File size: 25,041 Bytes
75f863a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
2023-10-06 21:40:48,284 ----------------------------------------------------------------------------------------------------
2023-10-06 21:40:48,285 Model: "SequenceTagger(
  (embeddings): ByT5Embeddings(
    (model): T5EncoderModel(
      (shared): Embedding(384, 1472)
      (encoder): T5Stack(
        (embed_tokens): Embedding(384, 1472)
        (block): ModuleList(
          (0): T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                  (relative_attention_bias): Embedding(32, 6)
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
          (1-11): 11 x T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
        )
        (final_layer_norm): T5LayerNorm()
        (dropout): Dropout(p=0.1, inplace=False)
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=1472, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-06 21:40:48,285 ----------------------------------------------------------------------------------------------------
2023-10-06 21:40:48,285 MultiCorpus: 1100 train + 206 dev + 240 test sentences
 - NER_HIPE_2022 Corpus: 1100 train + 206 dev + 240 test sentences - /app/.flair/datasets/ner_hipe_2022/v2.1/ajmc/de/with_doc_seperator
2023-10-06 21:40:48,286 ----------------------------------------------------------------------------------------------------
2023-10-06 21:40:48,286 Train:  1100 sentences
2023-10-06 21:40:48,286         (train_with_dev=False, train_with_test=False)
2023-10-06 21:40:48,286 ----------------------------------------------------------------------------------------------------
2023-10-06 21:40:48,286 Training Params:
2023-10-06 21:40:48,286  - learning_rate: "0.00016" 
2023-10-06 21:40:48,286  - mini_batch_size: "8"
2023-10-06 21:40:48,286  - max_epochs: "10"
2023-10-06 21:40:48,286  - shuffle: "True"
2023-10-06 21:40:48,286 ----------------------------------------------------------------------------------------------------
2023-10-06 21:40:48,286 Plugins:
2023-10-06 21:40:48,286  - TensorboardLogger
2023-10-06 21:40:48,286  - LinearScheduler | warmup_fraction: '0.1'
2023-10-06 21:40:48,286 ----------------------------------------------------------------------------------------------------
2023-10-06 21:40:48,286 Final evaluation on model from best epoch (best-model.pt)
2023-10-06 21:40:48,286  - metric: "('micro avg', 'f1-score')"
2023-10-06 21:40:48,286 ----------------------------------------------------------------------------------------------------
2023-10-06 21:40:48,286 Computation:
2023-10-06 21:40:48,286  - compute on device: cuda:0
2023-10-06 21:40:48,287  - embedding storage: none
2023-10-06 21:40:48,287 ----------------------------------------------------------------------------------------------------
2023-10-06 21:40:48,287 Model training base path: "hmbench-ajmc/de-hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax-bs8-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-1"
2023-10-06 21:40:48,287 ----------------------------------------------------------------------------------------------------
2023-10-06 21:40:48,287 ----------------------------------------------------------------------------------------------------
2023-10-06 21:40:48,287 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-06 21:40:57,559 epoch 1 - iter 13/138 - loss 3.22932241 - time (sec): 9.27 - samples/sec: 230.62 - lr: 0.000014 - momentum: 0.000000
2023-10-06 21:41:07,327 epoch 1 - iter 26/138 - loss 3.22496377 - time (sec): 19.04 - samples/sec: 224.28 - lr: 0.000029 - momentum: 0.000000
2023-10-06 21:41:16,428 epoch 1 - iter 39/138 - loss 3.21594068 - time (sec): 28.14 - samples/sec: 219.65 - lr: 0.000044 - momentum: 0.000000
2023-10-06 21:41:25,744 epoch 1 - iter 52/138 - loss 3.20171907 - time (sec): 37.46 - samples/sec: 218.47 - lr: 0.000059 - momentum: 0.000000
2023-10-06 21:41:36,624 epoch 1 - iter 65/138 - loss 3.16881497 - time (sec): 48.34 - samples/sec: 221.68 - lr: 0.000074 - momentum: 0.000000
2023-10-06 21:41:46,773 epoch 1 - iter 78/138 - loss 3.11163081 - time (sec): 58.48 - samples/sec: 223.37 - lr: 0.000089 - momentum: 0.000000
2023-10-06 21:41:56,659 epoch 1 - iter 91/138 - loss 3.04972079 - time (sec): 68.37 - samples/sec: 223.09 - lr: 0.000104 - momentum: 0.000000
2023-10-06 21:42:06,249 epoch 1 - iter 104/138 - loss 2.97412228 - time (sec): 77.96 - samples/sec: 223.07 - lr: 0.000119 - momentum: 0.000000
2023-10-06 21:42:16,033 epoch 1 - iter 117/138 - loss 2.89301074 - time (sec): 87.74 - samples/sec: 223.03 - lr: 0.000134 - momentum: 0.000000
2023-10-06 21:42:25,040 epoch 1 - iter 130/138 - loss 2.82504112 - time (sec): 96.75 - samples/sec: 222.68 - lr: 0.000150 - momentum: 0.000000
2023-10-06 21:42:30,771 ----------------------------------------------------------------------------------------------------
2023-10-06 21:42:30,772 EPOCH 1 done: loss 2.7769 - lr: 0.000150
2023-10-06 21:42:37,535 DEV : loss 1.7709752321243286 - f1-score (micro avg)  0.0
2023-10-06 21:42:37,541 ----------------------------------------------------------------------------------------------------
2023-10-06 21:42:47,080 epoch 2 - iter 13/138 - loss 1.70465968 - time (sec): 9.54 - samples/sec: 224.57 - lr: 0.000158 - momentum: 0.000000
2023-10-06 21:42:57,077 epoch 2 - iter 26/138 - loss 1.57513086 - time (sec): 19.53 - samples/sec: 222.02 - lr: 0.000157 - momentum: 0.000000
2023-10-06 21:43:06,413 epoch 2 - iter 39/138 - loss 1.51682688 - time (sec): 28.87 - samples/sec: 221.16 - lr: 0.000155 - momentum: 0.000000
2023-10-06 21:43:15,371 epoch 2 - iter 52/138 - loss 1.43139706 - time (sec): 37.83 - samples/sec: 217.53 - lr: 0.000153 - momentum: 0.000000
2023-10-06 21:43:24,766 epoch 2 - iter 65/138 - loss 1.35600385 - time (sec): 47.22 - samples/sec: 217.26 - lr: 0.000152 - momentum: 0.000000
2023-10-06 21:43:34,661 epoch 2 - iter 78/138 - loss 1.29510452 - time (sec): 57.12 - samples/sec: 217.62 - lr: 0.000150 - momentum: 0.000000
2023-10-06 21:43:44,696 epoch 2 - iter 91/138 - loss 1.23627642 - time (sec): 67.15 - samples/sec: 219.26 - lr: 0.000148 - momentum: 0.000000
2023-10-06 21:43:54,956 epoch 2 - iter 104/138 - loss 1.18744407 - time (sec): 77.41 - samples/sec: 220.17 - lr: 0.000147 - momentum: 0.000000
2023-10-06 21:44:04,455 epoch 2 - iter 117/138 - loss 1.15075822 - time (sec): 86.91 - samples/sec: 220.82 - lr: 0.000145 - momentum: 0.000000
2023-10-06 21:44:14,750 epoch 2 - iter 130/138 - loss 1.11339905 - time (sec): 97.21 - samples/sec: 222.22 - lr: 0.000143 - momentum: 0.000000
2023-10-06 21:44:20,016 ----------------------------------------------------------------------------------------------------
2023-10-06 21:44:20,016 EPOCH 2 done: loss 1.0983 - lr: 0.000143
2023-10-06 21:44:26,738 DEV : loss 0.7268592715263367 - f1-score (micro avg)  0.0
2023-10-06 21:44:26,744 ----------------------------------------------------------------------------------------------------
2023-10-06 21:44:36,396 epoch 3 - iter 13/138 - loss 0.70907147 - time (sec): 9.65 - samples/sec: 223.08 - lr: 0.000141 - momentum: 0.000000
2023-10-06 21:44:46,642 epoch 3 - iter 26/138 - loss 0.64621440 - time (sec): 19.90 - samples/sec: 226.52 - lr: 0.000139 - momentum: 0.000000
2023-10-06 21:44:56,414 epoch 3 - iter 39/138 - loss 0.63420933 - time (sec): 29.67 - samples/sec: 226.60 - lr: 0.000137 - momentum: 0.000000
2023-10-06 21:45:06,826 epoch 3 - iter 52/138 - loss 0.61482481 - time (sec): 40.08 - samples/sec: 227.07 - lr: 0.000136 - momentum: 0.000000
2023-10-06 21:45:15,817 epoch 3 - iter 65/138 - loss 0.60997011 - time (sec): 49.07 - samples/sec: 226.14 - lr: 0.000134 - momentum: 0.000000
2023-10-06 21:45:26,124 epoch 3 - iter 78/138 - loss 0.59932463 - time (sec): 59.38 - samples/sec: 226.83 - lr: 0.000132 - momentum: 0.000000
2023-10-06 21:45:35,137 epoch 3 - iter 91/138 - loss 0.58378814 - time (sec): 68.39 - samples/sec: 224.50 - lr: 0.000131 - momentum: 0.000000
2023-10-06 21:45:44,232 epoch 3 - iter 104/138 - loss 0.56431660 - time (sec): 77.49 - samples/sec: 223.01 - lr: 0.000129 - momentum: 0.000000
2023-10-06 21:45:53,869 epoch 3 - iter 117/138 - loss 0.54913062 - time (sec): 87.12 - samples/sec: 222.36 - lr: 0.000127 - momentum: 0.000000
2023-10-06 21:46:03,803 epoch 3 - iter 130/138 - loss 0.52734165 - time (sec): 97.06 - samples/sec: 222.20 - lr: 0.000126 - momentum: 0.000000
2023-10-06 21:46:09,423 ----------------------------------------------------------------------------------------------------
2023-10-06 21:46:09,423 EPOCH 3 done: loss 0.5189 - lr: 0.000126
2023-10-06 21:46:16,125 DEV : loss 0.38523873686790466 - f1-score (micro avg)  0.489
2023-10-06 21:46:16,131 saving best model
2023-10-06 21:46:17,033 ----------------------------------------------------------------------------------------------------
2023-10-06 21:46:27,861 epoch 4 - iter 13/138 - loss 0.32840705 - time (sec): 10.83 - samples/sec: 229.53 - lr: 0.000123 - momentum: 0.000000
2023-10-06 21:46:37,706 epoch 4 - iter 26/138 - loss 0.31706666 - time (sec): 20.67 - samples/sec: 224.32 - lr: 0.000121 - momentum: 0.000000
2023-10-06 21:46:46,686 epoch 4 - iter 39/138 - loss 0.32419045 - time (sec): 29.65 - samples/sec: 219.45 - lr: 0.000120 - momentum: 0.000000
2023-10-06 21:46:56,167 epoch 4 - iter 52/138 - loss 0.32908592 - time (sec): 39.13 - samples/sec: 221.28 - lr: 0.000118 - momentum: 0.000000
2023-10-06 21:47:05,997 epoch 4 - iter 65/138 - loss 0.32326386 - time (sec): 48.96 - samples/sec: 221.68 - lr: 0.000116 - momentum: 0.000000
2023-10-06 21:47:16,087 epoch 4 - iter 78/138 - loss 0.32849866 - time (sec): 59.05 - samples/sec: 222.94 - lr: 0.000115 - momentum: 0.000000
2023-10-06 21:47:25,799 epoch 4 - iter 91/138 - loss 0.31853506 - time (sec): 68.76 - samples/sec: 222.11 - lr: 0.000113 - momentum: 0.000000
2023-10-06 21:47:35,244 epoch 4 - iter 104/138 - loss 0.31529818 - time (sec): 78.21 - samples/sec: 221.90 - lr: 0.000111 - momentum: 0.000000
2023-10-06 21:47:44,556 epoch 4 - iter 117/138 - loss 0.31233610 - time (sec): 87.52 - samples/sec: 222.39 - lr: 0.000110 - momentum: 0.000000
2023-10-06 21:47:53,872 epoch 4 - iter 130/138 - loss 0.30543028 - time (sec): 96.84 - samples/sec: 221.67 - lr: 0.000108 - momentum: 0.000000
2023-10-06 21:47:59,648 ----------------------------------------------------------------------------------------------------
2023-10-06 21:47:59,649 EPOCH 4 done: loss 0.3000 - lr: 0.000108
2023-10-06 21:48:06,361 DEV : loss 0.24843597412109375 - f1-score (micro avg)  0.6997
2023-10-06 21:48:06,367 saving best model
2023-10-06 21:48:07,281 ----------------------------------------------------------------------------------------------------
2023-10-06 21:48:17,052 epoch 5 - iter 13/138 - loss 0.23847167 - time (sec): 9.77 - samples/sec: 216.80 - lr: 0.000105 - momentum: 0.000000
2023-10-06 21:48:26,728 epoch 5 - iter 26/138 - loss 0.24511983 - time (sec): 19.45 - samples/sec: 218.92 - lr: 0.000104 - momentum: 0.000000
2023-10-06 21:48:36,023 epoch 5 - iter 39/138 - loss 0.24670887 - time (sec): 28.74 - samples/sec: 219.24 - lr: 0.000102 - momentum: 0.000000
2023-10-06 21:48:46,778 epoch 5 - iter 52/138 - loss 0.23014874 - time (sec): 39.49 - samples/sec: 223.98 - lr: 0.000100 - momentum: 0.000000
2023-10-06 21:48:56,955 epoch 5 - iter 65/138 - loss 0.22490150 - time (sec): 49.67 - samples/sec: 224.11 - lr: 0.000099 - momentum: 0.000000
2023-10-06 21:49:06,877 epoch 5 - iter 78/138 - loss 0.21726106 - time (sec): 59.59 - samples/sec: 223.18 - lr: 0.000097 - momentum: 0.000000
2023-10-06 21:49:17,317 epoch 5 - iter 91/138 - loss 0.20425902 - time (sec): 70.03 - samples/sec: 222.68 - lr: 0.000095 - momentum: 0.000000
2023-10-06 21:49:26,535 epoch 5 - iter 104/138 - loss 0.19921248 - time (sec): 79.25 - samples/sec: 223.20 - lr: 0.000094 - momentum: 0.000000
2023-10-06 21:49:35,724 epoch 5 - iter 117/138 - loss 0.19801591 - time (sec): 88.44 - samples/sec: 222.34 - lr: 0.000092 - momentum: 0.000000
2023-10-06 21:49:44,843 epoch 5 - iter 130/138 - loss 0.19298194 - time (sec): 97.56 - samples/sec: 222.42 - lr: 0.000090 - momentum: 0.000000
2023-10-06 21:49:49,977 ----------------------------------------------------------------------------------------------------
2023-10-06 21:49:49,978 EPOCH 5 done: loss 0.1936 - lr: 0.000090
2023-10-06 21:49:56,718 DEV : loss 0.174832284450531 - f1-score (micro avg)  0.8195
2023-10-06 21:49:56,724 saving best model
2023-10-06 21:49:57,626 ----------------------------------------------------------------------------------------------------
2023-10-06 21:50:07,606 epoch 6 - iter 13/138 - loss 0.16131818 - time (sec): 9.98 - samples/sec: 227.71 - lr: 0.000088 - momentum: 0.000000
2023-10-06 21:50:16,783 epoch 6 - iter 26/138 - loss 0.15133612 - time (sec): 19.15 - samples/sec: 222.61 - lr: 0.000086 - momentum: 0.000000
2023-10-06 21:50:26,529 epoch 6 - iter 39/138 - loss 0.14751188 - time (sec): 28.90 - samples/sec: 224.42 - lr: 0.000084 - momentum: 0.000000
2023-10-06 21:50:36,588 epoch 6 - iter 52/138 - loss 0.14004272 - time (sec): 38.96 - samples/sec: 222.56 - lr: 0.000083 - momentum: 0.000000
2023-10-06 21:50:46,407 epoch 6 - iter 65/138 - loss 0.13322328 - time (sec): 48.78 - samples/sec: 222.35 - lr: 0.000081 - momentum: 0.000000
2023-10-06 21:50:56,197 epoch 6 - iter 78/138 - loss 0.12399005 - time (sec): 58.57 - samples/sec: 221.69 - lr: 0.000079 - momentum: 0.000000
2023-10-06 21:51:06,185 epoch 6 - iter 91/138 - loss 0.13276856 - time (sec): 68.56 - samples/sec: 223.70 - lr: 0.000077 - momentum: 0.000000
2023-10-06 21:51:15,657 epoch 6 - iter 104/138 - loss 0.13175238 - time (sec): 78.03 - samples/sec: 224.01 - lr: 0.000076 - momentum: 0.000000
2023-10-06 21:51:25,316 epoch 6 - iter 117/138 - loss 0.12953164 - time (sec): 87.69 - samples/sec: 223.29 - lr: 0.000074 - momentum: 0.000000
2023-10-06 21:51:34,559 epoch 6 - iter 130/138 - loss 0.12830343 - time (sec): 96.93 - samples/sec: 223.10 - lr: 0.000072 - momentum: 0.000000
2023-10-06 21:51:40,136 ----------------------------------------------------------------------------------------------------
2023-10-06 21:51:40,137 EPOCH 6 done: loss 0.1278 - lr: 0.000072
2023-10-06 21:51:46,829 DEV : loss 0.1418776512145996 - f1-score (micro avg)  0.8502
2023-10-06 21:51:46,835 saving best model
2023-10-06 21:51:47,751 ----------------------------------------------------------------------------------------------------
2023-10-06 21:51:56,984 epoch 7 - iter 13/138 - loss 0.09202341 - time (sec): 9.23 - samples/sec: 216.86 - lr: 0.000070 - momentum: 0.000000
2023-10-06 21:52:06,248 epoch 7 - iter 26/138 - loss 0.08962437 - time (sec): 18.50 - samples/sec: 213.72 - lr: 0.000068 - momentum: 0.000000
2023-10-06 21:52:15,978 epoch 7 - iter 39/138 - loss 0.10050212 - time (sec): 28.23 - samples/sec: 217.22 - lr: 0.000066 - momentum: 0.000000
2023-10-06 21:52:25,953 epoch 7 - iter 52/138 - loss 0.08973982 - time (sec): 38.20 - samples/sec: 221.41 - lr: 0.000065 - momentum: 0.000000
2023-10-06 21:52:36,149 epoch 7 - iter 65/138 - loss 0.08788279 - time (sec): 48.40 - samples/sec: 222.91 - lr: 0.000063 - momentum: 0.000000
2023-10-06 21:52:45,504 epoch 7 - iter 78/138 - loss 0.09283149 - time (sec): 57.75 - samples/sec: 221.05 - lr: 0.000061 - momentum: 0.000000
2023-10-06 21:52:55,369 epoch 7 - iter 91/138 - loss 0.09156409 - time (sec): 67.62 - samples/sec: 220.85 - lr: 0.000060 - momentum: 0.000000
2023-10-06 21:53:05,592 epoch 7 - iter 104/138 - loss 0.08895562 - time (sec): 77.84 - samples/sec: 222.67 - lr: 0.000058 - momentum: 0.000000
2023-10-06 21:53:15,214 epoch 7 - iter 117/138 - loss 0.08941310 - time (sec): 87.46 - samples/sec: 223.02 - lr: 0.000056 - momentum: 0.000000
2023-10-06 21:53:24,914 epoch 7 - iter 130/138 - loss 0.09673186 - time (sec): 97.16 - samples/sec: 223.19 - lr: 0.000055 - momentum: 0.000000
2023-10-06 21:53:30,238 ----------------------------------------------------------------------------------------------------
2023-10-06 21:53:30,238 EPOCH 7 done: loss 0.0949 - lr: 0.000055
2023-10-06 21:53:36,915 DEV : loss 0.12556645274162292 - f1-score (micro avg)  0.8589
2023-10-06 21:53:36,921 saving best model
2023-10-06 21:53:37,851 ----------------------------------------------------------------------------------------------------
2023-10-06 21:53:46,858 epoch 8 - iter 13/138 - loss 0.07149320 - time (sec): 9.01 - samples/sec: 208.42 - lr: 0.000052 - momentum: 0.000000
2023-10-06 21:53:56,170 epoch 8 - iter 26/138 - loss 0.09203937 - time (sec): 18.32 - samples/sec: 219.57 - lr: 0.000050 - momentum: 0.000000
2023-10-06 21:54:05,229 epoch 8 - iter 39/138 - loss 0.08711760 - time (sec): 27.38 - samples/sec: 219.31 - lr: 0.000049 - momentum: 0.000000
2023-10-06 21:54:15,492 epoch 8 - iter 52/138 - loss 0.08100056 - time (sec): 37.64 - samples/sec: 223.09 - lr: 0.000047 - momentum: 0.000000
2023-10-06 21:54:24,878 epoch 8 - iter 65/138 - loss 0.08426377 - time (sec): 47.03 - samples/sec: 220.58 - lr: 0.000045 - momentum: 0.000000
2023-10-06 21:54:35,039 epoch 8 - iter 78/138 - loss 0.08500926 - time (sec): 57.19 - samples/sec: 221.35 - lr: 0.000044 - momentum: 0.000000
2023-10-06 21:54:44,080 epoch 8 - iter 91/138 - loss 0.08055090 - time (sec): 66.23 - samples/sec: 221.41 - lr: 0.000042 - momentum: 0.000000
2023-10-06 21:54:54,543 epoch 8 - iter 104/138 - loss 0.07418720 - time (sec): 76.69 - samples/sec: 222.26 - lr: 0.000040 - momentum: 0.000000
2023-10-06 21:55:04,243 epoch 8 - iter 117/138 - loss 0.07711477 - time (sec): 86.39 - samples/sec: 222.77 - lr: 0.000039 - momentum: 0.000000
2023-10-06 21:55:14,378 epoch 8 - iter 130/138 - loss 0.07679258 - time (sec): 96.53 - samples/sec: 223.16 - lr: 0.000037 - momentum: 0.000000
2023-10-06 21:55:19,925 ----------------------------------------------------------------------------------------------------
2023-10-06 21:55:19,925 EPOCH 8 done: loss 0.0748 - lr: 0.000037
2023-10-06 21:55:26,567 DEV : loss 0.12296636402606964 - f1-score (micro avg)  0.8554
2023-10-06 21:55:26,573 ----------------------------------------------------------------------------------------------------
2023-10-06 21:55:36,064 epoch 9 - iter 13/138 - loss 0.08957227 - time (sec): 9.49 - samples/sec: 218.99 - lr: 0.000034 - momentum: 0.000000
2023-10-06 21:55:45,358 epoch 9 - iter 26/138 - loss 0.08908673 - time (sec): 18.78 - samples/sec: 221.26 - lr: 0.000033 - momentum: 0.000000
2023-10-06 21:55:54,919 epoch 9 - iter 39/138 - loss 0.08531472 - time (sec): 28.34 - samples/sec: 220.78 - lr: 0.000031 - momentum: 0.000000
2023-10-06 21:56:04,767 epoch 9 - iter 52/138 - loss 0.08120974 - time (sec): 38.19 - samples/sec: 221.25 - lr: 0.000029 - momentum: 0.000000
2023-10-06 21:56:14,503 epoch 9 - iter 65/138 - loss 0.08248220 - time (sec): 47.93 - samples/sec: 221.23 - lr: 0.000028 - momentum: 0.000000
2023-10-06 21:56:24,005 epoch 9 - iter 78/138 - loss 0.08099284 - time (sec): 57.43 - samples/sec: 222.62 - lr: 0.000026 - momentum: 0.000000
2023-10-06 21:56:34,944 epoch 9 - iter 91/138 - loss 0.07394146 - time (sec): 68.37 - samples/sec: 223.61 - lr: 0.000024 - momentum: 0.000000
2023-10-06 21:56:44,292 epoch 9 - iter 104/138 - loss 0.07115356 - time (sec): 77.72 - samples/sec: 222.87 - lr: 0.000023 - momentum: 0.000000
2023-10-06 21:56:53,548 epoch 9 - iter 117/138 - loss 0.06724952 - time (sec): 86.97 - samples/sec: 222.18 - lr: 0.000021 - momentum: 0.000000
2023-10-06 21:57:03,367 epoch 9 - iter 130/138 - loss 0.06453547 - time (sec): 96.79 - samples/sec: 222.79 - lr: 0.000019 - momentum: 0.000000
2023-10-06 21:57:08,812 ----------------------------------------------------------------------------------------------------
2023-10-06 21:57:08,813 EPOCH 9 done: loss 0.0652 - lr: 0.000019
2023-10-06 21:57:15,461 DEV : loss 0.11786513775587082 - f1-score (micro avg)  0.8575
2023-10-06 21:57:15,467 ----------------------------------------------------------------------------------------------------
2023-10-06 21:57:25,317 epoch 10 - iter 13/138 - loss 0.10447337 - time (sec): 9.85 - samples/sec: 221.66 - lr: 0.000017 - momentum: 0.000000
2023-10-06 21:57:34,946 epoch 10 - iter 26/138 - loss 0.08395709 - time (sec): 19.48 - samples/sec: 221.59 - lr: 0.000015 - momentum: 0.000000
2023-10-06 21:57:44,037 epoch 10 - iter 39/138 - loss 0.07476411 - time (sec): 28.57 - samples/sec: 220.35 - lr: 0.000013 - momentum: 0.000000
2023-10-06 21:57:54,257 epoch 10 - iter 52/138 - loss 0.07381145 - time (sec): 38.79 - samples/sec: 223.37 - lr: 0.000012 - momentum: 0.000000
2023-10-06 21:58:03,637 epoch 10 - iter 65/138 - loss 0.06455602 - time (sec): 48.17 - samples/sec: 221.54 - lr: 0.000010 - momentum: 0.000000
2023-10-06 21:58:13,312 epoch 10 - iter 78/138 - loss 0.06474742 - time (sec): 57.84 - samples/sec: 221.77 - lr: 0.000008 - momentum: 0.000000
2023-10-06 21:58:22,926 epoch 10 - iter 91/138 - loss 0.06013250 - time (sec): 67.46 - samples/sec: 220.99 - lr: 0.000007 - momentum: 0.000000
2023-10-06 21:58:32,039 epoch 10 - iter 104/138 - loss 0.06197331 - time (sec): 76.57 - samples/sec: 221.11 - lr: 0.000005 - momentum: 0.000000
2023-10-06 21:58:42,259 epoch 10 - iter 117/138 - loss 0.06140372 - time (sec): 86.79 - samples/sec: 222.49 - lr: 0.000003 - momentum: 0.000000
2023-10-06 21:58:51,604 epoch 10 - iter 130/138 - loss 0.06060334 - time (sec): 96.14 - samples/sec: 222.74 - lr: 0.000002 - momentum: 0.000000
2023-10-06 21:58:57,560 ----------------------------------------------------------------------------------------------------
2023-10-06 21:58:57,560 EPOCH 10 done: loss 0.0608 - lr: 0.000002
2023-10-06 21:59:04,228 DEV : loss 0.1174774318933487 - f1-score (micro avg)  0.8602
2023-10-06 21:59:04,234 saving best model
2023-10-06 21:59:06,124 ----------------------------------------------------------------------------------------------------
2023-10-06 21:59:06,126 Loading model from best epoch ...
2023-10-06 21:59:08,826 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-06 21:59:16,032 
Results:
- F-score (micro) 0.8828
- F-score (macro) 0.5272
- Accuracy 0.8129

By class:
              precision    recall  f1-score   support

       scope     0.8827    0.8977    0.8901       176
        pers     0.8955    0.9375    0.9160       128
        work     0.8356    0.8243    0.8299        74
      object     0.0000    0.0000    0.0000         2
         loc     0.0000    0.0000    0.0000         2

   micro avg     0.8782    0.8874    0.8828       382
   macro avg     0.5228    0.5319    0.5272       382
weighted avg     0.8686    0.8874    0.8778       382

2023-10-06 21:59:16,032 ----------------------------------------------------------------------------------------------------