File size: 24,022 Bytes
bae6249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
2023-10-17 08:36:58,474 ----------------------------------------------------------------------------------------------------
2023-10-17 08:36:58,475 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): ElectraModel(
      (embeddings): ElectraEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): ElectraEncoder(
        (layer): ModuleList(
          (0-11): 12 x ElectraLayer(
            (attention): ElectraAttention(
              (self): ElectraSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): ElectraSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): ElectraIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): ElectraOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-17 08:36:58,475 ----------------------------------------------------------------------------------------------------
2023-10-17 08:36:58,475 MultiCorpus: 1100 train + 206 dev + 240 test sentences
 - NER_HIPE_2022 Corpus: 1100 train + 206 dev + 240 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/de/with_doc_seperator
2023-10-17 08:36:58,475 ----------------------------------------------------------------------------------------------------
2023-10-17 08:36:58,475 Train:  1100 sentences
2023-10-17 08:36:58,475         (train_with_dev=False, train_with_test=False)
2023-10-17 08:36:58,475 ----------------------------------------------------------------------------------------------------
2023-10-17 08:36:58,475 Training Params:
2023-10-17 08:36:58,475  - learning_rate: "3e-05" 
2023-10-17 08:36:58,475  - mini_batch_size: "4"
2023-10-17 08:36:58,475  - max_epochs: "10"
2023-10-17 08:36:58,475  - shuffle: "True"
2023-10-17 08:36:58,476 ----------------------------------------------------------------------------------------------------
2023-10-17 08:36:58,476 Plugins:
2023-10-17 08:36:58,476  - TensorboardLogger
2023-10-17 08:36:58,476  - LinearScheduler | warmup_fraction: '0.1'
2023-10-17 08:36:58,476 ----------------------------------------------------------------------------------------------------
2023-10-17 08:36:58,476 Final evaluation on model from best epoch (best-model.pt)
2023-10-17 08:36:58,476  - metric: "('micro avg', 'f1-score')"
2023-10-17 08:36:58,476 ----------------------------------------------------------------------------------------------------
2023-10-17 08:36:58,476 Computation:
2023-10-17 08:36:58,476  - compute on device: cuda:0
2023-10-17 08:36:58,476  - embedding storage: none
2023-10-17 08:36:58,476 ----------------------------------------------------------------------------------------------------
2023-10-17 08:36:58,476 Model training base path: "hmbench-ajmc/de-hmteams/teams-base-historic-multilingual-discriminator-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3"
2023-10-17 08:36:58,476 ----------------------------------------------------------------------------------------------------
2023-10-17 08:36:58,476 ----------------------------------------------------------------------------------------------------
2023-10-17 08:36:58,476 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-17 08:36:59,775 epoch 1 - iter 27/275 - loss 4.18458578 - time (sec): 1.30 - samples/sec: 1607.98 - lr: 0.000003 - momentum: 0.000000
2023-10-17 08:37:01,092 epoch 1 - iter 54/275 - loss 3.52995056 - time (sec): 2.62 - samples/sec: 1665.60 - lr: 0.000006 - momentum: 0.000000
2023-10-17 08:37:02,364 epoch 1 - iter 81/275 - loss 2.73946158 - time (sec): 3.89 - samples/sec: 1742.61 - lr: 0.000009 - momentum: 0.000000
2023-10-17 08:37:03,575 epoch 1 - iter 108/275 - loss 2.32116704 - time (sec): 5.10 - samples/sec: 1717.25 - lr: 0.000012 - momentum: 0.000000
2023-10-17 08:37:04,802 epoch 1 - iter 135/275 - loss 1.97126016 - time (sec): 6.33 - samples/sec: 1750.19 - lr: 0.000015 - momentum: 0.000000
2023-10-17 08:37:06,020 epoch 1 - iter 162/275 - loss 1.71777691 - time (sec): 7.54 - samples/sec: 1773.32 - lr: 0.000018 - momentum: 0.000000
2023-10-17 08:37:07,229 epoch 1 - iter 189/275 - loss 1.54243129 - time (sec): 8.75 - samples/sec: 1772.43 - lr: 0.000021 - momentum: 0.000000
2023-10-17 08:37:08,460 epoch 1 - iter 216/275 - loss 1.39723452 - time (sec): 9.98 - samples/sec: 1779.60 - lr: 0.000023 - momentum: 0.000000
2023-10-17 08:37:09,699 epoch 1 - iter 243/275 - loss 1.27203012 - time (sec): 11.22 - samples/sec: 1793.76 - lr: 0.000026 - momentum: 0.000000
2023-10-17 08:37:10,955 epoch 1 - iter 270/275 - loss 1.17202515 - time (sec): 12.48 - samples/sec: 1794.93 - lr: 0.000029 - momentum: 0.000000
2023-10-17 08:37:11,175 ----------------------------------------------------------------------------------------------------
2023-10-17 08:37:11,175 EPOCH 1 done: loss 1.1580 - lr: 0.000029
2023-10-17 08:37:12,109 DEV : loss 0.24835138022899628 - f1-score (micro avg)  0.6724
2023-10-17 08:37:12,118 saving best model
2023-10-17 08:37:12,514 ----------------------------------------------------------------------------------------------------
2023-10-17 08:37:13,747 epoch 2 - iter 27/275 - loss 0.29820852 - time (sec): 1.23 - samples/sec: 1819.76 - lr: 0.000030 - momentum: 0.000000
2023-10-17 08:37:15,002 epoch 2 - iter 54/275 - loss 0.23526719 - time (sec): 2.49 - samples/sec: 1815.59 - lr: 0.000029 - momentum: 0.000000
2023-10-17 08:37:16,252 epoch 2 - iter 81/275 - loss 0.21389662 - time (sec): 3.74 - samples/sec: 1840.47 - lr: 0.000029 - momentum: 0.000000
2023-10-17 08:37:17,492 epoch 2 - iter 108/275 - loss 0.20199060 - time (sec): 4.98 - samples/sec: 1829.24 - lr: 0.000029 - momentum: 0.000000
2023-10-17 08:37:18,780 epoch 2 - iter 135/275 - loss 0.20714418 - time (sec): 6.26 - samples/sec: 1849.93 - lr: 0.000028 - momentum: 0.000000
2023-10-17 08:37:20,000 epoch 2 - iter 162/275 - loss 0.19899218 - time (sec): 7.48 - samples/sec: 1839.93 - lr: 0.000028 - momentum: 0.000000
2023-10-17 08:37:21,223 epoch 2 - iter 189/275 - loss 0.18640584 - time (sec): 8.71 - samples/sec: 1826.78 - lr: 0.000028 - momentum: 0.000000
2023-10-17 08:37:22,426 epoch 2 - iter 216/275 - loss 0.17495426 - time (sec): 9.91 - samples/sec: 1823.46 - lr: 0.000027 - momentum: 0.000000
2023-10-17 08:37:23,624 epoch 2 - iter 243/275 - loss 0.17167750 - time (sec): 11.11 - samples/sec: 1813.93 - lr: 0.000027 - momentum: 0.000000
2023-10-17 08:37:24,834 epoch 2 - iter 270/275 - loss 0.17281482 - time (sec): 12.32 - samples/sec: 1821.11 - lr: 0.000027 - momentum: 0.000000
2023-10-17 08:37:25,066 ----------------------------------------------------------------------------------------------------
2023-10-17 08:37:25,066 EPOCH 2 done: loss 0.1708 - lr: 0.000027
2023-10-17 08:37:25,708 DEV : loss 0.17084632813930511 - f1-score (micro avg)  0.7878
2023-10-17 08:37:25,713 saving best model
2023-10-17 08:37:26,168 ----------------------------------------------------------------------------------------------------
2023-10-17 08:37:27,514 epoch 3 - iter 27/275 - loss 0.09476884 - time (sec): 1.34 - samples/sec: 1858.77 - lr: 0.000026 - momentum: 0.000000
2023-10-17 08:37:28,804 epoch 3 - iter 54/275 - loss 0.10381617 - time (sec): 2.63 - samples/sec: 1816.48 - lr: 0.000026 - momentum: 0.000000
2023-10-17 08:37:30,061 epoch 3 - iter 81/275 - loss 0.08816859 - time (sec): 3.89 - samples/sec: 1809.77 - lr: 0.000026 - momentum: 0.000000
2023-10-17 08:37:31,279 epoch 3 - iter 108/275 - loss 0.09298207 - time (sec): 5.10 - samples/sec: 1858.42 - lr: 0.000025 - momentum: 0.000000
2023-10-17 08:37:32,446 epoch 3 - iter 135/275 - loss 0.08748654 - time (sec): 6.27 - samples/sec: 1829.77 - lr: 0.000025 - momentum: 0.000000
2023-10-17 08:37:33,636 epoch 3 - iter 162/275 - loss 0.08756638 - time (sec): 7.46 - samples/sec: 1832.04 - lr: 0.000025 - momentum: 0.000000
2023-10-17 08:37:34,860 epoch 3 - iter 189/275 - loss 0.09520057 - time (sec): 8.68 - samples/sec: 1832.53 - lr: 0.000024 - momentum: 0.000000
2023-10-17 08:37:36,073 epoch 3 - iter 216/275 - loss 0.09802843 - time (sec): 9.90 - samples/sec: 1837.75 - lr: 0.000024 - momentum: 0.000000
2023-10-17 08:37:37,279 epoch 3 - iter 243/275 - loss 0.10354344 - time (sec): 11.10 - samples/sec: 1832.55 - lr: 0.000024 - momentum: 0.000000
2023-10-17 08:37:38,492 epoch 3 - iter 270/275 - loss 0.10281829 - time (sec): 12.32 - samples/sec: 1822.19 - lr: 0.000023 - momentum: 0.000000
2023-10-17 08:37:38,722 ----------------------------------------------------------------------------------------------------
2023-10-17 08:37:38,722 EPOCH 3 done: loss 0.1016 - lr: 0.000023
2023-10-17 08:37:39,360 DEV : loss 0.1669451892375946 - f1-score (micro avg)  0.8578
2023-10-17 08:37:39,365 saving best model
2023-10-17 08:37:39,814 ----------------------------------------------------------------------------------------------------
2023-10-17 08:37:41,065 epoch 4 - iter 27/275 - loss 0.06433406 - time (sec): 1.25 - samples/sec: 1732.40 - lr: 0.000023 - momentum: 0.000000
2023-10-17 08:37:42,286 epoch 4 - iter 54/275 - loss 0.05325618 - time (sec): 2.47 - samples/sec: 1795.30 - lr: 0.000023 - momentum: 0.000000
2023-10-17 08:37:43,493 epoch 4 - iter 81/275 - loss 0.05697675 - time (sec): 3.68 - samples/sec: 1803.32 - lr: 0.000022 - momentum: 0.000000
2023-10-17 08:37:44,721 epoch 4 - iter 108/275 - loss 0.05585319 - time (sec): 4.91 - samples/sec: 1757.38 - lr: 0.000022 - momentum: 0.000000
2023-10-17 08:37:45,977 epoch 4 - iter 135/275 - loss 0.06478508 - time (sec): 6.16 - samples/sec: 1771.47 - lr: 0.000022 - momentum: 0.000000
2023-10-17 08:37:47,210 epoch 4 - iter 162/275 - loss 0.06539720 - time (sec): 7.39 - samples/sec: 1786.82 - lr: 0.000021 - momentum: 0.000000
2023-10-17 08:37:48,441 epoch 4 - iter 189/275 - loss 0.07160567 - time (sec): 8.63 - samples/sec: 1767.48 - lr: 0.000021 - momentum: 0.000000
2023-10-17 08:37:49,673 epoch 4 - iter 216/275 - loss 0.07816350 - time (sec): 9.86 - samples/sec: 1798.06 - lr: 0.000021 - momentum: 0.000000
2023-10-17 08:37:50,930 epoch 4 - iter 243/275 - loss 0.08021309 - time (sec): 11.11 - samples/sec: 1793.74 - lr: 0.000020 - momentum: 0.000000
2023-10-17 08:37:52,192 epoch 4 - iter 270/275 - loss 0.08200783 - time (sec): 12.38 - samples/sec: 1803.55 - lr: 0.000020 - momentum: 0.000000
2023-10-17 08:37:52,414 ----------------------------------------------------------------------------------------------------
2023-10-17 08:37:52,414 EPOCH 4 done: loss 0.0815 - lr: 0.000020
2023-10-17 08:37:53,069 DEV : loss 0.17194409668445587 - f1-score (micro avg)  0.8676
2023-10-17 08:37:53,074 saving best model
2023-10-17 08:37:53,493 ----------------------------------------------------------------------------------------------------
2023-10-17 08:37:54,661 epoch 5 - iter 27/275 - loss 0.10193073 - time (sec): 1.16 - samples/sec: 1980.50 - lr: 0.000020 - momentum: 0.000000
2023-10-17 08:37:55,826 epoch 5 - iter 54/275 - loss 0.10581887 - time (sec): 2.33 - samples/sec: 1992.98 - lr: 0.000019 - momentum: 0.000000
2023-10-17 08:37:56,994 epoch 5 - iter 81/275 - loss 0.08517821 - time (sec): 3.49 - samples/sec: 1958.62 - lr: 0.000019 - momentum: 0.000000
2023-10-17 08:37:58,283 epoch 5 - iter 108/275 - loss 0.08332972 - time (sec): 4.78 - samples/sec: 1885.61 - lr: 0.000019 - momentum: 0.000000
2023-10-17 08:37:59,502 epoch 5 - iter 135/275 - loss 0.07897071 - time (sec): 6.00 - samples/sec: 1878.56 - lr: 0.000018 - momentum: 0.000000
2023-10-17 08:38:00,721 epoch 5 - iter 162/275 - loss 0.08025946 - time (sec): 7.22 - samples/sec: 1863.81 - lr: 0.000018 - momentum: 0.000000
2023-10-17 08:38:01,973 epoch 5 - iter 189/275 - loss 0.07544818 - time (sec): 8.47 - samples/sec: 1862.92 - lr: 0.000018 - momentum: 0.000000
2023-10-17 08:38:03,224 epoch 5 - iter 216/275 - loss 0.07174048 - time (sec): 9.72 - samples/sec: 1860.61 - lr: 0.000017 - momentum: 0.000000
2023-10-17 08:38:04,430 epoch 5 - iter 243/275 - loss 0.06753309 - time (sec): 10.93 - samples/sec: 1856.49 - lr: 0.000017 - momentum: 0.000000
2023-10-17 08:38:05,649 epoch 5 - iter 270/275 - loss 0.06679138 - time (sec): 12.15 - samples/sec: 1841.03 - lr: 0.000017 - momentum: 0.000000
2023-10-17 08:38:05,872 ----------------------------------------------------------------------------------------------------
2023-10-17 08:38:05,872 EPOCH 5 done: loss 0.0656 - lr: 0.000017
2023-10-17 08:38:06,507 DEV : loss 0.18873989582061768 - f1-score (micro avg)  0.8697
2023-10-17 08:38:06,512 saving best model
2023-10-17 08:38:06,950 ----------------------------------------------------------------------------------------------------
2023-10-17 08:38:08,212 epoch 6 - iter 27/275 - loss 0.05035342 - time (sec): 1.26 - samples/sec: 1817.82 - lr: 0.000016 - momentum: 0.000000
2023-10-17 08:38:09,427 epoch 6 - iter 54/275 - loss 0.05035438 - time (sec): 2.48 - samples/sec: 1802.99 - lr: 0.000016 - momentum: 0.000000
2023-10-17 08:38:10,637 epoch 6 - iter 81/275 - loss 0.05778617 - time (sec): 3.69 - samples/sec: 1773.27 - lr: 0.000016 - momentum: 0.000000
2023-10-17 08:38:11,834 epoch 6 - iter 108/275 - loss 0.06517433 - time (sec): 4.88 - samples/sec: 1764.60 - lr: 0.000015 - momentum: 0.000000
2023-10-17 08:38:13,077 epoch 6 - iter 135/275 - loss 0.06395069 - time (sec): 6.13 - samples/sec: 1811.73 - lr: 0.000015 - momentum: 0.000000
2023-10-17 08:38:14,284 epoch 6 - iter 162/275 - loss 0.05909466 - time (sec): 7.33 - samples/sec: 1787.73 - lr: 0.000015 - momentum: 0.000000
2023-10-17 08:38:15,483 epoch 6 - iter 189/275 - loss 0.05858764 - time (sec): 8.53 - samples/sec: 1827.95 - lr: 0.000014 - momentum: 0.000000
2023-10-17 08:38:16,675 epoch 6 - iter 216/275 - loss 0.05612642 - time (sec): 9.72 - samples/sec: 1829.87 - lr: 0.000014 - momentum: 0.000000
2023-10-17 08:38:17,867 epoch 6 - iter 243/275 - loss 0.05375890 - time (sec): 10.92 - samples/sec: 1823.26 - lr: 0.000014 - momentum: 0.000000
2023-10-17 08:38:19,068 epoch 6 - iter 270/275 - loss 0.05000841 - time (sec): 12.12 - samples/sec: 1837.48 - lr: 0.000013 - momentum: 0.000000
2023-10-17 08:38:19,295 ----------------------------------------------------------------------------------------------------
2023-10-17 08:38:19,295 EPOCH 6 done: loss 0.0503 - lr: 0.000013
2023-10-17 08:38:19,926 DEV : loss 0.19087766110897064 - f1-score (micro avg)  0.8643
2023-10-17 08:38:19,931 ----------------------------------------------------------------------------------------------------
2023-10-17 08:38:21,162 epoch 7 - iter 27/275 - loss 0.04592519 - time (sec): 1.23 - samples/sec: 1883.07 - lr: 0.000013 - momentum: 0.000000
2023-10-17 08:38:22,366 epoch 7 - iter 54/275 - loss 0.03291311 - time (sec): 2.43 - samples/sec: 1838.45 - lr: 0.000013 - momentum: 0.000000
2023-10-17 08:38:23,561 epoch 7 - iter 81/275 - loss 0.02930348 - time (sec): 3.63 - samples/sec: 1820.31 - lr: 0.000012 - momentum: 0.000000
2023-10-17 08:38:24,776 epoch 7 - iter 108/275 - loss 0.04025652 - time (sec): 4.84 - samples/sec: 1783.80 - lr: 0.000012 - momentum: 0.000000
2023-10-17 08:38:26,025 epoch 7 - iter 135/275 - loss 0.03406485 - time (sec): 6.09 - samples/sec: 1832.62 - lr: 0.000012 - momentum: 0.000000
2023-10-17 08:38:27,240 epoch 7 - iter 162/275 - loss 0.04109484 - time (sec): 7.31 - samples/sec: 1852.06 - lr: 0.000011 - momentum: 0.000000
2023-10-17 08:38:28,446 epoch 7 - iter 189/275 - loss 0.04358684 - time (sec): 8.51 - samples/sec: 1840.09 - lr: 0.000011 - momentum: 0.000000
2023-10-17 08:38:29,663 epoch 7 - iter 216/275 - loss 0.04150936 - time (sec): 9.73 - samples/sec: 1848.67 - lr: 0.000011 - momentum: 0.000000
2023-10-17 08:38:30,890 epoch 7 - iter 243/275 - loss 0.04573996 - time (sec): 10.96 - samples/sec: 1843.23 - lr: 0.000010 - momentum: 0.000000
2023-10-17 08:38:32,107 epoch 7 - iter 270/275 - loss 0.04355072 - time (sec): 12.18 - samples/sec: 1846.29 - lr: 0.000010 - momentum: 0.000000
2023-10-17 08:38:32,333 ----------------------------------------------------------------------------------------------------
2023-10-17 08:38:32,333 EPOCH 7 done: loss 0.0451 - lr: 0.000010
2023-10-17 08:38:32,970 DEV : loss 0.18272067606449127 - f1-score (micro avg)  0.8841
2023-10-17 08:38:32,974 saving best model
2023-10-17 08:38:33,402 ----------------------------------------------------------------------------------------------------
2023-10-17 08:38:34,625 epoch 8 - iter 27/275 - loss 0.03791177 - time (sec): 1.22 - samples/sec: 1818.03 - lr: 0.000010 - momentum: 0.000000
2023-10-17 08:38:35,843 epoch 8 - iter 54/275 - loss 0.03884052 - time (sec): 2.44 - samples/sec: 1798.40 - lr: 0.000009 - momentum: 0.000000
2023-10-17 08:38:37,056 epoch 8 - iter 81/275 - loss 0.03522629 - time (sec): 3.65 - samples/sec: 1876.18 - lr: 0.000009 - momentum: 0.000000
2023-10-17 08:38:38,213 epoch 8 - iter 108/275 - loss 0.03898247 - time (sec): 4.81 - samples/sec: 1900.36 - lr: 0.000009 - momentum: 0.000000
2023-10-17 08:38:39,385 epoch 8 - iter 135/275 - loss 0.03363928 - time (sec): 5.98 - samples/sec: 1897.76 - lr: 0.000008 - momentum: 0.000000
2023-10-17 08:38:40,576 epoch 8 - iter 162/275 - loss 0.02922465 - time (sec): 7.17 - samples/sec: 1852.74 - lr: 0.000008 - momentum: 0.000000
2023-10-17 08:38:41,825 epoch 8 - iter 189/275 - loss 0.02981224 - time (sec): 8.42 - samples/sec: 1850.17 - lr: 0.000008 - momentum: 0.000000
2023-10-17 08:38:43,040 epoch 8 - iter 216/275 - loss 0.03064469 - time (sec): 9.64 - samples/sec: 1851.37 - lr: 0.000007 - momentum: 0.000000
2023-10-17 08:38:44,247 epoch 8 - iter 243/275 - loss 0.02957048 - time (sec): 10.84 - samples/sec: 1850.42 - lr: 0.000007 - momentum: 0.000000
2023-10-17 08:38:45,469 epoch 8 - iter 270/275 - loss 0.03328664 - time (sec): 12.06 - samples/sec: 1855.69 - lr: 0.000007 - momentum: 0.000000
2023-10-17 08:38:45,697 ----------------------------------------------------------------------------------------------------
2023-10-17 08:38:45,697 EPOCH 8 done: loss 0.0331 - lr: 0.000007
2023-10-17 08:38:46,406 DEV : loss 0.17866075038909912 - f1-score (micro avg)  0.8835
2023-10-17 08:38:46,412 ----------------------------------------------------------------------------------------------------
2023-10-17 08:38:47,639 epoch 9 - iter 27/275 - loss 0.02070222 - time (sec): 1.23 - samples/sec: 1816.68 - lr: 0.000006 - momentum: 0.000000
2023-10-17 08:38:48,857 epoch 9 - iter 54/275 - loss 0.02809420 - time (sec): 2.44 - samples/sec: 1912.52 - lr: 0.000006 - momentum: 0.000000
2023-10-17 08:38:50,059 epoch 9 - iter 81/275 - loss 0.03070519 - time (sec): 3.65 - samples/sec: 1858.56 - lr: 0.000006 - momentum: 0.000000
2023-10-17 08:38:51,254 epoch 9 - iter 108/275 - loss 0.03042463 - time (sec): 4.84 - samples/sec: 1851.92 - lr: 0.000005 - momentum: 0.000000
2023-10-17 08:38:52,474 epoch 9 - iter 135/275 - loss 0.02817818 - time (sec): 6.06 - samples/sec: 1860.00 - lr: 0.000005 - momentum: 0.000000
2023-10-17 08:38:53,696 epoch 9 - iter 162/275 - loss 0.02493376 - time (sec): 7.28 - samples/sec: 1851.21 - lr: 0.000005 - momentum: 0.000000
2023-10-17 08:38:54,935 epoch 9 - iter 189/275 - loss 0.03113342 - time (sec): 8.52 - samples/sec: 1840.47 - lr: 0.000004 - momentum: 0.000000
2023-10-17 08:38:56,177 epoch 9 - iter 216/275 - loss 0.03047445 - time (sec): 9.76 - samples/sec: 1839.37 - lr: 0.000004 - momentum: 0.000000
2023-10-17 08:38:57,419 epoch 9 - iter 243/275 - loss 0.02770802 - time (sec): 11.01 - samples/sec: 1817.40 - lr: 0.000004 - momentum: 0.000000
2023-10-17 08:38:58,661 epoch 9 - iter 270/275 - loss 0.02697792 - time (sec): 12.25 - samples/sec: 1822.10 - lr: 0.000003 - momentum: 0.000000
2023-10-17 08:38:58,881 ----------------------------------------------------------------------------------------------------
2023-10-17 08:38:58,881 EPOCH 9 done: loss 0.0269 - lr: 0.000003
2023-10-17 08:38:59,631 DEV : loss 0.17246393859386444 - f1-score (micro avg)  0.8803
2023-10-17 08:38:59,636 ----------------------------------------------------------------------------------------------------
2023-10-17 08:39:00,822 epoch 10 - iter 27/275 - loss 0.06560676 - time (sec): 1.19 - samples/sec: 2181.30 - lr: 0.000003 - momentum: 0.000000
2023-10-17 08:39:02,049 epoch 10 - iter 54/275 - loss 0.04650226 - time (sec): 2.41 - samples/sec: 2062.30 - lr: 0.000003 - momentum: 0.000000
2023-10-17 08:39:03,285 epoch 10 - iter 81/275 - loss 0.03455730 - time (sec): 3.65 - samples/sec: 2025.03 - lr: 0.000002 - momentum: 0.000000
2023-10-17 08:39:04,480 epoch 10 - iter 108/275 - loss 0.02764019 - time (sec): 4.84 - samples/sec: 1950.65 - lr: 0.000002 - momentum: 0.000000
2023-10-17 08:39:05,691 epoch 10 - iter 135/275 - loss 0.02670571 - time (sec): 6.05 - samples/sec: 1911.94 - lr: 0.000002 - momentum: 0.000000
2023-10-17 08:39:06,908 epoch 10 - iter 162/275 - loss 0.02432927 - time (sec): 7.27 - samples/sec: 1886.79 - lr: 0.000001 - momentum: 0.000000
2023-10-17 08:39:08,144 epoch 10 - iter 189/275 - loss 0.02362532 - time (sec): 8.51 - samples/sec: 1860.15 - lr: 0.000001 - momentum: 0.000000
2023-10-17 08:39:09,374 epoch 10 - iter 216/275 - loss 0.02263105 - time (sec): 9.74 - samples/sec: 1841.53 - lr: 0.000001 - momentum: 0.000000
2023-10-17 08:39:10,593 epoch 10 - iter 243/275 - loss 0.02183048 - time (sec): 10.96 - samples/sec: 1847.62 - lr: 0.000000 - momentum: 0.000000
2023-10-17 08:39:11,842 epoch 10 - iter 270/275 - loss 0.02161543 - time (sec): 12.21 - samples/sec: 1832.25 - lr: 0.000000 - momentum: 0.000000
2023-10-17 08:39:12,068 ----------------------------------------------------------------------------------------------------
2023-10-17 08:39:12,068 EPOCH 10 done: loss 0.0212 - lr: 0.000000
2023-10-17 08:39:12,729 DEV : loss 0.17962802946567535 - f1-score (micro avg)  0.8816
2023-10-17 08:39:13,079 ----------------------------------------------------------------------------------------------------
2023-10-17 08:39:13,080 Loading model from best epoch ...
2023-10-17 08:39:14,442 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-17 08:39:15,253 
Results:
- F-score (micro) 0.8863
- F-score (macro) 0.6622
- Accuracy 0.8091

By class:
              precision    recall  f1-score   support

       scope     0.8708    0.8807    0.8757       176
        pers     0.9603    0.9453    0.9528       128
        work     0.7949    0.8378    0.8158        74
         loc     1.0000    0.5000    0.6667         2
      object     0.0000    0.0000    0.0000         2

   micro avg     0.8851    0.8874    0.8863       382
   macro avg     0.7252    0.6328    0.6622       382
weighted avg     0.8822    0.8874    0.8842       382

2023-10-17 08:39:15,253 ----------------------------------------------------------------------------------------------------