File size: 23,897 Bytes
9627751
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
2023-10-13 09:11:34,164 ----------------------------------------------------------------------------------------------------
2023-10-13 09:11:34,165 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-13 09:11:34,165 ----------------------------------------------------------------------------------------------------
2023-10-13 09:11:34,165 MultiCorpus: 1214 train + 266 dev + 251 test sentences
 - NER_HIPE_2022 Corpus: 1214 train + 266 dev + 251 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/en/with_doc_seperator
2023-10-13 09:11:34,165 ----------------------------------------------------------------------------------------------------
2023-10-13 09:11:34,166 Train:  1214 sentences
2023-10-13 09:11:34,166         (train_with_dev=False, train_with_test=False)
2023-10-13 09:11:34,166 ----------------------------------------------------------------------------------------------------
2023-10-13 09:11:34,166 Training Params:
2023-10-13 09:11:34,166  - learning_rate: "3e-05" 
2023-10-13 09:11:34,166  - mini_batch_size: "4"
2023-10-13 09:11:34,166  - max_epochs: "10"
2023-10-13 09:11:34,166  - shuffle: "True"
2023-10-13 09:11:34,166 ----------------------------------------------------------------------------------------------------
2023-10-13 09:11:34,166 Plugins:
2023-10-13 09:11:34,166  - LinearScheduler | warmup_fraction: '0.1'
2023-10-13 09:11:34,166 ----------------------------------------------------------------------------------------------------
2023-10-13 09:11:34,166 Final evaluation on model from best epoch (best-model.pt)
2023-10-13 09:11:34,166  - metric: "('micro avg', 'f1-score')"
2023-10-13 09:11:34,166 ----------------------------------------------------------------------------------------------------
2023-10-13 09:11:34,166 Computation:
2023-10-13 09:11:34,166  - compute on device: cuda:0
2023-10-13 09:11:34,166  - embedding storage: none
2023-10-13 09:11:34,166 ----------------------------------------------------------------------------------------------------
2023-10-13 09:11:34,166 Model training base path: "hmbench-ajmc/en-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2"
2023-10-13 09:11:34,166 ----------------------------------------------------------------------------------------------------
2023-10-13 09:11:34,166 ----------------------------------------------------------------------------------------------------
2023-10-13 09:11:35,576 epoch 1 - iter 30/304 - loss 3.35375126 - time (sec): 1.41 - samples/sec: 2181.26 - lr: 0.000003 - momentum: 0.000000
2023-10-13 09:11:36,887 epoch 1 - iter 60/304 - loss 2.95856678 - time (sec): 2.72 - samples/sec: 2324.09 - lr: 0.000006 - momentum: 0.000000
2023-10-13 09:11:38,204 epoch 1 - iter 90/304 - loss 2.26373515 - time (sec): 4.04 - samples/sec: 2333.05 - lr: 0.000009 - momentum: 0.000000
2023-10-13 09:11:39,515 epoch 1 - iter 120/304 - loss 1.90301912 - time (sec): 5.35 - samples/sec: 2295.26 - lr: 0.000012 - momentum: 0.000000
2023-10-13 09:11:40,828 epoch 1 - iter 150/304 - loss 1.63730036 - time (sec): 6.66 - samples/sec: 2328.35 - lr: 0.000015 - momentum: 0.000000
2023-10-13 09:11:42,128 epoch 1 - iter 180/304 - loss 1.44861964 - time (sec): 7.96 - samples/sec: 2314.20 - lr: 0.000018 - momentum: 0.000000
2023-10-13 09:11:43,445 epoch 1 - iter 210/304 - loss 1.29232475 - time (sec): 9.28 - samples/sec: 2302.80 - lr: 0.000021 - momentum: 0.000000
2023-10-13 09:11:44,775 epoch 1 - iter 240/304 - loss 1.17915743 - time (sec): 10.61 - samples/sec: 2300.40 - lr: 0.000024 - momentum: 0.000000
2023-10-13 09:11:46,095 epoch 1 - iter 270/304 - loss 1.08551974 - time (sec): 11.93 - samples/sec: 2293.21 - lr: 0.000027 - momentum: 0.000000
2023-10-13 09:11:47,410 epoch 1 - iter 300/304 - loss 1.00236337 - time (sec): 13.24 - samples/sec: 2309.81 - lr: 0.000030 - momentum: 0.000000
2023-10-13 09:11:47,587 ----------------------------------------------------------------------------------------------------
2023-10-13 09:11:47,587 EPOCH 1 done: loss 0.9936 - lr: 0.000030
2023-10-13 09:11:48,584 DEV : loss 0.2579602897167206 - f1-score (micro avg)  0.4773
2023-10-13 09:11:48,589 saving best model
2023-10-13 09:11:48,954 ----------------------------------------------------------------------------------------------------
2023-10-13 09:11:50,414 epoch 2 - iter 30/304 - loss 0.27558021 - time (sec): 1.46 - samples/sec: 2040.19 - lr: 0.000030 - momentum: 0.000000
2023-10-13 09:11:51,866 epoch 2 - iter 60/304 - loss 0.24334816 - time (sec): 2.91 - samples/sec: 2070.02 - lr: 0.000029 - momentum: 0.000000
2023-10-13 09:11:53,355 epoch 2 - iter 90/304 - loss 0.20641996 - time (sec): 4.40 - samples/sec: 2062.78 - lr: 0.000029 - momentum: 0.000000
2023-10-13 09:11:54,768 epoch 2 - iter 120/304 - loss 0.20667576 - time (sec): 5.81 - samples/sec: 2088.44 - lr: 0.000029 - momentum: 0.000000
2023-10-13 09:11:56,148 epoch 2 - iter 150/304 - loss 0.19291693 - time (sec): 7.19 - samples/sec: 2134.07 - lr: 0.000028 - momentum: 0.000000
2023-10-13 09:11:57,479 epoch 2 - iter 180/304 - loss 0.18565077 - time (sec): 8.52 - samples/sec: 2142.09 - lr: 0.000028 - momentum: 0.000000
2023-10-13 09:11:58,816 epoch 2 - iter 210/304 - loss 0.17594776 - time (sec): 9.86 - samples/sec: 2185.21 - lr: 0.000028 - momentum: 0.000000
2023-10-13 09:12:00,120 epoch 2 - iter 240/304 - loss 0.16750310 - time (sec): 11.16 - samples/sec: 2214.63 - lr: 0.000027 - momentum: 0.000000
2023-10-13 09:12:01,435 epoch 2 - iter 270/304 - loss 0.16907637 - time (sec): 12.48 - samples/sec: 2227.95 - lr: 0.000027 - momentum: 0.000000
2023-10-13 09:12:02,752 epoch 2 - iter 300/304 - loss 0.16188542 - time (sec): 13.80 - samples/sec: 2231.51 - lr: 0.000027 - momentum: 0.000000
2023-10-13 09:12:02,924 ----------------------------------------------------------------------------------------------------
2023-10-13 09:12:02,925 EPOCH 2 done: loss 0.1622 - lr: 0.000027
2023-10-13 09:12:03,976 DEV : loss 0.14629144966602325 - f1-score (micro avg)  0.8153
2023-10-13 09:12:03,986 saving best model
2023-10-13 09:12:04,499 ----------------------------------------------------------------------------------------------------
2023-10-13 09:12:05,891 epoch 3 - iter 30/304 - loss 0.05968550 - time (sec): 1.39 - samples/sec: 2190.17 - lr: 0.000026 - momentum: 0.000000
2023-10-13 09:12:07,227 epoch 3 - iter 60/304 - loss 0.06661242 - time (sec): 2.72 - samples/sec: 2235.46 - lr: 0.000026 - momentum: 0.000000
2023-10-13 09:12:08,541 epoch 3 - iter 90/304 - loss 0.07023246 - time (sec): 4.04 - samples/sec: 2324.92 - lr: 0.000026 - momentum: 0.000000
2023-10-13 09:12:09,852 epoch 3 - iter 120/304 - loss 0.06898371 - time (sec): 5.35 - samples/sec: 2301.97 - lr: 0.000025 - momentum: 0.000000
2023-10-13 09:12:11,165 epoch 3 - iter 150/304 - loss 0.07165433 - time (sec): 6.66 - samples/sec: 2299.15 - lr: 0.000025 - momentum: 0.000000
2023-10-13 09:12:12,471 epoch 3 - iter 180/304 - loss 0.07808419 - time (sec): 7.97 - samples/sec: 2282.30 - lr: 0.000025 - momentum: 0.000000
2023-10-13 09:12:13,808 epoch 3 - iter 210/304 - loss 0.08536130 - time (sec): 9.31 - samples/sec: 2294.60 - lr: 0.000024 - momentum: 0.000000
2023-10-13 09:12:15,143 epoch 3 - iter 240/304 - loss 0.08939663 - time (sec): 10.64 - samples/sec: 2288.75 - lr: 0.000024 - momentum: 0.000000
2023-10-13 09:12:16,498 epoch 3 - iter 270/304 - loss 0.08897527 - time (sec): 12.00 - samples/sec: 2314.40 - lr: 0.000024 - momentum: 0.000000
2023-10-13 09:12:17,828 epoch 3 - iter 300/304 - loss 0.09180584 - time (sec): 13.32 - samples/sec: 2292.68 - lr: 0.000023 - momentum: 0.000000
2023-10-13 09:12:18,004 ----------------------------------------------------------------------------------------------------
2023-10-13 09:12:18,004 EPOCH 3 done: loss 0.0914 - lr: 0.000023
2023-10-13 09:12:18,999 DEV : loss 0.16112016141414642 - f1-score (micro avg)  0.7892
2023-10-13 09:12:19,007 ----------------------------------------------------------------------------------------------------
2023-10-13 09:12:20,582 epoch 4 - iter 30/304 - loss 0.04115302 - time (sec): 1.57 - samples/sec: 2039.80 - lr: 0.000023 - momentum: 0.000000
2023-10-13 09:12:22,196 epoch 4 - iter 60/304 - loss 0.03239643 - time (sec): 3.19 - samples/sec: 1970.78 - lr: 0.000023 - momentum: 0.000000
2023-10-13 09:12:23,552 epoch 4 - iter 90/304 - loss 0.05223740 - time (sec): 4.54 - samples/sec: 2037.80 - lr: 0.000022 - momentum: 0.000000
2023-10-13 09:12:24,864 epoch 4 - iter 120/304 - loss 0.04822337 - time (sec): 5.85 - samples/sec: 2078.61 - lr: 0.000022 - momentum: 0.000000
2023-10-13 09:12:26,184 epoch 4 - iter 150/304 - loss 0.04568180 - time (sec): 7.17 - samples/sec: 2139.95 - lr: 0.000022 - momentum: 0.000000
2023-10-13 09:12:27,484 epoch 4 - iter 180/304 - loss 0.05593238 - time (sec): 8.48 - samples/sec: 2165.17 - lr: 0.000021 - momentum: 0.000000
2023-10-13 09:12:28,819 epoch 4 - iter 210/304 - loss 0.05875782 - time (sec): 9.81 - samples/sec: 2183.31 - lr: 0.000021 - momentum: 0.000000
2023-10-13 09:12:30,345 epoch 4 - iter 240/304 - loss 0.06307644 - time (sec): 11.34 - samples/sec: 2169.16 - lr: 0.000021 - momentum: 0.000000
2023-10-13 09:12:31,680 epoch 4 - iter 270/304 - loss 0.06423237 - time (sec): 12.67 - samples/sec: 2185.58 - lr: 0.000020 - momentum: 0.000000
2023-10-13 09:12:33,006 epoch 4 - iter 300/304 - loss 0.06965799 - time (sec): 14.00 - samples/sec: 2185.76 - lr: 0.000020 - momentum: 0.000000
2023-10-13 09:12:33,182 ----------------------------------------------------------------------------------------------------
2023-10-13 09:12:33,183 EPOCH 4 done: loss 0.0689 - lr: 0.000020
2023-10-13 09:12:34,219 DEV : loss 0.17021441459655762 - f1-score (micro avg)  0.8286
2023-10-13 09:12:34,227 saving best model
2023-10-13 09:12:34,694 ----------------------------------------------------------------------------------------------------
2023-10-13 09:12:36,292 epoch 5 - iter 30/304 - loss 0.04112044 - time (sec): 1.60 - samples/sec: 1991.10 - lr: 0.000020 - momentum: 0.000000
2023-10-13 09:12:37,843 epoch 5 - iter 60/304 - loss 0.03209144 - time (sec): 3.15 - samples/sec: 2031.90 - lr: 0.000019 - momentum: 0.000000
2023-10-13 09:12:39,400 epoch 5 - iter 90/304 - loss 0.02949647 - time (sec): 4.70 - samples/sec: 2006.05 - lr: 0.000019 - momentum: 0.000000
2023-10-13 09:12:41,037 epoch 5 - iter 120/304 - loss 0.03606315 - time (sec): 6.34 - samples/sec: 1966.62 - lr: 0.000019 - momentum: 0.000000
2023-10-13 09:12:42,703 epoch 5 - iter 150/304 - loss 0.04624669 - time (sec): 8.01 - samples/sec: 1938.38 - lr: 0.000018 - momentum: 0.000000
2023-10-13 09:12:44,336 epoch 5 - iter 180/304 - loss 0.04420425 - time (sec): 9.64 - samples/sec: 1927.80 - lr: 0.000018 - momentum: 0.000000
2023-10-13 09:12:45,947 epoch 5 - iter 210/304 - loss 0.04227590 - time (sec): 11.25 - samples/sec: 1913.60 - lr: 0.000018 - momentum: 0.000000
2023-10-13 09:12:47,650 epoch 5 - iter 240/304 - loss 0.04668771 - time (sec): 12.95 - samples/sec: 1901.23 - lr: 0.000017 - momentum: 0.000000
2023-10-13 09:12:49,300 epoch 5 - iter 270/304 - loss 0.04686959 - time (sec): 14.60 - samples/sec: 1890.67 - lr: 0.000017 - momentum: 0.000000
2023-10-13 09:12:50,826 epoch 5 - iter 300/304 - loss 0.04646029 - time (sec): 16.13 - samples/sec: 1900.96 - lr: 0.000017 - momentum: 0.000000
2023-10-13 09:12:50,994 ----------------------------------------------------------------------------------------------------
2023-10-13 09:12:50,995 EPOCH 5 done: loss 0.0465 - lr: 0.000017
2023-10-13 09:12:52,042 DEV : loss 0.2058655172586441 - f1-score (micro avg)  0.8233
2023-10-13 09:12:52,052 ----------------------------------------------------------------------------------------------------
2023-10-13 09:12:53,684 epoch 6 - iter 30/304 - loss 0.05046724 - time (sec): 1.63 - samples/sec: 1717.40 - lr: 0.000016 - momentum: 0.000000
2023-10-13 09:12:55,044 epoch 6 - iter 60/304 - loss 0.04432771 - time (sec): 2.99 - samples/sec: 2025.89 - lr: 0.000016 - momentum: 0.000000
2023-10-13 09:12:56,388 epoch 6 - iter 90/304 - loss 0.03676034 - time (sec): 4.33 - samples/sec: 2102.11 - lr: 0.000016 - momentum: 0.000000
2023-10-13 09:12:57,721 epoch 6 - iter 120/304 - loss 0.03256242 - time (sec): 5.67 - samples/sec: 2151.39 - lr: 0.000015 - momentum: 0.000000
2023-10-13 09:12:59,020 epoch 6 - iter 150/304 - loss 0.02929072 - time (sec): 6.97 - samples/sec: 2149.63 - lr: 0.000015 - momentum: 0.000000
2023-10-13 09:13:00,326 epoch 6 - iter 180/304 - loss 0.02920208 - time (sec): 8.27 - samples/sec: 2186.08 - lr: 0.000015 - momentum: 0.000000
2023-10-13 09:13:01,697 epoch 6 - iter 210/304 - loss 0.03288655 - time (sec): 9.64 - samples/sec: 2205.83 - lr: 0.000014 - momentum: 0.000000
2023-10-13 09:13:03,026 epoch 6 - iter 240/304 - loss 0.03747087 - time (sec): 10.97 - samples/sec: 2217.29 - lr: 0.000014 - momentum: 0.000000
2023-10-13 09:13:04,362 epoch 6 - iter 270/304 - loss 0.03500701 - time (sec): 12.31 - samples/sec: 2220.88 - lr: 0.000014 - momentum: 0.000000
2023-10-13 09:13:05,772 epoch 6 - iter 300/304 - loss 0.03544502 - time (sec): 13.72 - samples/sec: 2232.62 - lr: 0.000013 - momentum: 0.000000
2023-10-13 09:13:05,956 ----------------------------------------------------------------------------------------------------
2023-10-13 09:13:05,957 EPOCH 6 done: loss 0.0355 - lr: 0.000013
2023-10-13 09:13:06,892 DEV : loss 0.20123393833637238 - f1-score (micro avg)  0.8241
2023-10-13 09:13:06,899 ----------------------------------------------------------------------------------------------------
2023-10-13 09:13:08,180 epoch 7 - iter 30/304 - loss 0.01961303 - time (sec): 1.28 - samples/sec: 2408.89 - lr: 0.000013 - momentum: 0.000000
2023-10-13 09:13:09,496 epoch 7 - iter 60/304 - loss 0.03318365 - time (sec): 2.60 - samples/sec: 2358.80 - lr: 0.000013 - momentum: 0.000000
2023-10-13 09:13:10,818 epoch 7 - iter 90/304 - loss 0.03814019 - time (sec): 3.92 - samples/sec: 2318.15 - lr: 0.000012 - momentum: 0.000000
2023-10-13 09:13:12,170 epoch 7 - iter 120/304 - loss 0.03423627 - time (sec): 5.27 - samples/sec: 2376.25 - lr: 0.000012 - momentum: 0.000000
2023-10-13 09:13:13,501 epoch 7 - iter 150/304 - loss 0.02933986 - time (sec): 6.60 - samples/sec: 2344.86 - lr: 0.000012 - momentum: 0.000000
2023-10-13 09:13:14,848 epoch 7 - iter 180/304 - loss 0.02722790 - time (sec): 7.95 - samples/sec: 2343.82 - lr: 0.000011 - momentum: 0.000000
2023-10-13 09:13:16,165 epoch 7 - iter 210/304 - loss 0.02545864 - time (sec): 9.26 - samples/sec: 2346.31 - lr: 0.000011 - momentum: 0.000000
2023-10-13 09:13:17,580 epoch 7 - iter 240/304 - loss 0.02870239 - time (sec): 10.68 - samples/sec: 2349.68 - lr: 0.000011 - momentum: 0.000000
2023-10-13 09:13:18,888 epoch 7 - iter 270/304 - loss 0.02761758 - time (sec): 11.99 - samples/sec: 2320.40 - lr: 0.000010 - momentum: 0.000000
2023-10-13 09:13:20,213 epoch 7 - iter 300/304 - loss 0.02791349 - time (sec): 13.31 - samples/sec: 2307.01 - lr: 0.000010 - momentum: 0.000000
2023-10-13 09:13:20,384 ----------------------------------------------------------------------------------------------------
2023-10-13 09:13:20,384 EPOCH 7 done: loss 0.0277 - lr: 0.000010
2023-10-13 09:13:21,348 DEV : loss 0.20731189846992493 - f1-score (micro avg)  0.8302
2023-10-13 09:13:21,356 saving best model
2023-10-13 09:13:21,837 ----------------------------------------------------------------------------------------------------
2023-10-13 09:13:23,445 epoch 8 - iter 30/304 - loss 0.02594408 - time (sec): 1.61 - samples/sec: 2099.48 - lr: 0.000010 - momentum: 0.000000
2023-10-13 09:13:25,119 epoch 8 - iter 60/304 - loss 0.01870384 - time (sec): 3.28 - samples/sec: 1925.49 - lr: 0.000009 - momentum: 0.000000
2023-10-13 09:13:26,740 epoch 8 - iter 90/304 - loss 0.02645844 - time (sec): 4.90 - samples/sec: 1918.28 - lr: 0.000009 - momentum: 0.000000
2023-10-13 09:13:28,361 epoch 8 - iter 120/304 - loss 0.02459100 - time (sec): 6.52 - samples/sec: 1904.79 - lr: 0.000009 - momentum: 0.000000
2023-10-13 09:13:29,920 epoch 8 - iter 150/304 - loss 0.02686734 - time (sec): 8.08 - samples/sec: 1931.80 - lr: 0.000008 - momentum: 0.000000
2023-10-13 09:13:31,475 epoch 8 - iter 180/304 - loss 0.02297305 - time (sec): 9.63 - samples/sec: 1943.02 - lr: 0.000008 - momentum: 0.000000
2023-10-13 09:13:32,798 epoch 8 - iter 210/304 - loss 0.02610168 - time (sec): 10.96 - samples/sec: 1977.75 - lr: 0.000008 - momentum: 0.000000
2023-10-13 09:13:34,132 epoch 8 - iter 240/304 - loss 0.02625596 - time (sec): 12.29 - samples/sec: 2013.37 - lr: 0.000007 - momentum: 0.000000
2023-10-13 09:13:35,462 epoch 8 - iter 270/304 - loss 0.02450793 - time (sec): 13.62 - samples/sec: 2031.04 - lr: 0.000007 - momentum: 0.000000
2023-10-13 09:13:36,847 epoch 8 - iter 300/304 - loss 0.02535150 - time (sec): 15.01 - samples/sec: 2038.87 - lr: 0.000007 - momentum: 0.000000
2023-10-13 09:13:37,058 ----------------------------------------------------------------------------------------------------
2023-10-13 09:13:37,058 EPOCH 8 done: loss 0.0250 - lr: 0.000007
2023-10-13 09:13:38,070 DEV : loss 0.22579838335514069 - f1-score (micro avg)  0.8206
2023-10-13 09:13:38,077 ----------------------------------------------------------------------------------------------------
2023-10-13 09:13:39,666 epoch 9 - iter 30/304 - loss 0.02789099 - time (sec): 1.59 - samples/sec: 1737.54 - lr: 0.000006 - momentum: 0.000000
2023-10-13 09:13:41,230 epoch 9 - iter 60/304 - loss 0.01659011 - time (sec): 3.15 - samples/sec: 1874.35 - lr: 0.000006 - momentum: 0.000000
2023-10-13 09:13:42,851 epoch 9 - iter 90/304 - loss 0.03203659 - time (sec): 4.77 - samples/sec: 1928.77 - lr: 0.000006 - momentum: 0.000000
2023-10-13 09:13:44,201 epoch 9 - iter 120/304 - loss 0.02910105 - time (sec): 6.12 - samples/sec: 2021.87 - lr: 0.000005 - momentum: 0.000000
2023-10-13 09:13:45,535 epoch 9 - iter 150/304 - loss 0.02440992 - time (sec): 7.46 - samples/sec: 2060.58 - lr: 0.000005 - momentum: 0.000000
2023-10-13 09:13:46,861 epoch 9 - iter 180/304 - loss 0.02453832 - time (sec): 8.78 - samples/sec: 2091.82 - lr: 0.000005 - momentum: 0.000000
2023-10-13 09:13:48,164 epoch 9 - iter 210/304 - loss 0.02290375 - time (sec): 10.09 - samples/sec: 2103.04 - lr: 0.000004 - momentum: 0.000000
2023-10-13 09:13:49,488 epoch 9 - iter 240/304 - loss 0.02113890 - time (sec): 11.41 - samples/sec: 2156.02 - lr: 0.000004 - momentum: 0.000000
2023-10-13 09:13:50,787 epoch 9 - iter 270/304 - loss 0.01953599 - time (sec): 12.71 - samples/sec: 2171.98 - lr: 0.000004 - momentum: 0.000000
2023-10-13 09:13:52,088 epoch 9 - iter 300/304 - loss 0.01811998 - time (sec): 14.01 - samples/sec: 2185.33 - lr: 0.000003 - momentum: 0.000000
2023-10-13 09:13:52,256 ----------------------------------------------------------------------------------------------------
2023-10-13 09:13:52,256 EPOCH 9 done: loss 0.0179 - lr: 0.000003
2023-10-13 09:13:53,233 DEV : loss 0.22185303270816803 - f1-score (micro avg)  0.8248
2023-10-13 09:13:53,239 ----------------------------------------------------------------------------------------------------
2023-10-13 09:13:54,640 epoch 10 - iter 30/304 - loss 0.00070490 - time (sec): 1.40 - samples/sec: 2084.76 - lr: 0.000003 - momentum: 0.000000
2023-10-13 09:13:56,021 epoch 10 - iter 60/304 - loss 0.00875389 - time (sec): 2.78 - samples/sec: 2206.26 - lr: 0.000003 - momentum: 0.000000
2023-10-13 09:13:57,389 epoch 10 - iter 90/304 - loss 0.00957439 - time (sec): 4.15 - samples/sec: 2290.89 - lr: 0.000002 - momentum: 0.000000
2023-10-13 09:13:58,819 epoch 10 - iter 120/304 - loss 0.01901622 - time (sec): 5.58 - samples/sec: 2243.53 - lr: 0.000002 - momentum: 0.000000
2023-10-13 09:14:00,270 epoch 10 - iter 150/304 - loss 0.01749786 - time (sec): 7.03 - samples/sec: 2184.54 - lr: 0.000002 - momentum: 0.000000
2023-10-13 09:14:01,659 epoch 10 - iter 180/304 - loss 0.01476365 - time (sec): 8.42 - samples/sec: 2219.69 - lr: 0.000001 - momentum: 0.000000
2023-10-13 09:14:02,992 epoch 10 - iter 210/304 - loss 0.01674996 - time (sec): 9.75 - samples/sec: 2234.48 - lr: 0.000001 - momentum: 0.000000
2023-10-13 09:14:04,337 epoch 10 - iter 240/304 - loss 0.01678235 - time (sec): 11.10 - samples/sec: 2216.99 - lr: 0.000001 - momentum: 0.000000
2023-10-13 09:14:05,680 epoch 10 - iter 270/304 - loss 0.01578168 - time (sec): 12.44 - samples/sec: 2226.66 - lr: 0.000000 - momentum: 0.000000
2023-10-13 09:14:07,025 epoch 10 - iter 300/304 - loss 0.01543314 - time (sec): 13.78 - samples/sec: 2233.18 - lr: 0.000000 - momentum: 0.000000
2023-10-13 09:14:07,194 ----------------------------------------------------------------------------------------------------
2023-10-13 09:14:07,194 EPOCH 10 done: loss 0.0153 - lr: 0.000000
2023-10-13 09:14:08,184 DEV : loss 0.22600068151950836 - f1-score (micro avg)  0.82
2023-10-13 09:14:08,594 ----------------------------------------------------------------------------------------------------
2023-10-13 09:14:08,595 Loading model from best epoch ...
2023-10-13 09:14:10,239 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-date, B-date, E-date, I-date, S-object, B-object, E-object, I-object
2023-10-13 09:14:11,351 
Results:
- F-score (micro) 0.7847
- F-score (macro) 0.5885
- Accuracy 0.6542

By class:
              precision    recall  f1-score   support

       scope     0.7806    0.8013    0.7908       151
        work     0.6489    0.8947    0.7522        95
        pers     0.7479    0.9271    0.8279        96
         loc     0.5000    0.6667    0.5714         3
        date     0.0000    0.0000    0.0000         3

   micro avg     0.7262    0.8534    0.7847       348
   macro avg     0.5355    0.6580    0.5885       348
weighted avg     0.7265    0.8534    0.7818       348

2023-10-13 09:14:11,351 ----------------------------------------------------------------------------------------------------