File size: 26,661 Bytes
62b627a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
2024-03-26 16:03:49,239 ----------------------------------------------------------------------------------------------------
2024-03-26 16:03:49,239 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(31103, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=17, bias=True)
(loss_function): CrossEntropyLoss()
)"
2024-03-26 16:03:49,239 ----------------------------------------------------------------------------------------------------
2024-03-26 16:03:49,240 Corpus: 758 train + 94 dev + 96 test sentences
2024-03-26 16:03:49,240 ----------------------------------------------------------------------------------------------------
2024-03-26 16:03:49,240 Train: 758 sentences
2024-03-26 16:03:49,240 (train_with_dev=False, train_with_test=False)
2024-03-26 16:03:49,240 ----------------------------------------------------------------------------------------------------
2024-03-26 16:03:49,240 Training Params:
2024-03-26 16:03:49,240 - learning_rate: "3e-05"
2024-03-26 16:03:49,240 - mini_batch_size: "16"
2024-03-26 16:03:49,240 - max_epochs: "10"
2024-03-26 16:03:49,240 - shuffle: "True"
2024-03-26 16:03:49,240 ----------------------------------------------------------------------------------------------------
2024-03-26 16:03:49,240 Plugins:
2024-03-26 16:03:49,240 - TensorboardLogger
2024-03-26 16:03:49,240 - LinearScheduler | warmup_fraction: '0.1'
2024-03-26 16:03:49,240 ----------------------------------------------------------------------------------------------------
2024-03-26 16:03:49,240 Final evaluation on model from best epoch (best-model.pt)
2024-03-26 16:03:49,240 - metric: "('micro avg', 'f1-score')"
2024-03-26 16:03:49,240 ----------------------------------------------------------------------------------------------------
2024-03-26 16:03:49,240 Computation:
2024-03-26 16:03:49,240 - compute on device: cuda:0
2024-03-26 16:03:49,240 - embedding storage: none
2024-03-26 16:03:49,240 ----------------------------------------------------------------------------------------------------
2024-03-26 16:03:49,240 Model training base path: "flair-co-funer-german_dbmdz_bert_base-bs16-e10-lr3e-05-4"
2024-03-26 16:03:49,240 ----------------------------------------------------------------------------------------------------
2024-03-26 16:03:49,240 ----------------------------------------------------------------------------------------------------
2024-03-26 16:03:49,240 Logging anything other than scalars to TensorBoard is currently not supported.
2024-03-26 16:03:50,727 epoch 1 - iter 4/48 - loss 3.01640190 - time (sec): 1.49 - samples/sec: 1755.99 - lr: 0.000002 - momentum: 0.000000
2024-03-26 16:03:52,541 epoch 1 - iter 8/48 - loss 2.96742700 - time (sec): 3.30 - samples/sec: 1551.95 - lr: 0.000004 - momentum: 0.000000
2024-03-26 16:03:53,871 epoch 1 - iter 12/48 - loss 2.91390131 - time (sec): 4.63 - samples/sec: 1576.94 - lr: 0.000007 - momentum: 0.000000
2024-03-26 16:03:56,400 epoch 1 - iter 16/48 - loss 2.81253980 - time (sec): 7.16 - samples/sec: 1494.26 - lr: 0.000009 - momentum: 0.000000
2024-03-26 16:03:58,500 epoch 1 - iter 20/48 - loss 2.69076344 - time (sec): 9.26 - samples/sec: 1479.37 - lr: 0.000012 - momentum: 0.000000
2024-03-26 16:04:01,168 epoch 1 - iter 24/48 - loss 2.55974652 - time (sec): 11.93 - samples/sec: 1418.90 - lr: 0.000014 - momentum: 0.000000
2024-03-26 16:04:03,662 epoch 1 - iter 28/48 - loss 2.44809026 - time (sec): 14.42 - samples/sec: 1406.64 - lr: 0.000017 - momentum: 0.000000
2024-03-26 16:04:05,541 epoch 1 - iter 32/48 - loss 2.35897900 - time (sec): 16.30 - samples/sec: 1403.25 - lr: 0.000019 - momentum: 0.000000
2024-03-26 16:04:06,433 epoch 1 - iter 36/48 - loss 2.29176753 - time (sec): 17.19 - samples/sec: 1452.95 - lr: 0.000022 - momentum: 0.000000
2024-03-26 16:04:08,293 epoch 1 - iter 40/48 - loss 2.19360469 - time (sec): 19.05 - samples/sec: 1461.82 - lr: 0.000024 - momentum: 0.000000
2024-03-26 16:04:10,330 epoch 1 - iter 44/48 - loss 2.08193654 - time (sec): 21.09 - samples/sec: 1480.73 - lr: 0.000027 - momentum: 0.000000
2024-03-26 16:04:12,058 epoch 1 - iter 48/48 - loss 1.99530450 - time (sec): 22.82 - samples/sec: 1510.76 - lr: 0.000029 - momentum: 0.000000
2024-03-26 16:04:12,058 ----------------------------------------------------------------------------------------------------
2024-03-26 16:04:12,058 EPOCH 1 done: loss 1.9953 - lr: 0.000029
2024-03-26 16:04:13,044 DEV : loss 0.7687539458274841 - f1-score (micro avg) 0.4963
2024-03-26 16:04:13,045 saving best model
2024-03-26 16:04:13,325 ----------------------------------------------------------------------------------------------------
2024-03-26 16:04:14,566 epoch 2 - iter 4/48 - loss 1.05234656 - time (sec): 1.24 - samples/sec: 1908.57 - lr: 0.000030 - momentum: 0.000000
2024-03-26 16:04:16,802 epoch 2 - iter 8/48 - loss 0.86861665 - time (sec): 3.48 - samples/sec: 1569.41 - lr: 0.000030 - momentum: 0.000000
2024-03-26 16:04:18,575 epoch 2 - iter 12/48 - loss 0.81234012 - time (sec): 5.25 - samples/sec: 1623.16 - lr: 0.000029 - momentum: 0.000000
2024-03-26 16:04:20,952 epoch 2 - iter 16/48 - loss 0.72967794 - time (sec): 7.63 - samples/sec: 1479.30 - lr: 0.000029 - momentum: 0.000000
2024-03-26 16:04:24,328 epoch 2 - iter 20/48 - loss 0.66501742 - time (sec): 11.00 - samples/sec: 1341.02 - lr: 0.000029 - momentum: 0.000000
2024-03-26 16:04:25,802 epoch 2 - iter 24/48 - loss 0.65016550 - time (sec): 12.48 - samples/sec: 1398.00 - lr: 0.000028 - momentum: 0.000000
2024-03-26 16:04:28,439 epoch 2 - iter 28/48 - loss 0.62771530 - time (sec): 15.11 - samples/sec: 1369.96 - lr: 0.000028 - momentum: 0.000000
2024-03-26 16:04:31,123 epoch 2 - iter 32/48 - loss 0.59657920 - time (sec): 17.80 - samples/sec: 1371.43 - lr: 0.000028 - momentum: 0.000000
2024-03-26 16:04:33,192 epoch 2 - iter 36/48 - loss 0.58504856 - time (sec): 19.87 - samples/sec: 1361.19 - lr: 0.000028 - momentum: 0.000000
2024-03-26 16:04:35,662 epoch 2 - iter 40/48 - loss 0.56665662 - time (sec): 22.34 - samples/sec: 1351.30 - lr: 0.000027 - momentum: 0.000000
2024-03-26 16:04:36,711 epoch 2 - iter 44/48 - loss 0.55732793 - time (sec): 23.39 - samples/sec: 1386.51 - lr: 0.000027 - momentum: 0.000000
2024-03-26 16:04:37,875 epoch 2 - iter 48/48 - loss 0.54730932 - time (sec): 24.55 - samples/sec: 1404.15 - lr: 0.000027 - momentum: 0.000000
2024-03-26 16:04:37,876 ----------------------------------------------------------------------------------------------------
2024-03-26 16:04:37,876 EPOCH 2 done: loss 0.5473 - lr: 0.000027
2024-03-26 16:04:38,788 DEV : loss 0.3269508481025696 - f1-score (micro avg) 0.7953
2024-03-26 16:04:38,790 saving best model
2024-03-26 16:04:39,251 ----------------------------------------------------------------------------------------------------
2024-03-26 16:04:41,238 epoch 3 - iter 4/48 - loss 0.32273077 - time (sec): 1.99 - samples/sec: 1236.41 - lr: 0.000026 - momentum: 0.000000
2024-03-26 16:04:42,789 epoch 3 - iter 8/48 - loss 0.27329305 - time (sec): 3.54 - samples/sec: 1354.27 - lr: 0.000026 - momentum: 0.000000
2024-03-26 16:04:45,347 epoch 3 - iter 12/48 - loss 0.28542240 - time (sec): 6.09 - samples/sec: 1276.47 - lr: 0.000026 - momentum: 0.000000
2024-03-26 16:04:47,350 epoch 3 - iter 16/48 - loss 0.29088610 - time (sec): 8.10 - samples/sec: 1316.91 - lr: 0.000026 - momentum: 0.000000
2024-03-26 16:04:49,228 epoch 3 - iter 20/48 - loss 0.28489785 - time (sec): 9.98 - samples/sec: 1387.86 - lr: 0.000025 - momentum: 0.000000
2024-03-26 16:04:51,441 epoch 3 - iter 24/48 - loss 0.27481321 - time (sec): 12.19 - samples/sec: 1402.53 - lr: 0.000025 - momentum: 0.000000
2024-03-26 16:04:53,895 epoch 3 - iter 28/48 - loss 0.26488170 - time (sec): 14.64 - samples/sec: 1362.11 - lr: 0.000025 - momentum: 0.000000
2024-03-26 16:04:56,442 epoch 3 - iter 32/48 - loss 0.26071963 - time (sec): 17.19 - samples/sec: 1337.56 - lr: 0.000025 - momentum: 0.000000
2024-03-26 16:04:58,546 epoch 3 - iter 36/48 - loss 0.25954332 - time (sec): 19.29 - samples/sec: 1341.72 - lr: 0.000024 - momentum: 0.000000
2024-03-26 16:05:00,842 epoch 3 - iter 40/48 - loss 0.26609240 - time (sec): 21.59 - samples/sec: 1357.38 - lr: 0.000024 - momentum: 0.000000
2024-03-26 16:05:03,359 epoch 3 - iter 44/48 - loss 0.25854646 - time (sec): 24.11 - samples/sec: 1340.25 - lr: 0.000024 - momentum: 0.000000
2024-03-26 16:05:04,864 epoch 3 - iter 48/48 - loss 0.25895918 - time (sec): 25.61 - samples/sec: 1345.95 - lr: 0.000023 - momentum: 0.000000
2024-03-26 16:05:04,864 ----------------------------------------------------------------------------------------------------
2024-03-26 16:05:04,864 EPOCH 3 done: loss 0.2590 - lr: 0.000023
2024-03-26 16:05:05,788 DEV : loss 0.2578723728656769 - f1-score (micro avg) 0.8517
2024-03-26 16:05:05,789 saving best model
2024-03-26 16:05:06,243 ----------------------------------------------------------------------------------------------------
2024-03-26 16:05:09,220 epoch 4 - iter 4/48 - loss 0.12629222 - time (sec): 2.98 - samples/sec: 1224.51 - lr: 0.000023 - momentum: 0.000000
2024-03-26 16:05:10,525 epoch 4 - iter 8/48 - loss 0.15790626 - time (sec): 4.28 - samples/sec: 1373.73 - lr: 0.000023 - momentum: 0.000000
2024-03-26 16:05:12,600 epoch 4 - iter 12/48 - loss 0.16547955 - time (sec): 6.36 - samples/sec: 1451.18 - lr: 0.000023 - momentum: 0.000000
2024-03-26 16:05:15,136 epoch 4 - iter 16/48 - loss 0.16938562 - time (sec): 8.89 - samples/sec: 1370.07 - lr: 0.000022 - momentum: 0.000000
2024-03-26 16:05:16,123 epoch 4 - iter 20/48 - loss 0.17108509 - time (sec): 9.88 - samples/sec: 1454.01 - lr: 0.000022 - momentum: 0.000000
2024-03-26 16:05:17,519 epoch 4 - iter 24/48 - loss 0.17307095 - time (sec): 11.27 - samples/sec: 1499.18 - lr: 0.000022 - momentum: 0.000000
2024-03-26 16:05:20,617 epoch 4 - iter 28/48 - loss 0.16591345 - time (sec): 14.37 - samples/sec: 1404.16 - lr: 0.000022 - momentum: 0.000000
2024-03-26 16:05:23,088 epoch 4 - iter 32/48 - loss 0.17880494 - time (sec): 16.84 - samples/sec: 1396.18 - lr: 0.000021 - momentum: 0.000000
2024-03-26 16:05:24,598 epoch 4 - iter 36/48 - loss 0.17838065 - time (sec): 18.35 - samples/sec: 1431.70 - lr: 0.000021 - momentum: 0.000000
2024-03-26 16:05:26,578 epoch 4 - iter 40/48 - loss 0.17479243 - time (sec): 20.33 - samples/sec: 1445.81 - lr: 0.000021 - momentum: 0.000000
2024-03-26 16:05:28,479 epoch 4 - iter 44/48 - loss 0.17457045 - time (sec): 22.24 - samples/sec: 1458.66 - lr: 0.000020 - momentum: 0.000000
2024-03-26 16:05:29,532 epoch 4 - iter 48/48 - loss 0.17660779 - time (sec): 23.29 - samples/sec: 1480.25 - lr: 0.000020 - momentum: 0.000000
2024-03-26 16:05:29,532 ----------------------------------------------------------------------------------------------------
2024-03-26 16:05:29,532 EPOCH 4 done: loss 0.1766 - lr: 0.000020
2024-03-26 16:05:30,444 DEV : loss 0.24019527435302734 - f1-score (micro avg) 0.8821
2024-03-26 16:05:30,445 saving best model
2024-03-26 16:05:30,882 ----------------------------------------------------------------------------------------------------
2024-03-26 16:05:31,935 epoch 5 - iter 4/48 - loss 0.21813518 - time (sec): 1.05 - samples/sec: 2416.12 - lr: 0.000020 - momentum: 0.000000
2024-03-26 16:05:33,823 epoch 5 - iter 8/48 - loss 0.18958705 - time (sec): 2.94 - samples/sec: 1762.05 - lr: 0.000020 - momentum: 0.000000
2024-03-26 16:05:36,015 epoch 5 - iter 12/48 - loss 0.17988105 - time (sec): 5.13 - samples/sec: 1559.36 - lr: 0.000019 - momentum: 0.000000
2024-03-26 16:05:38,273 epoch 5 - iter 16/48 - loss 0.16768415 - time (sec): 7.39 - samples/sec: 1500.73 - lr: 0.000019 - momentum: 0.000000
2024-03-26 16:05:40,512 epoch 5 - iter 20/48 - loss 0.16354606 - time (sec): 9.63 - samples/sec: 1421.07 - lr: 0.000019 - momentum: 0.000000
2024-03-26 16:05:42,669 epoch 5 - iter 24/48 - loss 0.15615852 - time (sec): 11.79 - samples/sec: 1441.51 - lr: 0.000018 - momentum: 0.000000
2024-03-26 16:05:44,264 epoch 5 - iter 28/48 - loss 0.15294373 - time (sec): 13.38 - samples/sec: 1470.82 - lr: 0.000018 - momentum: 0.000000
2024-03-26 16:05:46,350 epoch 5 - iter 32/48 - loss 0.14264617 - time (sec): 15.47 - samples/sec: 1493.61 - lr: 0.000018 - momentum: 0.000000
2024-03-26 16:05:47,737 epoch 5 - iter 36/48 - loss 0.14222184 - time (sec): 16.85 - samples/sec: 1518.84 - lr: 0.000018 - momentum: 0.000000
2024-03-26 16:05:50,265 epoch 5 - iter 40/48 - loss 0.13629646 - time (sec): 19.38 - samples/sec: 1487.30 - lr: 0.000017 - momentum: 0.000000
2024-03-26 16:05:53,174 epoch 5 - iter 44/48 - loss 0.13484468 - time (sec): 22.29 - samples/sec: 1436.75 - lr: 0.000017 - momentum: 0.000000
2024-03-26 16:05:54,669 epoch 5 - iter 48/48 - loss 0.13720050 - time (sec): 23.79 - samples/sec: 1449.24 - lr: 0.000017 - momentum: 0.000000
2024-03-26 16:05:54,669 ----------------------------------------------------------------------------------------------------
2024-03-26 16:05:54,669 EPOCH 5 done: loss 0.1372 - lr: 0.000017
2024-03-26 16:05:55,584 DEV : loss 0.17373321950435638 - f1-score (micro avg) 0.8822
2024-03-26 16:05:55,585 saving best model
2024-03-26 16:05:56,014 ----------------------------------------------------------------------------------------------------
2024-03-26 16:05:57,875 epoch 6 - iter 4/48 - loss 0.16156735 - time (sec): 1.86 - samples/sec: 1579.94 - lr: 0.000017 - momentum: 0.000000
2024-03-26 16:05:59,593 epoch 6 - iter 8/48 - loss 0.13747974 - time (sec): 3.58 - samples/sec: 1620.28 - lr: 0.000016 - momentum: 0.000000
2024-03-26 16:06:01,888 epoch 6 - iter 12/48 - loss 0.12654976 - time (sec): 5.87 - samples/sec: 1501.35 - lr: 0.000016 - momentum: 0.000000
2024-03-26 16:06:03,449 epoch 6 - iter 16/48 - loss 0.11499352 - time (sec): 7.43 - samples/sec: 1524.11 - lr: 0.000016 - momentum: 0.000000
2024-03-26 16:06:05,998 epoch 6 - iter 20/48 - loss 0.10474209 - time (sec): 9.98 - samples/sec: 1438.97 - lr: 0.000015 - momentum: 0.000000
2024-03-26 16:06:08,037 epoch 6 - iter 24/48 - loss 0.10414922 - time (sec): 12.02 - samples/sec: 1454.86 - lr: 0.000015 - momentum: 0.000000
2024-03-26 16:06:10,651 epoch 6 - iter 28/48 - loss 0.10373188 - time (sec): 14.64 - samples/sec: 1430.32 - lr: 0.000015 - momentum: 0.000000
2024-03-26 16:06:12,691 epoch 6 - iter 32/48 - loss 0.10040075 - time (sec): 16.68 - samples/sec: 1409.28 - lr: 0.000015 - momentum: 0.000000
2024-03-26 16:06:13,800 epoch 6 - iter 36/48 - loss 0.10266182 - time (sec): 17.79 - samples/sec: 1458.55 - lr: 0.000014 - momentum: 0.000000
2024-03-26 16:06:15,989 epoch 6 - iter 40/48 - loss 0.10436027 - time (sec): 19.97 - samples/sec: 1447.66 - lr: 0.000014 - momentum: 0.000000
2024-03-26 16:06:17,590 epoch 6 - iter 44/48 - loss 0.10624856 - time (sec): 21.58 - samples/sec: 1471.64 - lr: 0.000014 - momentum: 0.000000
2024-03-26 16:06:19,359 epoch 6 - iter 48/48 - loss 0.10324865 - time (sec): 23.34 - samples/sec: 1476.67 - lr: 0.000014 - momentum: 0.000000
2024-03-26 16:06:19,360 ----------------------------------------------------------------------------------------------------
2024-03-26 16:06:19,360 EPOCH 6 done: loss 0.1032 - lr: 0.000014
2024-03-26 16:06:20,259 DEV : loss 0.17608517408370972 - f1-score (micro avg) 0.9107
2024-03-26 16:06:20,260 saving best model
2024-03-26 16:06:20,713 ----------------------------------------------------------------------------------------------------
2024-03-26 16:06:22,243 epoch 7 - iter 4/48 - loss 0.10018007 - time (sec): 1.53 - samples/sec: 1831.90 - lr: 0.000013 - momentum: 0.000000
2024-03-26 16:06:24,347 epoch 7 - iter 8/48 - loss 0.07755405 - time (sec): 3.63 - samples/sec: 1685.16 - lr: 0.000013 - momentum: 0.000000
2024-03-26 16:06:26,578 epoch 7 - iter 12/48 - loss 0.07358055 - time (sec): 5.86 - samples/sec: 1502.66 - lr: 0.000013 - momentum: 0.000000
2024-03-26 16:06:27,747 epoch 7 - iter 16/48 - loss 0.08302123 - time (sec): 7.03 - samples/sec: 1600.65 - lr: 0.000012 - momentum: 0.000000
2024-03-26 16:06:29,853 epoch 7 - iter 20/48 - loss 0.08162502 - time (sec): 9.14 - samples/sec: 1569.94 - lr: 0.000012 - momentum: 0.000000
2024-03-26 16:06:31,362 epoch 7 - iter 24/48 - loss 0.07788313 - time (sec): 10.65 - samples/sec: 1616.72 - lr: 0.000012 - momentum: 0.000000
2024-03-26 16:06:33,464 epoch 7 - iter 28/48 - loss 0.07674570 - time (sec): 12.75 - samples/sec: 1574.63 - lr: 0.000012 - momentum: 0.000000
2024-03-26 16:06:36,225 epoch 7 - iter 32/48 - loss 0.07632740 - time (sec): 15.51 - samples/sec: 1501.58 - lr: 0.000011 - momentum: 0.000000
2024-03-26 16:06:38,184 epoch 7 - iter 36/48 - loss 0.07494768 - time (sec): 17.47 - samples/sec: 1502.13 - lr: 0.000011 - momentum: 0.000000
2024-03-26 16:06:39,300 epoch 7 - iter 40/48 - loss 0.07830908 - time (sec): 18.58 - samples/sec: 1533.48 - lr: 0.000011 - momentum: 0.000000
2024-03-26 16:06:41,890 epoch 7 - iter 44/48 - loss 0.07784393 - time (sec): 21.17 - samples/sec: 1514.14 - lr: 0.000010 - momentum: 0.000000
2024-03-26 16:06:42,990 epoch 7 - iter 48/48 - loss 0.07956492 - time (sec): 22.27 - samples/sec: 1547.57 - lr: 0.000010 - momentum: 0.000000
2024-03-26 16:06:42,990 ----------------------------------------------------------------------------------------------------
2024-03-26 16:06:42,991 EPOCH 7 done: loss 0.0796 - lr: 0.000010
2024-03-26 16:06:43,904 DEV : loss 0.1826418936252594 - f1-score (micro avg) 0.9269
2024-03-26 16:06:43,905 saving best model
2024-03-26 16:06:44,375 ----------------------------------------------------------------------------------------------------
2024-03-26 16:06:46,485 epoch 8 - iter 4/48 - loss 0.04736933 - time (sec): 2.11 - samples/sec: 1314.62 - lr: 0.000010 - momentum: 0.000000
2024-03-26 16:06:49,093 epoch 8 - iter 8/48 - loss 0.04070346 - time (sec): 4.72 - samples/sec: 1280.39 - lr: 0.000010 - momentum: 0.000000
2024-03-26 16:06:50,759 epoch 8 - iter 12/48 - loss 0.04177010 - time (sec): 6.38 - samples/sec: 1328.63 - lr: 0.000009 - momentum: 0.000000
2024-03-26 16:06:53,368 epoch 8 - iter 16/48 - loss 0.05117556 - time (sec): 8.99 - samples/sec: 1280.28 - lr: 0.000009 - momentum: 0.000000
2024-03-26 16:06:55,023 epoch 8 - iter 20/48 - loss 0.05209403 - time (sec): 10.65 - samples/sec: 1334.52 - lr: 0.000009 - momentum: 0.000000
2024-03-26 16:06:56,484 epoch 8 - iter 24/48 - loss 0.05785789 - time (sec): 12.11 - samples/sec: 1403.84 - lr: 0.000009 - momentum: 0.000000
2024-03-26 16:06:58,353 epoch 8 - iter 28/48 - loss 0.06393769 - time (sec): 13.98 - samples/sec: 1426.81 - lr: 0.000008 - momentum: 0.000000
2024-03-26 16:07:01,005 epoch 8 - iter 32/48 - loss 0.06493712 - time (sec): 16.63 - samples/sec: 1412.73 - lr: 0.000008 - momentum: 0.000000
2024-03-26 16:07:03,412 epoch 8 - iter 36/48 - loss 0.06609066 - time (sec): 19.04 - samples/sec: 1404.31 - lr: 0.000008 - momentum: 0.000000
2024-03-26 16:07:05,614 epoch 8 - iter 40/48 - loss 0.06561863 - time (sec): 21.24 - samples/sec: 1385.41 - lr: 0.000007 - momentum: 0.000000
2024-03-26 16:07:07,862 epoch 8 - iter 44/48 - loss 0.06415178 - time (sec): 23.49 - samples/sec: 1375.45 - lr: 0.000007 - momentum: 0.000000
2024-03-26 16:07:09,423 epoch 8 - iter 48/48 - loss 0.06483716 - time (sec): 25.05 - samples/sec: 1376.28 - lr: 0.000007 - momentum: 0.000000
2024-03-26 16:07:09,423 ----------------------------------------------------------------------------------------------------
2024-03-26 16:07:09,424 EPOCH 8 done: loss 0.0648 - lr: 0.000007
2024-03-26 16:07:10,376 DEV : loss 0.1771041601896286 - f1-score (micro avg) 0.9315
2024-03-26 16:07:10,378 saving best model
2024-03-26 16:07:10,843 ----------------------------------------------------------------------------------------------------
2024-03-26 16:07:12,700 epoch 9 - iter 4/48 - loss 0.07065489 - time (sec): 1.86 - samples/sec: 1556.01 - lr: 0.000007 - momentum: 0.000000
2024-03-26 16:07:15,940 epoch 9 - iter 8/48 - loss 0.06582465 - time (sec): 5.10 - samples/sec: 1235.16 - lr: 0.000006 - momentum: 0.000000
2024-03-26 16:07:17,586 epoch 9 - iter 12/48 - loss 0.05729645 - time (sec): 6.74 - samples/sec: 1282.83 - lr: 0.000006 - momentum: 0.000000
2024-03-26 16:07:19,465 epoch 9 - iter 16/48 - loss 0.06242567 - time (sec): 8.62 - samples/sec: 1326.10 - lr: 0.000006 - momentum: 0.000000
2024-03-26 16:07:22,345 epoch 9 - iter 20/48 - loss 0.05752235 - time (sec): 11.50 - samples/sec: 1291.33 - lr: 0.000006 - momentum: 0.000000
2024-03-26 16:07:23,878 epoch 9 - iter 24/48 - loss 0.05575202 - time (sec): 13.03 - samples/sec: 1338.69 - lr: 0.000005 - momentum: 0.000000
2024-03-26 16:07:25,822 epoch 9 - iter 28/48 - loss 0.05750958 - time (sec): 14.98 - samples/sec: 1363.86 - lr: 0.000005 - momentum: 0.000000
2024-03-26 16:07:28,150 epoch 9 - iter 32/48 - loss 0.05658503 - time (sec): 17.31 - samples/sec: 1342.34 - lr: 0.000005 - momentum: 0.000000
2024-03-26 16:07:29,453 epoch 9 - iter 36/48 - loss 0.06099649 - time (sec): 18.61 - samples/sec: 1373.69 - lr: 0.000004 - momentum: 0.000000
2024-03-26 16:07:32,663 epoch 9 - iter 40/48 - loss 0.05936938 - time (sec): 21.82 - samples/sec: 1326.27 - lr: 0.000004 - momentum: 0.000000
2024-03-26 16:07:34,786 epoch 9 - iter 44/48 - loss 0.05578945 - time (sec): 23.94 - samples/sec: 1349.03 - lr: 0.000004 - momentum: 0.000000
2024-03-26 16:07:35,785 epoch 9 - iter 48/48 - loss 0.05796324 - time (sec): 24.94 - samples/sec: 1382.14 - lr: 0.000004 - momentum: 0.000000
2024-03-26 16:07:35,785 ----------------------------------------------------------------------------------------------------
2024-03-26 16:07:35,785 EPOCH 9 done: loss 0.0580 - lr: 0.000004
2024-03-26 16:07:36,709 DEV : loss 0.175104558467865 - f1-score (micro avg) 0.9315
2024-03-26 16:07:36,710 ----------------------------------------------------------------------------------------------------
2024-03-26 16:07:38,586 epoch 10 - iter 4/48 - loss 0.06033202 - time (sec): 1.88 - samples/sec: 1378.38 - lr: 0.000003 - momentum: 0.000000
2024-03-26 16:07:41,367 epoch 10 - iter 8/48 - loss 0.04830006 - time (sec): 4.66 - samples/sec: 1242.55 - lr: 0.000003 - momentum: 0.000000
2024-03-26 16:07:43,394 epoch 10 - iter 12/48 - loss 0.05421156 - time (sec): 6.68 - samples/sec: 1303.69 - lr: 0.000003 - momentum: 0.000000
2024-03-26 16:07:45,419 epoch 10 - iter 16/48 - loss 0.04947033 - time (sec): 8.71 - samples/sec: 1397.01 - lr: 0.000002 - momentum: 0.000000
2024-03-26 16:07:46,290 epoch 10 - iter 20/48 - loss 0.04811459 - time (sec): 9.58 - samples/sec: 1473.72 - lr: 0.000002 - momentum: 0.000000
2024-03-26 16:07:47,976 epoch 10 - iter 24/48 - loss 0.04694625 - time (sec): 11.26 - samples/sec: 1501.57 - lr: 0.000002 - momentum: 0.000000
2024-03-26 16:07:48,915 epoch 10 - iter 28/48 - loss 0.04653300 - time (sec): 12.20 - samples/sec: 1565.69 - lr: 0.000002 - momentum: 0.000000
2024-03-26 16:07:51,240 epoch 10 - iter 32/48 - loss 0.04512651 - time (sec): 14.53 - samples/sec: 1531.23 - lr: 0.000001 - momentum: 0.000000
2024-03-26 16:07:53,733 epoch 10 - iter 36/48 - loss 0.04887373 - time (sec): 17.02 - samples/sec: 1497.74 - lr: 0.000001 - momentum: 0.000000
2024-03-26 16:07:55,630 epoch 10 - iter 40/48 - loss 0.05137305 - time (sec): 18.92 - samples/sec: 1491.37 - lr: 0.000001 - momentum: 0.000000
2024-03-26 16:07:58,196 epoch 10 - iter 44/48 - loss 0.04997394 - time (sec): 21.48 - samples/sec: 1480.08 - lr: 0.000001 - momentum: 0.000000
2024-03-26 16:07:59,793 epoch 10 - iter 48/48 - loss 0.05010805 - time (sec): 23.08 - samples/sec: 1493.44 - lr: 0.000000 - momentum: 0.000000
2024-03-26 16:07:59,794 ----------------------------------------------------------------------------------------------------
2024-03-26 16:07:59,794 EPOCH 10 done: loss 0.0501 - lr: 0.000000
2024-03-26 16:08:00,709 DEV : loss 0.17769017815589905 - f1-score (micro avg) 0.9391
2024-03-26 16:08:00,711 saving best model
2024-03-26 16:08:01,442 ----------------------------------------------------------------------------------------------------
2024-03-26 16:08:01,443 Loading model from best epoch ...
2024-03-26 16:08:02,222 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
2024-03-26 16:08:02,995
Results:
- F-score (micro) 0.8991
- F-score (macro) 0.6833
- Accuracy 0.8201
By class:
precision recall f1-score support
Unternehmen 0.8783 0.8684 0.8733 266
Auslagerung 0.8824 0.9036 0.8929 249
Ort 0.9496 0.9851 0.9670 134
Software 0.0000 0.0000 0.0000 0
micro avg 0.8923 0.9060 0.8991 649
macro avg 0.6776 0.6893 0.6833 649
weighted avg 0.8946 0.9060 0.9002 649
2024-03-26 16:08:02,995 ----------------------------------------------------------------------------------------------------
|