File size: 23,868 Bytes
113d5a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
2023-10-17 08:44:19,028 ----------------------------------------------------------------------------------------------------
2023-10-17 08:44:19,028 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): ElectraModel(
      (embeddings): ElectraEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): ElectraEncoder(
        (layer): ModuleList(
          (0-11): 12 x ElectraLayer(
            (attention): ElectraAttention(
              (self): ElectraSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): ElectraSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): ElectraIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): ElectraOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-17 08:44:19,029 ----------------------------------------------------------------------------------------------------
2023-10-17 08:44:19,029 MultiCorpus: 1100 train + 206 dev + 240 test sentences
 - NER_HIPE_2022 Corpus: 1100 train + 206 dev + 240 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/de/with_doc_seperator
2023-10-17 08:44:19,029 ----------------------------------------------------------------------------------------------------
2023-10-17 08:44:19,029 Train:  1100 sentences
2023-10-17 08:44:19,029         (train_with_dev=False, train_with_test=False)
2023-10-17 08:44:19,029 ----------------------------------------------------------------------------------------------------
2023-10-17 08:44:19,029 Training Params:
2023-10-17 08:44:19,029  - learning_rate: "5e-05" 
2023-10-17 08:44:19,029  - mini_batch_size: "8"
2023-10-17 08:44:19,029  - max_epochs: "10"
2023-10-17 08:44:19,029  - shuffle: "True"
2023-10-17 08:44:19,029 ----------------------------------------------------------------------------------------------------
2023-10-17 08:44:19,029 Plugins:
2023-10-17 08:44:19,029  - TensorboardLogger
2023-10-17 08:44:19,029  - LinearScheduler | warmup_fraction: '0.1'
2023-10-17 08:44:19,029 ----------------------------------------------------------------------------------------------------
2023-10-17 08:44:19,029 Final evaluation on model from best epoch (best-model.pt)
2023-10-17 08:44:19,029  - metric: "('micro avg', 'f1-score')"
2023-10-17 08:44:19,029 ----------------------------------------------------------------------------------------------------
2023-10-17 08:44:19,029 Computation:
2023-10-17 08:44:19,029  - compute on device: cuda:0
2023-10-17 08:44:19,029  - embedding storage: none
2023-10-17 08:44:19,029 ----------------------------------------------------------------------------------------------------
2023-10-17 08:44:19,029 Model training base path: "hmbench-ajmc/de-hmteams/teams-base-historic-multilingual-discriminator-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3"
2023-10-17 08:44:19,029 ----------------------------------------------------------------------------------------------------
2023-10-17 08:44:19,029 ----------------------------------------------------------------------------------------------------
2023-10-17 08:44:19,030 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-17 08:44:19,768 epoch 1 - iter 13/138 - loss 4.23689924 - time (sec): 0.74 - samples/sec: 2774.07 - lr: 0.000004 - momentum: 0.000000
2023-10-17 08:44:20,495 epoch 1 - iter 26/138 - loss 3.72475472 - time (sec): 1.46 - samples/sec: 2913.13 - lr: 0.000009 - momentum: 0.000000
2023-10-17 08:44:21,251 epoch 1 - iter 39/138 - loss 2.98979238 - time (sec): 2.22 - samples/sec: 2921.26 - lr: 0.000014 - momentum: 0.000000
2023-10-17 08:44:21,935 epoch 1 - iter 52/138 - loss 2.54874337 - time (sec): 2.90 - samples/sec: 2897.74 - lr: 0.000018 - momentum: 0.000000
2023-10-17 08:44:22,680 epoch 1 - iter 65/138 - loss 2.15097506 - time (sec): 3.65 - samples/sec: 2930.58 - lr: 0.000023 - momentum: 0.000000
2023-10-17 08:44:23,413 epoch 1 - iter 78/138 - loss 1.87984736 - time (sec): 4.38 - samples/sec: 2955.37 - lr: 0.000028 - momentum: 0.000000
2023-10-17 08:44:24,111 epoch 1 - iter 91/138 - loss 1.68323414 - time (sec): 5.08 - samples/sec: 2946.32 - lr: 0.000033 - momentum: 0.000000
2023-10-17 08:44:24,831 epoch 1 - iter 104/138 - loss 1.52893736 - time (sec): 5.80 - samples/sec: 2944.10 - lr: 0.000037 - momentum: 0.000000
2023-10-17 08:44:25,580 epoch 1 - iter 117/138 - loss 1.38071873 - time (sec): 6.55 - samples/sec: 2965.22 - lr: 0.000042 - momentum: 0.000000
2023-10-17 08:44:26,331 epoch 1 - iter 130/138 - loss 1.27710721 - time (sec): 7.30 - samples/sec: 2942.46 - lr: 0.000047 - momentum: 0.000000
2023-10-17 08:44:26,778 ----------------------------------------------------------------------------------------------------
2023-10-17 08:44:26,779 EPOCH 1 done: loss 1.2205 - lr: 0.000047
2023-10-17 08:44:27,298 DEV : loss 0.2180010974407196 - f1-score (micro avg)  0.6165
2023-10-17 08:44:27,302 saving best model
2023-10-17 08:44:27,635 ----------------------------------------------------------------------------------------------------
2023-10-17 08:44:28,352 epoch 2 - iter 13/138 - loss 0.32735430 - time (sec): 0.72 - samples/sec: 2955.79 - lr: 0.000050 - momentum: 0.000000
2023-10-17 08:44:29,091 epoch 2 - iter 26/138 - loss 0.25572315 - time (sec): 1.45 - samples/sec: 2994.77 - lr: 0.000049 - momentum: 0.000000
2023-10-17 08:44:29,834 epoch 2 - iter 39/138 - loss 0.22680767 - time (sec): 2.20 - samples/sec: 3035.05 - lr: 0.000048 - momentum: 0.000000
2023-10-17 08:44:30,583 epoch 2 - iter 52/138 - loss 0.21737319 - time (sec): 2.95 - samples/sec: 2983.02 - lr: 0.000048 - momentum: 0.000000
2023-10-17 08:44:31,379 epoch 2 - iter 65/138 - loss 0.22002365 - time (sec): 3.74 - samples/sec: 2953.68 - lr: 0.000047 - momentum: 0.000000
2023-10-17 08:44:32,138 epoch 2 - iter 78/138 - loss 0.21253262 - time (sec): 4.50 - samples/sec: 2911.39 - lr: 0.000047 - momentum: 0.000000
2023-10-17 08:44:32,878 epoch 2 - iter 91/138 - loss 0.20313431 - time (sec): 5.24 - samples/sec: 2935.34 - lr: 0.000046 - momentum: 0.000000
2023-10-17 08:44:33,599 epoch 2 - iter 104/138 - loss 0.19280458 - time (sec): 5.96 - samples/sec: 2929.87 - lr: 0.000046 - momentum: 0.000000
2023-10-17 08:44:34,321 epoch 2 - iter 117/138 - loss 0.18675924 - time (sec): 6.69 - samples/sec: 2907.25 - lr: 0.000045 - momentum: 0.000000
2023-10-17 08:44:35,032 epoch 2 - iter 130/138 - loss 0.18564163 - time (sec): 7.40 - samples/sec: 2925.93 - lr: 0.000045 - momentum: 0.000000
2023-10-17 08:44:35,445 ----------------------------------------------------------------------------------------------------
2023-10-17 08:44:35,445 EPOCH 2 done: loss 0.1811 - lr: 0.000045
2023-10-17 08:44:36,075 DEV : loss 0.1245567575097084 - f1-score (micro avg)  0.8305
2023-10-17 08:44:36,081 saving best model
2023-10-17 08:44:36,514 ----------------------------------------------------------------------------------------------------
2023-10-17 08:44:37,267 epoch 3 - iter 13/138 - loss 0.09322958 - time (sec): 0.75 - samples/sec: 3137.87 - lr: 0.000044 - momentum: 0.000000
2023-10-17 08:44:38,045 epoch 3 - iter 26/138 - loss 0.09112179 - time (sec): 1.53 - samples/sec: 3017.03 - lr: 0.000043 - momentum: 0.000000
2023-10-17 08:44:38,773 epoch 3 - iter 39/138 - loss 0.08652228 - time (sec): 2.26 - samples/sec: 2969.66 - lr: 0.000043 - momentum: 0.000000
2023-10-17 08:44:39,577 epoch 3 - iter 52/138 - loss 0.08449509 - time (sec): 3.06 - samples/sec: 2976.32 - lr: 0.000042 - momentum: 0.000000
2023-10-17 08:44:40,288 epoch 3 - iter 65/138 - loss 0.08587226 - time (sec): 3.77 - samples/sec: 2933.58 - lr: 0.000042 - momentum: 0.000000
2023-10-17 08:44:40,994 epoch 3 - iter 78/138 - loss 0.08699599 - time (sec): 4.48 - samples/sec: 2945.29 - lr: 0.000041 - momentum: 0.000000
2023-10-17 08:44:41,741 epoch 3 - iter 91/138 - loss 0.08855977 - time (sec): 5.22 - samples/sec: 2925.78 - lr: 0.000041 - momentum: 0.000000
2023-10-17 08:44:42,515 epoch 3 - iter 104/138 - loss 0.09546851 - time (sec): 6.00 - samples/sec: 2930.81 - lr: 0.000040 - momentum: 0.000000
2023-10-17 08:44:43,229 epoch 3 - iter 117/138 - loss 0.09882774 - time (sec): 6.71 - samples/sec: 2931.36 - lr: 0.000040 - momentum: 0.000000
2023-10-17 08:44:43,923 epoch 3 - iter 130/138 - loss 0.10085115 - time (sec): 7.41 - samples/sec: 2918.81 - lr: 0.000039 - momentum: 0.000000
2023-10-17 08:44:44,378 ----------------------------------------------------------------------------------------------------
2023-10-17 08:44:44,378 EPOCH 3 done: loss 0.1007 - lr: 0.000039
2023-10-17 08:44:45,057 DEV : loss 0.12144241482019424 - f1-score (micro avg)  0.8712
2023-10-17 08:44:45,062 saving best model
2023-10-17 08:44:45,506 ----------------------------------------------------------------------------------------------------
2023-10-17 08:44:46,236 epoch 4 - iter 13/138 - loss 0.04907389 - time (sec): 0.73 - samples/sec: 2851.54 - lr: 0.000038 - momentum: 0.000000
2023-10-17 08:44:46,974 epoch 4 - iter 26/138 - loss 0.05122455 - time (sec): 1.46 - samples/sec: 2921.88 - lr: 0.000038 - momentum: 0.000000
2023-10-17 08:44:47,691 epoch 4 - iter 39/138 - loss 0.04522759 - time (sec): 2.18 - samples/sec: 2934.94 - lr: 0.000037 - momentum: 0.000000
2023-10-17 08:44:48,379 epoch 4 - iter 52/138 - loss 0.05104925 - time (sec): 2.87 - samples/sec: 2931.29 - lr: 0.000037 - momentum: 0.000000
2023-10-17 08:44:49,118 epoch 4 - iter 65/138 - loss 0.05515405 - time (sec): 3.61 - samples/sec: 2912.28 - lr: 0.000036 - momentum: 0.000000
2023-10-17 08:44:49,867 epoch 4 - iter 78/138 - loss 0.05772425 - time (sec): 4.36 - samples/sec: 2916.87 - lr: 0.000036 - momentum: 0.000000
2023-10-17 08:44:50,808 epoch 4 - iter 91/138 - loss 0.06243765 - time (sec): 5.30 - samples/sec: 2776.13 - lr: 0.000035 - momentum: 0.000000
2023-10-17 08:44:51,582 epoch 4 - iter 104/138 - loss 0.06726186 - time (sec): 6.07 - samples/sec: 2789.80 - lr: 0.000035 - momentum: 0.000000
2023-10-17 08:44:52,345 epoch 4 - iter 117/138 - loss 0.07264164 - time (sec): 6.83 - samples/sec: 2814.01 - lr: 0.000034 - momentum: 0.000000
2023-10-17 08:44:53,114 epoch 4 - iter 130/138 - loss 0.07138648 - time (sec): 7.60 - samples/sec: 2816.62 - lr: 0.000034 - momentum: 0.000000
2023-10-17 08:44:53,545 ----------------------------------------------------------------------------------------------------
2023-10-17 08:44:53,546 EPOCH 4 done: loss 0.0710 - lr: 0.000034
2023-10-17 08:44:54,237 DEV : loss 0.14281411468982697 - f1-score (micro avg)  0.862
2023-10-17 08:44:54,241 ----------------------------------------------------------------------------------------------------
2023-10-17 08:44:54,974 epoch 5 - iter 13/138 - loss 0.08915125 - time (sec): 0.73 - samples/sec: 3058.74 - lr: 0.000033 - momentum: 0.000000
2023-10-17 08:44:55,741 epoch 5 - iter 26/138 - loss 0.08538151 - time (sec): 1.50 - samples/sec: 2962.06 - lr: 0.000032 - momentum: 0.000000
2023-10-17 08:44:56,460 epoch 5 - iter 39/138 - loss 0.07451282 - time (sec): 2.22 - samples/sec: 2981.90 - lr: 0.000032 - momentum: 0.000000
2023-10-17 08:44:57,151 epoch 5 - iter 52/138 - loss 0.07480996 - time (sec): 2.91 - samples/sec: 2949.67 - lr: 0.000031 - momentum: 0.000000
2023-10-17 08:44:57,881 epoch 5 - iter 65/138 - loss 0.07246926 - time (sec): 3.64 - samples/sec: 2991.74 - lr: 0.000031 - momentum: 0.000000
2023-10-17 08:44:58,615 epoch 5 - iter 78/138 - loss 0.07599919 - time (sec): 4.37 - samples/sec: 2985.62 - lr: 0.000030 - momentum: 0.000000
2023-10-17 08:44:59,411 epoch 5 - iter 91/138 - loss 0.06939059 - time (sec): 5.17 - samples/sec: 2936.72 - lr: 0.000030 - momentum: 0.000000
2023-10-17 08:45:00,192 epoch 5 - iter 104/138 - loss 0.06497114 - time (sec): 5.95 - samples/sec: 2929.39 - lr: 0.000029 - momentum: 0.000000
2023-10-17 08:45:00,968 epoch 5 - iter 117/138 - loss 0.06053147 - time (sec): 6.73 - samples/sec: 2901.84 - lr: 0.000029 - momentum: 0.000000
2023-10-17 08:45:01,711 epoch 5 - iter 130/138 - loss 0.05852661 - time (sec): 7.47 - samples/sec: 2896.28 - lr: 0.000028 - momentum: 0.000000
2023-10-17 08:45:02,146 ----------------------------------------------------------------------------------------------------
2023-10-17 08:45:02,147 EPOCH 5 done: loss 0.0586 - lr: 0.000028
2023-10-17 08:45:02,908 DEV : loss 0.1629737764596939 - f1-score (micro avg)  0.8708
2023-10-17 08:45:02,913 ----------------------------------------------------------------------------------------------------
2023-10-17 08:45:03,685 epoch 6 - iter 13/138 - loss 0.04102128 - time (sec): 0.77 - samples/sec: 2812.89 - lr: 0.000027 - momentum: 0.000000
2023-10-17 08:45:04,460 epoch 6 - iter 26/138 - loss 0.04110212 - time (sec): 1.55 - samples/sec: 2806.20 - lr: 0.000027 - momentum: 0.000000
2023-10-17 08:45:05,203 epoch 6 - iter 39/138 - loss 0.05651555 - time (sec): 2.29 - samples/sec: 2772.29 - lr: 0.000026 - momentum: 0.000000
2023-10-17 08:45:05,948 epoch 6 - iter 52/138 - loss 0.06576880 - time (sec): 3.03 - samples/sec: 2757.34 - lr: 0.000026 - momentum: 0.000000
2023-10-17 08:45:06,784 epoch 6 - iter 65/138 - loss 0.06388934 - time (sec): 3.87 - samples/sec: 2730.08 - lr: 0.000025 - momentum: 0.000000
2023-10-17 08:45:07,534 epoch 6 - iter 78/138 - loss 0.06510905 - time (sec): 4.62 - samples/sec: 2741.94 - lr: 0.000025 - momentum: 0.000000
2023-10-17 08:45:08,290 epoch 6 - iter 91/138 - loss 0.06051985 - time (sec): 5.38 - samples/sec: 2776.01 - lr: 0.000024 - momentum: 0.000000
2023-10-17 08:45:09,031 epoch 6 - iter 104/138 - loss 0.05874561 - time (sec): 6.12 - samples/sec: 2790.54 - lr: 0.000024 - momentum: 0.000000
2023-10-17 08:45:09,785 epoch 6 - iter 117/138 - loss 0.05433949 - time (sec): 6.87 - samples/sec: 2798.80 - lr: 0.000023 - momentum: 0.000000
2023-10-17 08:45:10,511 epoch 6 - iter 130/138 - loss 0.05085432 - time (sec): 7.60 - samples/sec: 2812.65 - lr: 0.000023 - momentum: 0.000000
2023-10-17 08:45:10,968 ----------------------------------------------------------------------------------------------------
2023-10-17 08:45:10,968 EPOCH 6 done: loss 0.0483 - lr: 0.000023
2023-10-17 08:45:11,693 DEV : loss 0.170999675989151 - f1-score (micro avg)  0.8633
2023-10-17 08:45:11,698 ----------------------------------------------------------------------------------------------------
2023-10-17 08:45:12,423 epoch 7 - iter 13/138 - loss 0.03378651 - time (sec): 0.72 - samples/sec: 3015.17 - lr: 0.000022 - momentum: 0.000000
2023-10-17 08:45:13,108 epoch 7 - iter 26/138 - loss 0.02358591 - time (sec): 1.41 - samples/sec: 3105.48 - lr: 0.000021 - momentum: 0.000000
2023-10-17 08:45:13,838 epoch 7 - iter 39/138 - loss 0.02146202 - time (sec): 2.14 - samples/sec: 2952.00 - lr: 0.000021 - momentum: 0.000000
2023-10-17 08:45:14,582 epoch 7 - iter 52/138 - loss 0.02877528 - time (sec): 2.88 - samples/sec: 2903.41 - lr: 0.000020 - momentum: 0.000000
2023-10-17 08:45:15,433 epoch 7 - iter 65/138 - loss 0.03053761 - time (sec): 3.73 - samples/sec: 2887.15 - lr: 0.000020 - momentum: 0.000000
2023-10-17 08:45:16,172 epoch 7 - iter 78/138 - loss 0.03095385 - time (sec): 4.47 - samples/sec: 2900.40 - lr: 0.000019 - momentum: 0.000000
2023-10-17 08:45:16,946 epoch 7 - iter 91/138 - loss 0.03425468 - time (sec): 5.25 - samples/sec: 2880.13 - lr: 0.000019 - momentum: 0.000000
2023-10-17 08:45:17,724 epoch 7 - iter 104/138 - loss 0.03297833 - time (sec): 6.02 - samples/sec: 2879.17 - lr: 0.000018 - momentum: 0.000000
2023-10-17 08:45:18,528 epoch 7 - iter 117/138 - loss 0.03274128 - time (sec): 6.83 - samples/sec: 2851.13 - lr: 0.000018 - momentum: 0.000000
2023-10-17 08:45:19,270 epoch 7 - iter 130/138 - loss 0.02995608 - time (sec): 7.57 - samples/sec: 2854.86 - lr: 0.000017 - momentum: 0.000000
2023-10-17 08:45:19,722 ----------------------------------------------------------------------------------------------------
2023-10-17 08:45:19,722 EPOCH 7 done: loss 0.0314 - lr: 0.000017
2023-10-17 08:45:20,357 DEV : loss 0.17921938002109528 - f1-score (micro avg)  0.87
2023-10-17 08:45:20,361 ----------------------------------------------------------------------------------------------------
2023-10-17 08:45:21,112 epoch 8 - iter 13/138 - loss 0.02216531 - time (sec): 0.75 - samples/sec: 2828.84 - lr: 0.000016 - momentum: 0.000000
2023-10-17 08:45:21,865 epoch 8 - iter 26/138 - loss 0.02828258 - time (sec): 1.50 - samples/sec: 2755.00 - lr: 0.000016 - momentum: 0.000000
2023-10-17 08:45:22,673 epoch 8 - iter 39/138 - loss 0.02250268 - time (sec): 2.31 - samples/sec: 2815.84 - lr: 0.000015 - momentum: 0.000000
2023-10-17 08:45:23,452 epoch 8 - iter 52/138 - loss 0.02828756 - time (sec): 3.09 - samples/sec: 2851.32 - lr: 0.000015 - momentum: 0.000000
2023-10-17 08:45:24,194 epoch 8 - iter 65/138 - loss 0.02593428 - time (sec): 3.83 - samples/sec: 2859.14 - lr: 0.000014 - momentum: 0.000000
2023-10-17 08:45:24,899 epoch 8 - iter 78/138 - loss 0.02247652 - time (sec): 4.54 - samples/sec: 2816.39 - lr: 0.000014 - momentum: 0.000000
2023-10-17 08:45:25,713 epoch 8 - iter 91/138 - loss 0.02261621 - time (sec): 5.35 - samples/sec: 2810.12 - lr: 0.000013 - momentum: 0.000000
2023-10-17 08:45:26,434 epoch 8 - iter 104/138 - loss 0.02328122 - time (sec): 6.07 - samples/sec: 2832.31 - lr: 0.000013 - momentum: 0.000000
2023-10-17 08:45:27,199 epoch 8 - iter 117/138 - loss 0.02375440 - time (sec): 6.84 - samples/sec: 2830.24 - lr: 0.000012 - momentum: 0.000000
2023-10-17 08:45:27,931 epoch 8 - iter 130/138 - loss 0.02207057 - time (sec): 7.57 - samples/sec: 2852.00 - lr: 0.000012 - momentum: 0.000000
2023-10-17 08:45:28,389 ----------------------------------------------------------------------------------------------------
2023-10-17 08:45:28,389 EPOCH 8 done: loss 0.0274 - lr: 0.000012
2023-10-17 08:45:29,033 DEV : loss 0.17290453612804413 - f1-score (micro avg)  0.8766
2023-10-17 08:45:29,038 saving best model
2023-10-17 08:45:29,506 ----------------------------------------------------------------------------------------------------
2023-10-17 08:45:30,198 epoch 9 - iter 13/138 - loss 0.01479278 - time (sec): 0.69 - samples/sec: 3106.28 - lr: 0.000011 - momentum: 0.000000
2023-10-17 08:45:30,964 epoch 9 - iter 26/138 - loss 0.02037863 - time (sec): 1.46 - samples/sec: 3100.06 - lr: 0.000010 - momentum: 0.000000
2023-10-17 08:45:31,702 epoch 9 - iter 39/138 - loss 0.01773260 - time (sec): 2.19 - samples/sec: 3000.70 - lr: 0.000010 - momentum: 0.000000
2023-10-17 08:45:32,385 epoch 9 - iter 52/138 - loss 0.01953734 - time (sec): 2.88 - samples/sec: 2969.58 - lr: 0.000009 - momentum: 0.000000
2023-10-17 08:45:33,085 epoch 9 - iter 65/138 - loss 0.01974078 - time (sec): 3.58 - samples/sec: 3023.44 - lr: 0.000009 - momentum: 0.000000
2023-10-17 08:45:33,826 epoch 9 - iter 78/138 - loss 0.01741408 - time (sec): 4.32 - samples/sec: 3019.24 - lr: 0.000008 - momentum: 0.000000
2023-10-17 08:45:34,528 epoch 9 - iter 91/138 - loss 0.02365520 - time (sec): 5.02 - samples/sec: 2999.66 - lr: 0.000008 - momentum: 0.000000
2023-10-17 08:45:35,271 epoch 9 - iter 104/138 - loss 0.02358021 - time (sec): 5.76 - samples/sec: 2981.94 - lr: 0.000007 - momentum: 0.000000
2023-10-17 08:45:35,978 epoch 9 - iter 117/138 - loss 0.02217472 - time (sec): 6.47 - samples/sec: 2980.06 - lr: 0.000007 - momentum: 0.000000
2023-10-17 08:45:36,677 epoch 9 - iter 130/138 - loss 0.02094984 - time (sec): 7.17 - samples/sec: 2990.54 - lr: 0.000006 - momentum: 0.000000
2023-10-17 08:45:37,134 ----------------------------------------------------------------------------------------------------
2023-10-17 08:45:37,134 EPOCH 9 done: loss 0.0202 - lr: 0.000006
2023-10-17 08:45:37,790 DEV : loss 0.1823827624320984 - f1-score (micro avg)  0.872
2023-10-17 08:45:37,795 ----------------------------------------------------------------------------------------------------
2023-10-17 08:45:38,585 epoch 10 - iter 13/138 - loss 0.08784586 - time (sec): 0.79 - samples/sec: 3159.87 - lr: 0.000005 - momentum: 0.000000
2023-10-17 08:45:39,345 epoch 10 - iter 26/138 - loss 0.04966499 - time (sec): 1.55 - samples/sec: 3082.74 - lr: 0.000005 - momentum: 0.000000
2023-10-17 08:45:40,068 epoch 10 - iter 39/138 - loss 0.03598407 - time (sec): 2.27 - samples/sec: 3108.91 - lr: 0.000004 - momentum: 0.000000
2023-10-17 08:45:40,765 epoch 10 - iter 52/138 - loss 0.02807500 - time (sec): 2.97 - samples/sec: 3070.41 - lr: 0.000004 - momentum: 0.000000
2023-10-17 08:45:41,488 epoch 10 - iter 65/138 - loss 0.02399162 - time (sec): 3.69 - samples/sec: 3046.98 - lr: 0.000003 - momentum: 0.000000
2023-10-17 08:45:42,166 epoch 10 - iter 78/138 - loss 0.02165534 - time (sec): 4.37 - samples/sec: 3027.74 - lr: 0.000003 - momentum: 0.000000
2023-10-17 08:45:42,927 epoch 10 - iter 91/138 - loss 0.01912312 - time (sec): 5.13 - samples/sec: 2985.88 - lr: 0.000002 - momentum: 0.000000
2023-10-17 08:45:43,591 epoch 10 - iter 104/138 - loss 0.01886851 - time (sec): 5.79 - samples/sec: 2971.80 - lr: 0.000002 - momentum: 0.000000
2023-10-17 08:45:44,320 epoch 10 - iter 117/138 - loss 0.01778748 - time (sec): 6.52 - samples/sec: 2975.48 - lr: 0.000001 - momentum: 0.000000
2023-10-17 08:45:45,028 epoch 10 - iter 130/138 - loss 0.01786949 - time (sec): 7.23 - samples/sec: 2985.97 - lr: 0.000000 - momentum: 0.000000
2023-10-17 08:45:45,509 ----------------------------------------------------------------------------------------------------
2023-10-17 08:45:45,510 EPOCH 10 done: loss 0.0176 - lr: 0.000000
2023-10-17 08:45:46,146 DEV : loss 0.18640285730361938 - f1-score (micro avg)  0.872
2023-10-17 08:45:46,499 ----------------------------------------------------------------------------------------------------
2023-10-17 08:45:46,500 Loading model from best epoch ...
2023-10-17 08:45:47,856 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-17 08:45:48,650 
Results:
- F-score (micro) 0.9067
- F-score (macro) 0.9372
- Accuracy 0.8413

By class:
              precision    recall  f1-score   support

       scope     0.8895    0.9148    0.9020       176
        pers     0.9683    0.9531    0.9606       128
        work     0.7975    0.8514    0.8235        74
      object     1.0000    1.0000    1.0000         2
         loc     1.0000    1.0000    1.0000         2

   micro avg     0.8974    0.9162    0.9067       382
   macro avg     0.9310    0.9438    0.9372       382
weighted avg     0.8992    0.9162    0.9075       382

2023-10-17 08:45:48,650 ----------------------------------------------------------------------------------------------------