File size: 24,172 Bytes
7e591bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
2023-10-23 15:51:57,497 ----------------------------------------------------------------------------------------------------
2023-10-23 15:51:57,498 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(64001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-23 15:51:57,498 ----------------------------------------------------------------------------------------------------
2023-10-23 15:51:57,498 MultiCorpus: 1100 train + 206 dev + 240 test sentences
 - NER_HIPE_2022 Corpus: 1100 train + 206 dev + 240 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/de/with_doc_seperator
2023-10-23 15:51:57,498 ----------------------------------------------------------------------------------------------------
2023-10-23 15:51:57,499 Train:  1100 sentences
2023-10-23 15:51:57,499         (train_with_dev=False, train_with_test=False)
2023-10-23 15:51:57,499 ----------------------------------------------------------------------------------------------------
2023-10-23 15:51:57,499 Training Params:
2023-10-23 15:51:57,499  - learning_rate: "5e-05" 
2023-10-23 15:51:57,499  - mini_batch_size: "4"
2023-10-23 15:51:57,499  - max_epochs: "10"
2023-10-23 15:51:57,499  - shuffle: "True"
2023-10-23 15:51:57,499 ----------------------------------------------------------------------------------------------------
2023-10-23 15:51:57,499 Plugins:
2023-10-23 15:51:57,499  - TensorboardLogger
2023-10-23 15:51:57,499  - LinearScheduler | warmup_fraction: '0.1'
2023-10-23 15:51:57,499 ----------------------------------------------------------------------------------------------------
2023-10-23 15:51:57,499 Final evaluation on model from best epoch (best-model.pt)
2023-10-23 15:51:57,499  - metric: "('micro avg', 'f1-score')"
2023-10-23 15:51:57,499 ----------------------------------------------------------------------------------------------------
2023-10-23 15:51:57,499 Computation:
2023-10-23 15:51:57,499  - compute on device: cuda:0
2023-10-23 15:51:57,499  - embedding storage: none
2023-10-23 15:51:57,499 ----------------------------------------------------------------------------------------------------
2023-10-23 15:51:57,499 Model training base path: "hmbench-ajmc/de-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5"
2023-10-23 15:51:57,499 ----------------------------------------------------------------------------------------------------
2023-10-23 15:51:57,499 ----------------------------------------------------------------------------------------------------
2023-10-23 15:51:57,499 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-23 15:51:58,821 epoch 1 - iter 27/275 - loss 2.64810433 - time (sec): 1.32 - samples/sec: 1353.57 - lr: 0.000005 - momentum: 0.000000
2023-10-23 15:52:00,167 epoch 1 - iter 54/275 - loss 1.83490599 - time (sec): 2.67 - samples/sec: 1526.70 - lr: 0.000010 - momentum: 0.000000
2023-10-23 15:52:01,507 epoch 1 - iter 81/275 - loss 1.48707717 - time (sec): 4.01 - samples/sec: 1615.59 - lr: 0.000015 - momentum: 0.000000
2023-10-23 15:52:02,867 epoch 1 - iter 108/275 - loss 1.25898807 - time (sec): 5.37 - samples/sec: 1654.13 - lr: 0.000019 - momentum: 0.000000
2023-10-23 15:52:04,220 epoch 1 - iter 135/275 - loss 1.09035369 - time (sec): 6.72 - samples/sec: 1659.42 - lr: 0.000024 - momentum: 0.000000
2023-10-23 15:52:05,547 epoch 1 - iter 162/275 - loss 0.95463488 - time (sec): 8.05 - samples/sec: 1671.29 - lr: 0.000029 - momentum: 0.000000
2023-10-23 15:52:06,938 epoch 1 - iter 189/275 - loss 0.86593875 - time (sec): 9.44 - samples/sec: 1651.35 - lr: 0.000034 - momentum: 0.000000
2023-10-23 15:52:08,332 epoch 1 - iter 216/275 - loss 0.77581041 - time (sec): 10.83 - samples/sec: 1668.19 - lr: 0.000039 - momentum: 0.000000
2023-10-23 15:52:09,731 epoch 1 - iter 243/275 - loss 0.71487665 - time (sec): 12.23 - samples/sec: 1660.58 - lr: 0.000044 - momentum: 0.000000
2023-10-23 15:52:11,121 epoch 1 - iter 270/275 - loss 0.66787877 - time (sec): 13.62 - samples/sec: 1644.92 - lr: 0.000049 - momentum: 0.000000
2023-10-23 15:52:11,374 ----------------------------------------------------------------------------------------------------
2023-10-23 15:52:11,374 EPOCH 1 done: loss 0.6618 - lr: 0.000049
2023-10-23 15:52:11,794 DEV : loss 0.179626926779747 - f1-score (micro avg)  0.7718
2023-10-23 15:52:11,799 saving best model
2023-10-23 15:52:12,196 ----------------------------------------------------------------------------------------------------
2023-10-23 15:52:13,602 epoch 2 - iter 27/275 - loss 0.19354437 - time (sec): 1.40 - samples/sec: 1809.51 - lr: 0.000049 - momentum: 0.000000
2023-10-23 15:52:14,993 epoch 2 - iter 54/275 - loss 0.20163780 - time (sec): 2.80 - samples/sec: 1639.26 - lr: 0.000049 - momentum: 0.000000
2023-10-23 15:52:16,380 epoch 2 - iter 81/275 - loss 0.17039530 - time (sec): 4.18 - samples/sec: 1591.50 - lr: 0.000048 - momentum: 0.000000
2023-10-23 15:52:17,774 epoch 2 - iter 108/275 - loss 0.17475614 - time (sec): 5.58 - samples/sec: 1543.31 - lr: 0.000048 - momentum: 0.000000
2023-10-23 15:52:19,204 epoch 2 - iter 135/275 - loss 0.16444749 - time (sec): 7.01 - samples/sec: 1539.34 - lr: 0.000047 - momentum: 0.000000
2023-10-23 15:52:20,781 epoch 2 - iter 162/275 - loss 0.16649597 - time (sec): 8.58 - samples/sec: 1501.31 - lr: 0.000047 - momentum: 0.000000
2023-10-23 15:52:22,208 epoch 2 - iter 189/275 - loss 0.15541591 - time (sec): 10.01 - samples/sec: 1510.50 - lr: 0.000046 - momentum: 0.000000
2023-10-23 15:52:23,629 epoch 2 - iter 216/275 - loss 0.15842844 - time (sec): 11.43 - samples/sec: 1527.32 - lr: 0.000046 - momentum: 0.000000
2023-10-23 15:52:25,043 epoch 2 - iter 243/275 - loss 0.15889443 - time (sec): 12.85 - samples/sec: 1538.23 - lr: 0.000045 - momentum: 0.000000
2023-10-23 15:52:26,452 epoch 2 - iter 270/275 - loss 0.15806273 - time (sec): 14.25 - samples/sec: 1566.28 - lr: 0.000045 - momentum: 0.000000
2023-10-23 15:52:26,716 ----------------------------------------------------------------------------------------------------
2023-10-23 15:52:26,717 EPOCH 2 done: loss 0.1588 - lr: 0.000045
2023-10-23 15:52:27,252 DEV : loss 0.16758960485458374 - f1-score (micro avg)  0.8019
2023-10-23 15:52:27,257 saving best model
2023-10-23 15:52:27,803 ----------------------------------------------------------------------------------------------------
2023-10-23 15:52:29,170 epoch 3 - iter 27/275 - loss 0.12366499 - time (sec): 1.36 - samples/sec: 1712.37 - lr: 0.000044 - momentum: 0.000000
2023-10-23 15:52:30,511 epoch 3 - iter 54/275 - loss 0.10372222 - time (sec): 2.70 - samples/sec: 1680.75 - lr: 0.000043 - momentum: 0.000000
2023-10-23 15:52:31,880 epoch 3 - iter 81/275 - loss 0.10568938 - time (sec): 4.07 - samples/sec: 1658.05 - lr: 0.000043 - momentum: 0.000000
2023-10-23 15:52:33,251 epoch 3 - iter 108/275 - loss 0.10353497 - time (sec): 5.44 - samples/sec: 1666.27 - lr: 0.000042 - momentum: 0.000000
2023-10-23 15:52:34,612 epoch 3 - iter 135/275 - loss 0.09569370 - time (sec): 6.81 - samples/sec: 1672.37 - lr: 0.000042 - momentum: 0.000000
2023-10-23 15:52:35,955 epoch 3 - iter 162/275 - loss 0.09029367 - time (sec): 8.15 - samples/sec: 1669.38 - lr: 0.000041 - momentum: 0.000000
2023-10-23 15:52:37,322 epoch 3 - iter 189/275 - loss 0.09163925 - time (sec): 9.52 - samples/sec: 1663.19 - lr: 0.000041 - momentum: 0.000000
2023-10-23 15:52:38,707 epoch 3 - iter 216/275 - loss 0.09751995 - time (sec): 10.90 - samples/sec: 1648.00 - lr: 0.000040 - momentum: 0.000000
2023-10-23 15:52:40,073 epoch 3 - iter 243/275 - loss 0.10012864 - time (sec): 12.27 - samples/sec: 1656.28 - lr: 0.000040 - momentum: 0.000000
2023-10-23 15:52:41,385 epoch 3 - iter 270/275 - loss 0.09615579 - time (sec): 13.58 - samples/sec: 1640.19 - lr: 0.000039 - momentum: 0.000000
2023-10-23 15:52:41,630 ----------------------------------------------------------------------------------------------------
2023-10-23 15:52:41,630 EPOCH 3 done: loss 0.0982 - lr: 0.000039
2023-10-23 15:52:42,169 DEV : loss 0.1806371957063675 - f1-score (micro avg)  0.84
2023-10-23 15:52:42,174 saving best model
2023-10-23 15:52:42,723 ----------------------------------------------------------------------------------------------------
2023-10-23 15:52:44,124 epoch 4 - iter 27/275 - loss 0.11872071 - time (sec): 1.40 - samples/sec: 1659.62 - lr: 0.000038 - momentum: 0.000000
2023-10-23 15:52:45,466 epoch 4 - iter 54/275 - loss 0.08762465 - time (sec): 2.74 - samples/sec: 1721.30 - lr: 0.000038 - momentum: 0.000000
2023-10-23 15:52:46,772 epoch 4 - iter 81/275 - loss 0.08315257 - time (sec): 4.04 - samples/sec: 1659.82 - lr: 0.000037 - momentum: 0.000000
2023-10-23 15:52:48,068 epoch 4 - iter 108/275 - loss 0.07259559 - time (sec): 5.34 - samples/sec: 1646.58 - lr: 0.000037 - momentum: 0.000000
2023-10-23 15:52:49,413 epoch 4 - iter 135/275 - loss 0.06971542 - time (sec): 6.69 - samples/sec: 1682.02 - lr: 0.000036 - momentum: 0.000000
2023-10-23 15:52:50,757 epoch 4 - iter 162/275 - loss 0.07403488 - time (sec): 8.03 - samples/sec: 1701.06 - lr: 0.000036 - momentum: 0.000000
2023-10-23 15:52:52,181 epoch 4 - iter 189/275 - loss 0.06823022 - time (sec): 9.45 - samples/sec: 1682.76 - lr: 0.000035 - momentum: 0.000000
2023-10-23 15:52:53,576 epoch 4 - iter 216/275 - loss 0.07045628 - time (sec): 10.85 - samples/sec: 1662.31 - lr: 0.000035 - momentum: 0.000000
2023-10-23 15:52:54,990 epoch 4 - iter 243/275 - loss 0.06840953 - time (sec): 12.26 - samples/sec: 1624.01 - lr: 0.000034 - momentum: 0.000000
2023-10-23 15:52:56,380 epoch 4 - iter 270/275 - loss 0.06924410 - time (sec): 13.65 - samples/sec: 1638.06 - lr: 0.000034 - momentum: 0.000000
2023-10-23 15:52:56,636 ----------------------------------------------------------------------------------------------------
2023-10-23 15:52:56,636 EPOCH 4 done: loss 0.0694 - lr: 0.000034
2023-10-23 15:52:57,168 DEV : loss 0.14905601739883423 - f1-score (micro avg)  0.8714
2023-10-23 15:52:57,173 saving best model
2023-10-23 15:52:57,715 ----------------------------------------------------------------------------------------------------
2023-10-23 15:52:59,088 epoch 5 - iter 27/275 - loss 0.04803966 - time (sec): 1.37 - samples/sec: 1701.69 - lr: 0.000033 - momentum: 0.000000
2023-10-23 15:53:00,481 epoch 5 - iter 54/275 - loss 0.06866180 - time (sec): 2.76 - samples/sec: 1631.46 - lr: 0.000032 - momentum: 0.000000
2023-10-23 15:53:01,893 epoch 5 - iter 81/275 - loss 0.05926000 - time (sec): 4.17 - samples/sec: 1619.86 - lr: 0.000032 - momentum: 0.000000
2023-10-23 15:53:03,281 epoch 5 - iter 108/275 - loss 0.04963370 - time (sec): 5.56 - samples/sec: 1603.80 - lr: 0.000031 - momentum: 0.000000
2023-10-23 15:53:04,688 epoch 5 - iter 135/275 - loss 0.05658941 - time (sec): 6.97 - samples/sec: 1621.04 - lr: 0.000031 - momentum: 0.000000
2023-10-23 15:53:06,093 epoch 5 - iter 162/275 - loss 0.05275609 - time (sec): 8.37 - samples/sec: 1599.71 - lr: 0.000030 - momentum: 0.000000
2023-10-23 15:53:07,500 epoch 5 - iter 189/275 - loss 0.05027437 - time (sec): 9.78 - samples/sec: 1599.91 - lr: 0.000030 - momentum: 0.000000
2023-10-23 15:53:08,924 epoch 5 - iter 216/275 - loss 0.04932611 - time (sec): 11.21 - samples/sec: 1596.52 - lr: 0.000029 - momentum: 0.000000
2023-10-23 15:53:10,325 epoch 5 - iter 243/275 - loss 0.05382881 - time (sec): 12.61 - samples/sec: 1578.66 - lr: 0.000029 - momentum: 0.000000
2023-10-23 15:53:11,739 epoch 5 - iter 270/275 - loss 0.05098833 - time (sec): 14.02 - samples/sec: 1587.32 - lr: 0.000028 - momentum: 0.000000
2023-10-23 15:53:11,992 ----------------------------------------------------------------------------------------------------
2023-10-23 15:53:11,992 EPOCH 5 done: loss 0.0507 - lr: 0.000028
2023-10-23 15:53:12,527 DEV : loss 0.1650022566318512 - f1-score (micro avg)  0.8724
2023-10-23 15:53:12,533 saving best model
2023-10-23 15:53:13,088 ----------------------------------------------------------------------------------------------------
2023-10-23 15:53:14,537 epoch 6 - iter 27/275 - loss 0.00692271 - time (sec): 1.45 - samples/sec: 1743.64 - lr: 0.000027 - momentum: 0.000000
2023-10-23 15:53:15,926 epoch 6 - iter 54/275 - loss 0.02989654 - time (sec): 2.83 - samples/sec: 1571.81 - lr: 0.000027 - momentum: 0.000000
2023-10-23 15:53:17,328 epoch 6 - iter 81/275 - loss 0.02792755 - time (sec): 4.24 - samples/sec: 1564.99 - lr: 0.000026 - momentum: 0.000000
2023-10-23 15:53:18,738 epoch 6 - iter 108/275 - loss 0.02765114 - time (sec): 5.65 - samples/sec: 1597.13 - lr: 0.000026 - momentum: 0.000000
2023-10-23 15:53:20,147 epoch 6 - iter 135/275 - loss 0.02524505 - time (sec): 7.06 - samples/sec: 1587.87 - lr: 0.000025 - momentum: 0.000000
2023-10-23 15:53:21,557 epoch 6 - iter 162/275 - loss 0.02776897 - time (sec): 8.47 - samples/sec: 1566.30 - lr: 0.000025 - momentum: 0.000000
2023-10-23 15:53:22,900 epoch 6 - iter 189/275 - loss 0.02839678 - time (sec): 9.81 - samples/sec: 1571.02 - lr: 0.000024 - momentum: 0.000000
2023-10-23 15:53:24,269 epoch 6 - iter 216/275 - loss 0.02881164 - time (sec): 11.18 - samples/sec: 1576.51 - lr: 0.000024 - momentum: 0.000000
2023-10-23 15:53:25,664 epoch 6 - iter 243/275 - loss 0.03172496 - time (sec): 12.57 - samples/sec: 1587.99 - lr: 0.000023 - momentum: 0.000000
2023-10-23 15:53:27,075 epoch 6 - iter 270/275 - loss 0.03269819 - time (sec): 13.98 - samples/sec: 1597.39 - lr: 0.000022 - momentum: 0.000000
2023-10-23 15:53:27,343 ----------------------------------------------------------------------------------------------------
2023-10-23 15:53:27,343 EPOCH 6 done: loss 0.0332 - lr: 0.000022
2023-10-23 15:53:27,884 DEV : loss 0.165008082985878 - f1-score (micro avg)  0.8825
2023-10-23 15:53:27,890 saving best model
2023-10-23 15:53:28,432 ----------------------------------------------------------------------------------------------------
2023-10-23 15:53:29,759 epoch 7 - iter 27/275 - loss 0.03004289 - time (sec): 1.32 - samples/sec: 1768.40 - lr: 0.000022 - momentum: 0.000000
2023-10-23 15:53:31,121 epoch 7 - iter 54/275 - loss 0.02755990 - time (sec): 2.69 - samples/sec: 1634.52 - lr: 0.000021 - momentum: 0.000000
2023-10-23 15:53:32,468 epoch 7 - iter 81/275 - loss 0.02623236 - time (sec): 4.03 - samples/sec: 1606.70 - lr: 0.000021 - momentum: 0.000000
2023-10-23 15:53:33,820 epoch 7 - iter 108/275 - loss 0.02598619 - time (sec): 5.38 - samples/sec: 1648.23 - lr: 0.000020 - momentum: 0.000000
2023-10-23 15:53:35,203 epoch 7 - iter 135/275 - loss 0.02416610 - time (sec): 6.77 - samples/sec: 1642.59 - lr: 0.000020 - momentum: 0.000000
2023-10-23 15:53:36,540 epoch 7 - iter 162/275 - loss 0.02452176 - time (sec): 8.10 - samples/sec: 1628.01 - lr: 0.000019 - momentum: 0.000000
2023-10-23 15:53:37,892 epoch 7 - iter 189/275 - loss 0.02358188 - time (sec): 9.46 - samples/sec: 1642.33 - lr: 0.000019 - momentum: 0.000000
2023-10-23 15:53:39,212 epoch 7 - iter 216/275 - loss 0.02191696 - time (sec): 10.78 - samples/sec: 1659.22 - lr: 0.000018 - momentum: 0.000000
2023-10-23 15:53:40,556 epoch 7 - iter 243/275 - loss 0.02403767 - time (sec): 12.12 - samples/sec: 1667.16 - lr: 0.000017 - momentum: 0.000000
2023-10-23 15:53:41,896 epoch 7 - iter 270/275 - loss 0.02337190 - time (sec): 13.46 - samples/sec: 1658.48 - lr: 0.000017 - momentum: 0.000000
2023-10-23 15:53:42,151 ----------------------------------------------------------------------------------------------------
2023-10-23 15:53:42,152 EPOCH 7 done: loss 0.0230 - lr: 0.000017
2023-10-23 15:53:42,689 DEV : loss 0.16212137043476105 - f1-score (micro avg)  0.8764
2023-10-23 15:53:42,694 ----------------------------------------------------------------------------------------------------
2023-10-23 15:53:44,021 epoch 8 - iter 27/275 - loss 0.03973778 - time (sec): 1.33 - samples/sec: 1641.32 - lr: 0.000016 - momentum: 0.000000
2023-10-23 15:53:45,394 epoch 8 - iter 54/275 - loss 0.02648907 - time (sec): 2.70 - samples/sec: 1695.49 - lr: 0.000016 - momentum: 0.000000
2023-10-23 15:53:46,757 epoch 8 - iter 81/275 - loss 0.02530064 - time (sec): 4.06 - samples/sec: 1649.28 - lr: 0.000015 - momentum: 0.000000
2023-10-23 15:53:48,129 epoch 8 - iter 108/275 - loss 0.02187305 - time (sec): 5.43 - samples/sec: 1687.18 - lr: 0.000015 - momentum: 0.000000
2023-10-23 15:53:49,477 epoch 8 - iter 135/275 - loss 0.01955675 - time (sec): 6.78 - samples/sec: 1696.35 - lr: 0.000014 - momentum: 0.000000
2023-10-23 15:53:50,832 epoch 8 - iter 162/275 - loss 0.01740010 - time (sec): 8.14 - samples/sec: 1717.17 - lr: 0.000014 - momentum: 0.000000
2023-10-23 15:53:52,186 epoch 8 - iter 189/275 - loss 0.01676100 - time (sec): 9.49 - samples/sec: 1688.69 - lr: 0.000013 - momentum: 0.000000
2023-10-23 15:53:53,535 epoch 8 - iter 216/275 - loss 0.01505490 - time (sec): 10.84 - samples/sec: 1664.98 - lr: 0.000012 - momentum: 0.000000
2023-10-23 15:53:54,906 epoch 8 - iter 243/275 - loss 0.01536436 - time (sec): 12.21 - samples/sec: 1652.09 - lr: 0.000012 - momentum: 0.000000
2023-10-23 15:53:56,238 epoch 8 - iter 270/275 - loss 0.01475368 - time (sec): 13.54 - samples/sec: 1647.04 - lr: 0.000011 - momentum: 0.000000
2023-10-23 15:53:56,480 ----------------------------------------------------------------------------------------------------
2023-10-23 15:53:56,480 EPOCH 8 done: loss 0.0154 - lr: 0.000011
2023-10-23 15:53:57,013 DEV : loss 0.17422381043434143 - f1-score (micro avg)  0.8873
2023-10-23 15:53:57,019 saving best model
2023-10-23 15:53:57,566 ----------------------------------------------------------------------------------------------------
2023-10-23 15:53:58,903 epoch 9 - iter 27/275 - loss 0.01095488 - time (sec): 1.34 - samples/sec: 1702.86 - lr: 0.000011 - momentum: 0.000000
2023-10-23 15:54:00,288 epoch 9 - iter 54/275 - loss 0.00940144 - time (sec): 2.72 - samples/sec: 1683.98 - lr: 0.000010 - momentum: 0.000000
2023-10-23 15:54:01,674 epoch 9 - iter 81/275 - loss 0.01506953 - time (sec): 4.11 - samples/sec: 1654.32 - lr: 0.000010 - momentum: 0.000000
2023-10-23 15:54:03,064 epoch 9 - iter 108/275 - loss 0.01534731 - time (sec): 5.50 - samples/sec: 1634.29 - lr: 0.000009 - momentum: 0.000000
2023-10-23 15:54:04,465 epoch 9 - iter 135/275 - loss 0.01222164 - time (sec): 6.90 - samples/sec: 1639.34 - lr: 0.000009 - momentum: 0.000000
2023-10-23 15:54:05,835 epoch 9 - iter 162/275 - loss 0.01073052 - time (sec): 8.27 - samples/sec: 1655.88 - lr: 0.000008 - momentum: 0.000000
2023-10-23 15:54:07,212 epoch 9 - iter 189/275 - loss 0.00980372 - time (sec): 9.64 - samples/sec: 1639.50 - lr: 0.000007 - momentum: 0.000000
2023-10-23 15:54:08,577 epoch 9 - iter 216/275 - loss 0.00910948 - time (sec): 11.01 - samples/sec: 1644.32 - lr: 0.000007 - momentum: 0.000000
2023-10-23 15:54:09,952 epoch 9 - iter 243/275 - loss 0.00861179 - time (sec): 12.38 - samples/sec: 1636.73 - lr: 0.000006 - momentum: 0.000000
2023-10-23 15:54:11,336 epoch 9 - iter 270/275 - loss 0.00873483 - time (sec): 13.77 - samples/sec: 1632.00 - lr: 0.000006 - momentum: 0.000000
2023-10-23 15:54:11,596 ----------------------------------------------------------------------------------------------------
2023-10-23 15:54:11,596 EPOCH 9 done: loss 0.0086 - lr: 0.000006
2023-10-23 15:54:12,138 DEV : loss 0.17060527205467224 - f1-score (micro avg)  0.8862
2023-10-23 15:54:12,144 ----------------------------------------------------------------------------------------------------
2023-10-23 15:54:13,506 epoch 10 - iter 27/275 - loss 0.00040091 - time (sec): 1.36 - samples/sec: 1548.35 - lr: 0.000005 - momentum: 0.000000
2023-10-23 15:54:14,844 epoch 10 - iter 54/275 - loss 0.00059839 - time (sec): 2.70 - samples/sec: 1612.29 - lr: 0.000005 - momentum: 0.000000
2023-10-23 15:54:16,170 epoch 10 - iter 81/275 - loss 0.00106300 - time (sec): 4.02 - samples/sec: 1670.09 - lr: 0.000004 - momentum: 0.000000
2023-10-23 15:54:17,527 epoch 10 - iter 108/275 - loss 0.00081409 - time (sec): 5.38 - samples/sec: 1681.74 - lr: 0.000004 - momentum: 0.000000
2023-10-23 15:54:18,898 epoch 10 - iter 135/275 - loss 0.00325952 - time (sec): 6.75 - samples/sec: 1647.07 - lr: 0.000003 - momentum: 0.000000
2023-10-23 15:54:20,253 epoch 10 - iter 162/275 - loss 0.00476398 - time (sec): 8.11 - samples/sec: 1619.34 - lr: 0.000002 - momentum: 0.000000
2023-10-23 15:54:21,624 epoch 10 - iter 189/275 - loss 0.00493019 - time (sec): 9.48 - samples/sec: 1611.15 - lr: 0.000002 - momentum: 0.000000
2023-10-23 15:54:22,987 epoch 10 - iter 216/275 - loss 0.00603623 - time (sec): 10.84 - samples/sec: 1626.70 - lr: 0.000001 - momentum: 0.000000
2023-10-23 15:54:24,336 epoch 10 - iter 243/275 - loss 0.00625175 - time (sec): 12.19 - samples/sec: 1636.88 - lr: 0.000001 - momentum: 0.000000
2023-10-23 15:54:25,709 epoch 10 - iter 270/275 - loss 0.00581465 - time (sec): 13.56 - samples/sec: 1646.57 - lr: 0.000000 - momentum: 0.000000
2023-10-23 15:54:25,960 ----------------------------------------------------------------------------------------------------
2023-10-23 15:54:25,960 EPOCH 10 done: loss 0.0057 - lr: 0.000000
2023-10-23 15:54:26,504 DEV : loss 0.17152057588100433 - f1-score (micro avg)  0.8809
2023-10-23 15:54:26,910 ----------------------------------------------------------------------------------------------------
2023-10-23 15:54:26,912 Loading model from best epoch ...
2023-10-23 15:54:28,582 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-23 15:54:29,253 
Results:
- F-score (micro) 0.8976
- F-score (macro) 0.7692
- Accuracy 0.8281

By class:
              precision    recall  f1-score   support

       scope     0.8864    0.8864    0.8864       176
        pers     0.9837    0.9453    0.9641       128
        work     0.8077    0.8514    0.8289        74
      object     0.5000    0.5000    0.5000         2
         loc     1.0000    0.5000    0.6667         2

   micro avg     0.9000    0.8953    0.8976       382
   macro avg     0.8356    0.7366    0.7692       382
weighted avg     0.9023    0.8953    0.8981       382

2023-10-23 15:54:29,253 ----------------------------------------------------------------------------------------------------