 - momentum: 0.000000
2023-10-13 09:12:30,345 epoch 4 - iter 240/304 - loss 0.06307644 - time (sec): 11.34 - samples/sec: 2169.16 - lr: 0.000021 - momentum: 0.000000
2023-10-13 09:12:31,680 epoch 4 - iter 270/304 - loss 0.06423237 - time (sec): 12.67 - samples/sec: 2185.58 - lr: 0.000020 - momentum: 0.000000
2023-10-13 09:12:33,006 epoch 4 - iter 300/304 - loss 0.06965799 - time (sec): 14.00 - samples/sec: 2185.76 - lr: 0.000020 - momentum: 0.000000
2023-10-13 09:12:33,182 ----------------------------------------------------------------------------------------------------
2023-10-13 09:12:33,183 EPOCH 4 done: loss 0.0689 - lr: 0.000020
2023-10-13 09:12:34,219 DEV : loss 0.17021441459655762 - f1-score (micro avg) 0.8286
2023-10-13 09:12:34,227 saving best model
2023-10-13 09:12:34,694 ----------------------------------------------------------------------------------------------------
2023-10-13 09:12:36,292 epoch 5 - iter 30/304 - loss 0.04112044 - time (sec): 1.60 - samples/sec: 1991.10 - lr: 0.000020 - momentum: 0.000000
2023-10-13 09:12:37,843 epoch 5 - iter 60/304 - loss 0.03209144 - time (sec): 3.15 - samples/sec: 2031.90 - lr: 0.000019 - momentum: 0.000000
2023-10-13 09:12:39,400 epoch 5 - iter 90/304 - loss 0.02949647 - time (sec): 4.70 - samples/sec: 2006.05 - lr: 0.000019 - momentum: 0.000000
2023-10-13 09:12:41,037 epoch 5 - iter 120/304 - loss 0.03606315 - time (sec): 6.34 - samples/sec: 1966.62 - lr: 0.000019 - momentum: 0.000000
2023-10-13 09:12:42,703 epoch 5 - iter 150/304 - loss 0.04624669 - time (sec): 8.01 - samples/sec: 1938.38 - lr: 0.000018 - momentum: 0.000000
2023-10-13 09:12:44,336 epoch 5 - iter 180/304 - loss 0.04420425 - time (sec): 9.64 - samples/sec: 1927.80 - lr: 0.000018 - momentum: 0.000000
2023-10-13 09:12:45,947 epoch 5 - iter 210/304 - loss 0.04227590 - time (sec): 11.25 - samples/sec: 1913.60 - lr: 0.000018 - momentum: 0.000000
2023-10-13 09:12:47,650 epoch 5 - iter 240/304 - loss 0.04668771 - time (sec): 12.95 - samples/sec: 1901.23 - lr: 0.000017 - momentum: 0.000000
2023-10-13 09:12:49,300 epoch 5 - iter 270/304 - loss 0.04686959 - time (sec): 14.60 - samples/sec: 1890.67 - lr: 0.000017 - momentum: 0.000000
2023-10-13 09:12:50,826 epoch 5 - iter 300/304 - loss 0.04646029 - time (sec): 16.13 - samples/sec: 1900.96 - lr: 0.000017 - momentum: 0.000000
2023-10-13 09:12:50,994 ----------------------------------------------------------------------------------------------------
2023-10-13 09:12:50,995 EPOCH 5 done: loss 0.0465 - lr: 0.000017
2023-10-13 09:12:52,042 DEV : loss 0.2058655172586441 - f1-score (micro avg) 0.8233
2023-10-13 09:12:52,052 ----------------------------------------------------------------------------------------------------
2023-10-13 09:12:53,684 epoch 6 - iter 30/304 - loss 0.05046724 - time (sec): 1.63 - samples/sec: 1717.40 - lr: 0.000016 - momentum: 0.000000
2023-10-13 09:12:55,044 epoch 6 - iter 60/304 - loss 0.04432771 - time (sec): 2.99 - samples/sec: 2025.89 - lr: 0.000016 - momentum: 0.000000
2023-10-13 09:12:56,388 epoch 6 - iter 90/304 - loss 0.03676034 - time (sec): 4.33 - samples/sec: 2102.11 - lr: 0.000016 - momentum: 0.000000
2023-10-13 09:12:57,721 epoch 6 - iter 120/304 - loss 0.03256242 - time (sec): 5.67 - samples/sec: 2151.39 - lr: 0.000015 - momentum: 0.000000
2023-10-13 09:12:59,020 epoch 6 - iter 150/304 - loss 0.02929072 - time (sec): 6.97 - samples/sec: 2149.63 - lr: 0.000015 - momentum: 0.000000
2023-10-13 09:13:00,326 epoch 6 - iter 180/304 - loss 0.02920208 - time (sec): 8.27 - samples/sec: 2186.08 - lr: 0.000015 - momentum: 0.000000
2023-10-13 09:13:01,697 epoch 6 - iter 210/304 - loss 0.03288655 - time (sec): 9.64 - samples/sec: 2205.83 - lr: 0.000014 - momentum: 0.000000
2023-10-13 09:13:03,026 epoch 6 - iter 240/304 - loss 0.03747087 - time (sec): 10.97 - samples/sec: 2217.29 - lr: 0.000014 - momentum: 0.000000
2023-10-13 09:13:04,362 epoch 6 - iter 270/304 - loss 0.03500701 - time (sec): 12.31 - samples/sec: 2220.88 - lr: 0.000014 - momentum: 0.000000
2023-10-13 09:13:05,772 epoch 6 - iter 300/304 - loss 0.03544502 - time (sec): 13.72 - samples/sec: 2232.62 - lr: 0.000013 - momentum: 0.000000
2023-10-13 09:13:05,956 ----------------------------------------------------------------------------------------------------
2023-10-13 09:13:05,957 EPOCH 6 done: loss 0.0355 - lr: 0.000013
2023-10-13 09:13:06,892 DEV : loss 0.20123393833637238 - f1-score (micro avg) 0.8241
2023-10-13 09:13:06,899 ----------------------------------------------------------------------------------------------------
2023-10-13 09:13:08,180 epoch 7 - iter 30/304 - loss 0.01961303 - time (sec): 1.28 - samples/sec: 2408.89 - lr: 0.000013 - momentum: 0.000000
2023-10-13 09:13:09,496 epoch 7 - iter 60/304 - loss 0.03318365 - time (sec): 2.60 - samples/sec: 2358.80 - lr: 0.000013 - momentum: 0.000000
2023-10-13 09:13:10,818 epoch 7 - iter 90/304 - loss 0.03814019 - time (sec): 3.92 - samples/sec: 2318.15 - lr: 0.000012 - momentum: 0.000000
2023-10-13 09:13:12,170 epoch 7 - iter 120/304 - loss 0.03423627 - time (sec): 5.27 - samples/sec: 2376.25 - lr: 0.000012 - momentum: 0.000000
2023-10-13 09:13:13,501 epoch 7 - iter 150/304 - loss 0.02933986 - time (sec): 6.60 - samples/sec: 2344.86 - lr: 0.000012 - momentum: 0.000000
2023-10-13 09:13:14,848 epoch 7 - iter 180/304 - loss 0.02722790 - time (sec): 7.95 - samples/sec: 2343.82 - lr: 0.000011 - momentum: 0.000000
2023-10-13 09:13:16,165 epoch 7 - iter 210/304 - loss 0.02545864 - time (sec): 9.26 - samples/sec: 2346.31 - lr: 0.000011 - momentum: 0.000000
2023-10-13 09:13:17,580 epoch 7 - iter 240/304 - loss 0.02870239 - time (sec): 10.68 - samples/sec: 2349.68 - lr: 0.000011 - momentum: 0.000000
2023-10-13 09:13:18,888 epoch 7 - iter 270/304 - loss 0.02761758 - time (sec): 11.99 - samples/sec: 2320.40 - lr: 0.000010 - momentum: 0.000000
2023-10-13 09:13:20,213 epoch 7 - iter 300/304 - loss 0.02791349 - time (sec): 13.31 - samples/sec: 2307.01 - lr: 0.000010 - momentum: 0.000000
2023-10-13 09:13:20,384 ----------------------------------------------------------------------------------------------------
2023-10-13 09:13:20,384 EPOCH 7 done: loss 0.0277 - lr: 0.000010
2023-10-13 09:13:21,348 DEV : loss 0.20731189846992493 - f1-score (micro avg) 0.8302
2023-10-13 09:13:21,356 saving best model
2023-10-13 09:13:21,837 ----------------------------------------------------------------------------------------------------
2023-10-13 09:13:23,445 epoch 8 - iter 30/304 - loss 0.02594408 - time (sec): 1.61 - samples/sec: 2099.48 - lr: 0.000010 - momentum: 0.000000
2023-10-13 09:13:25,119 epoch 8 - iter 60/304 - loss 0.01870384 - time (sec): 3.28 - samples/sec: 1925.49 - lr: 0.000009 - momentum: 0.000000
2023-10-13 09:13:26,740 epoch 8 - iter 90/304 - loss 0.02645844 - time (sec): 4.90 - samples/sec: 1918.28 - lr: 0.000009 - momentum: 0.000000
2023-10-13 09:13:28,361 epoch 8 - iter 120/304 - loss 0.02459100 - time (sec): 6.52 - samples/sec: 1904.79 - lr: 0.000009 - momentum: 0.000000
2023-10-13 09:13:29,920 epoch 8 - iter 150/304 - loss 0.02686734 - time (sec): 8.08 - samples/sec: 1931.80 - lr: 0.000008 - momentum: 0.000000
2023-10-13 09:13:31,475 epoch 8 - iter 180/304 - loss 0.02297305 - time (sec): 9.63 - samples/sec: 1943.02 - lr: 0.000008 - momentum: 0.000000
2023-10-13 09:13:32,798 epoch 8 - iter 210/304 - loss 0.02610168 - time (sec): 10.96 - samples/sec: 1977.75 - lr: 0.000008 - momentum: 0.000000
2023-10-13 09:13:34,132 epoch 8 - iter 240/304 - loss 0.02625596 - time (sec): 12.29 - samples/sec: 2013.37 - lr: 0.000007 - momentum: 0.000000
2023-10-13 09:13:35,462 epoch 8 - iter 270/304 - loss 0.02450793 - time (sec): 13.62 - samples/sec: 2031.04 - lr: 0.000007 - momentum: 0.000000
2023-10-13 09:13:36,847 epoch 8 - iter 300/304 - loss 0.02535150 - time (sec): 15.01 - samples/sec: 2038.87 - lr: 0.000007 - momentum: 0.000000
2023-10-13 09:13:37,058 ----------------------------------------------------------------------------------------------------
2023-10-13 09:13:37,058 EPOCH 8 done: loss 0.0250 - lr: 0.000007
2023-10-13 09:13:38,070 DEV : loss 0.22579838335514069 - f1-score (micro avg) 0.8206
2023-10-13 09:13:38,077 ----------------------------------------------------------------------------------------------------
2023-10-13 09:13:39,666 epoch 9 - iter 30/304 - loss 0.02789099 - time (sec): 1.59 - samples/sec: 1737.54 - lr: 0.000006 - momentum: 0.000000
2023-10-13 09:13:41,230 epoch 9 - iter 60/304 - loss 0.01659011 - time (sec): 3.15 - samples/sec: 1874.35 - lr: 0.000006 - momentum: 0.000000
2023-10-13 09:13:42,851 epoch 9 - iter 90/304 - loss 0.03203659 - time (sec): 4.77 - samples/sec: 1928.77 - lr: 0.000006 - momentum: 0.000000
2023-10-13 09:13:44,201 epoch 9 - iter 120/304 - loss 0.02910105 - time (sec): 6.12 - samples/sec: 2021.87 - lr: 0.000005 - momentum: 0.000000
2023-10-13 09:13:45,535 epoch 9 - iter 150/304 - loss 0.02440992 - time (sec): 7.46 - samples/sec: 2060.58 - lr: 0.000005 - momentum: 0.000000
2023-10-13 09:13:46,861 epoch 9 - iter 180/304 - loss 0.02453832 - time (sec): 8.78 - samples/sec: 2091.82 - lr: 0.000005 - momentum: 0.000000
2023-10-13 09:13:48,164 epoch 9 - iter 210/304 - loss 0.02290375 - time (sec): 10.09 - samples/sec: 2103.04 - lr: 0.000004 - momentum: 0.000000
2023-10-13 09:13:49,488 epoch 9 - iter 240/304 - loss 0.02113890 - time (sec): 11.41 - samples/sec: 2156.02 - lr: 0.000004 - momentum: 0.000000
2023-10-13 09:13:50,787 epoch 9 - iter 270/304 - loss 0.01953599 - time (sec): 12.71 - samples/sec: 2171.98 - lr: 0.000004 - momentum: 0.000000
2023-10-13 09:13:52,088 epoch 9 - iter 300/304 - loss 0.01811998 - time (sec): 14.01 - samples/sec: 2185.33 - lr: 0.000003 - momentum: 0.000000
2023-10-13 09:13:52,256 ----------------------------------------------------------------------------------------------------
2023-10-13 09:13:52,256 EPOCH 9 done: loss 0.0179 - lr: 0.000003
2023-10-13 09:13:53,233 DEV : loss 0.22185303270816803 - f1-score (micro avg) 0.8248
2023-10-13 09:13:53,239 ----------------------------------------------------------------------------------------------------
2023-10-13 09:13:54,640 epoch 10 - iter 30/304 - loss 0.00070490 - time (sec): 1.40 - samples/sec: 2084.76 - lr: 0.000003 - momentum: 0.000000
2023-10-13 09:13:56,021 epoch 10 - iter 60/304 - loss 0.00875389 - time (sec): 2.78 - samples/sec: 2206.26 - lr: 0.000003 - momentum: 0.000000
2023-10-13 09:13:57,389 epoch 10 - iter 90/304 - loss 0.00957439 - time (sec): 4.15 - samples/sec: 2290.89 - lr: 0.000002 - momentum: 0.000000
2023-10-13 09:13:58,819 epoch 10 - iter 120/304 - loss 0.01901622 - time (sec): 5.58 - samples/sec: 2243.53 - lr: 0.000002 - momentum: 0.000000
2023-10-13 09:14:00,270 epoch 10 - iter 150/304 - loss 0.01749786 - time (sec): 7.03 - samples/sec: 2184.54 - lr: 0.000002 - momentum: 0.000000
2023-10-13 09:14:01,659 epoch 10 - iter 180/304 - loss 0.01476365 - time (sec): 8.42 - samples/sec: 2219.69 - lr: 0.000001 - momentum: 0.000000
2023-10-13 09:14:02,992 epoch 10 - iter 210/304 - loss 0.01674996 - time (sec): 9.75 - samples/sec: 2234.48 - lr: 0.000001 - momentum: 0.000000
2023-10-13 09:14:04,337 epoch 10 - iter 240/304 - loss 0.01678235 - time (sec): 11.10 - samples/sec: 2216.99 - lr: 0.000001 - momentum: 0.000000
2023-10-13 09:14:05,680 epoch 10 - iter 270/304 - loss 0.01578168 - time (sec): 12.44 - samples/sec: 2226.66 - lr: 0.000000 - momentum: 0.000000
2023-10-13 09:14:07,025 epoch 10 - iter 300/304 - loss 0.01543314 - time (sec): 13.78 - samples/sec: 2233.18 - lr: 0.000000 - momentum: 0.000000
2023-10-13 09:14:07,194 ----------------------------------------------------------------------------------------------------
2023-10-13 09:14:07,194 EPOCH 10 done: loss 0.0153 - lr: 0.000000
2023-10-13 09:14:08,184 DEV : loss 0.22600068151950836 - f1-score (micro avg) 0.82
2023-10-13 09:14:08,594 ----------------------------------------------------------------------------------------------------
2023-10-13 09:14:08,595 Loading model from best epoch ...
2023-10-13 09:14:10,239 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-date, B-date, E-date, I-date, S-object, B-object, E-object, I-object
2023-10-13 09:14:11,351
Results:
- F-score (micro) 0.7847
- F-score (macro) 0.5885
- Accuracy 0.6542
By class:
precision recall f1-score support
scope 0.7806 0.8013 0.7908 151
work 0.6489 0.8947 0.7522 95
pers 0.7479 0.9271 0.8279 96
loc 0.5000 0.6667 0.5714 3
date 0.0000 0.0000 0.0000 3
micro avg 0.7262 0.8534 0.7847 348
macro avg 0.5355 0.6580 0.5885 348
weighted avg 0.7265 0.8534 0.7818 348
2023-10-13 09:14:11,351 ----------------------------------------------------------------------------------------------------
|