File size: 26,661 Bytes
62b627a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
2024-03-26 16:03:49,239 ----------------------------------------------------------------------------------------------------
2024-03-26 16:03:49,239 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(31103, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=17, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2024-03-26 16:03:49,239 ----------------------------------------------------------------------------------------------------
2024-03-26 16:03:49,240 Corpus: 758 train + 94 dev + 96 test sentences
2024-03-26 16:03:49,240 ----------------------------------------------------------------------------------------------------
2024-03-26 16:03:49,240 Train:  758 sentences
2024-03-26 16:03:49,240         (train_with_dev=False, train_with_test=False)
2024-03-26 16:03:49,240 ----------------------------------------------------------------------------------------------------
2024-03-26 16:03:49,240 Training Params:
2024-03-26 16:03:49,240  - learning_rate: "3e-05" 
2024-03-26 16:03:49,240  - mini_batch_size: "16"
2024-03-26 16:03:49,240  - max_epochs: "10"
2024-03-26 16:03:49,240  - shuffle: "True"
2024-03-26 16:03:49,240 ----------------------------------------------------------------------------------------------------
2024-03-26 16:03:49,240 Plugins:
2024-03-26 16:03:49,240  - TensorboardLogger
2024-03-26 16:03:49,240  - LinearScheduler | warmup_fraction: '0.1'
2024-03-26 16:03:49,240 ----------------------------------------------------------------------------------------------------
2024-03-26 16:03:49,240 Final evaluation on model from best epoch (best-model.pt)
2024-03-26 16:03:49,240  - metric: "('micro avg', 'f1-score')"
2024-03-26 16:03:49,240 ----------------------------------------------------------------------------------------------------
2024-03-26 16:03:49,240 Computation:
2024-03-26 16:03:49,240  - compute on device: cuda:0
2024-03-26 16:03:49,240  - embedding storage: none
2024-03-26 16:03:49,240 ----------------------------------------------------------------------------------------------------
2024-03-26 16:03:49,240 Model training base path: "flair-co-funer-german_dbmdz_bert_base-bs16-e10-lr3e-05-4"
2024-03-26 16:03:49,240 ----------------------------------------------------------------------------------------------------
2024-03-26 16:03:49,240 ----------------------------------------------------------------------------------------------------
2024-03-26 16:03:49,240 Logging anything other than scalars to TensorBoard is currently not supported.
2024-03-26 16:03:50,727 epoch 1 - iter 4/48 - loss 3.01640190 - time (sec): 1.49 - samples/sec: 1755.99 - lr: 0.000002 - momentum: 0.000000
2024-03-26 16:03:52,541 epoch 1 - iter 8/48 - loss 2.96742700 - time (sec): 3.30 - samples/sec: 1551.95 - lr: 0.000004 - momentum: 0.000000
2024-03-26 16:03:53,871 epoch 1 - iter 12/48 - loss 2.91390131 - time (sec): 4.63 - samples/sec: 1576.94 - lr: 0.000007 - momentum: 0.000000
2024-03-26 16:03:56,400 epoch 1 - iter 16/48 - loss 2.81253980 - time (sec): 7.16 - samples/sec: 1494.26 - lr: 0.000009 - momentum: 0.000000
2024-03-26 16:03:58,500 epoch 1 - iter 20/48 - loss 2.69076344 - time (sec): 9.26 - samples/sec: 1479.37 - lr: 0.000012 - momentum: 0.000000
2024-03-26 16:04:01,168 epoch 1 - iter 24/48 - loss 2.55974652 - time (sec): 11.93 - samples/sec: 1418.90 - lr: 0.000014 - momentum: 0.000000
2024-03-26 16:04:03,662 epoch 1 - iter 28/48 - loss 2.44809026 - time (sec): 14.42 - samples/sec: 1406.64 - lr: 0.000017 - momentum: 0.000000
2024-03-26 16:04:05,541 epoch 1 - iter 32/48 - loss 2.35897900 - time (sec): 16.30 - samples/sec: 1403.25 - lr: 0.000019 - momentum: 0.000000
2024-03-26 16:04:06,433 epoch 1 - iter 36/48 - loss 2.29176753 - time (sec): 17.19 - samples/sec: 1452.95 - lr: 0.000022 - momentum: 0.000000
2024-03-26 16:04:08,293 epoch 1 - iter 40/48 - loss 2.19360469 - time (sec): 19.05 - samples/sec: 1461.82 - lr: 0.000024 - momentum: 0.000000
2024-03-26 16:04:10,330 epoch 1 - iter 44/48 - loss 2.08193654 - time (sec): 21.09 - samples/sec: 1480.73 - lr: 0.000027 - momentum: 0.000000
2024-03-26 16:04:12,058 epoch 1 - iter 48/48 - loss 1.99530450 - time (sec): 22.82 - samples/sec: 1510.76 - lr: 0.000029 - momentum: 0.000000
2024-03-26 16:04:12,058 ----------------------------------------------------------------------------------------------------
2024-03-26 16:04:12,058 EPOCH 1 done: loss 1.9953 - lr: 0.000029
2024-03-26 16:04:13,044 DEV : loss 0.7687539458274841 - f1-score (micro avg)  0.4963
2024-03-26 16:04:13,045 saving best model
2024-03-26 16:04:13,325 ----------------------------------------------------------------------------------------------------
2024-03-26 16:04:14,566 epoch 2 - iter 4/48 - loss 1.05234656 - time (sec): 1.24 - samples/sec: 1908.57 - lr: 0.000030 - momentum: 0.000000
2024-03-26 16:04:16,802 epoch 2 - iter 8/48 - loss 0.86861665 - time (sec): 3.48 - samples/sec: 1569.41 - lr: 0.000030 - momentum: 0.000000
2024-03-26 16:04:18,575 epoch 2 - iter 12/48 - loss 0.81234012 - time (sec): 5.25 - samples/sec: 1623.16 - lr: 0.000029 - momentum: 0.000000
2024-03-26 16:04:20,952 epoch 2 - iter 16/48 - loss 0.72967794 - time (sec): 7.63 - samples/sec: 1479.30 - lr: 0.000029 - momentum: 0.000000
2024-03-26 16:04:24,328 epoch 2 - iter 20/48 - loss 0.66501742 - time (sec): 11.00 - samples/sec: 1341.02 - lr: 0.000029 - momentum: 0.000000
2024-03-26 16:04:25,802 epoch 2 - iter 24/48 - loss 0.65016550 - time (sec): 12.48 - samples/sec: 1398.00 - lr: 0.000028 - momentum: 0.000000
2024-03-26 16:04:28,439 epoch 2 - iter 28/48 - loss 0.62771530 - time (sec): 15.11 - samples/sec: 1369.96 - lr: 0.000028 - momentum: 0.000000
2024-03-26 16:04:31,123 epoch 2 - iter 32/48 - loss 0.59657920 - time (sec): 17.80 - samples/sec: 1371.43 - lr: 0.000028 - momentum: 0.000000
2024-03-26 16:04:33,192 epoch 2 - iter 36/48 - loss 0.58504856 - time (sec): 19.87 - samples/sec: 1361.19 - lr: 0.000028 - momentum: 0.000000
2024-03-26 16:04:35,662 epoch 2 - iter 40/48 - loss 0.56665662 - time (sec): 22.34 - samples/sec: 1351.30 - lr: 0.000027 - momentum: 0.000000
2024-03-26 16:04:36,711 epoch 2 - iter 44/48 - loss 0.55732793 - time (sec): 23.39 - samples/sec: 1386.51 - lr: 0.000027 - momentum: 0.000000
2024-03-26 16:04:37,875 epoch 2 - iter 48/48 - loss 0.54730932 - time (sec): 24.55 - samples/sec: 1404.15 - lr: 0.000027 - momentum: 0.000000
2024-03-26 16:04:37,876 ----------------------------------------------------------------------------------------------------
2024-03-26 16:04:37,876 EPOCH 2 done: loss 0.5473 - lr: 0.000027
2024-03-26 16:04:38,788 DEV : loss 0.3269508481025696 - f1-score (micro avg)  0.7953
2024-03-26 16:04:38,790 saving best model
2024-03-26 16:04:39,251 ----------------------------------------------------------------------------------------------------
2024-03-26 16:04:41,238 epoch 3 - iter 4/48 - loss 0.32273077 - time (sec): 1.99 - samples/sec: 1236.41 - lr: 0.000026 - momentum: 0.000000
2024-03-26 16:04:42,789 epoch 3 - iter 8/48 - loss 0.27329305 - time (sec): 3.54 - samples/sec: 1354.27 - lr: 0.000026 - momentum: 0.000000
2024-03-26 16:04:45,347 epoch 3 - iter 12/48 - loss 0.28542240 - time (sec): 6.09 - samples/sec: 1276.47 - lr: 0.000026 - momentum: 0.000000
2024-03-26 16:04:47,350 epoch 3 - iter 16/48 - loss 0.29088610 - time (sec): 8.10 - samples/sec: 1316.91 - lr: 0.000026 - momentum: 0.000000
2024-03-26 16:04:49,228 epoch 3 - iter 20/48 - loss 0.28489785 - time (sec): 9.98 - samples/sec: 1387.86 - lr: 0.000025 - momentum: 0.000000
2024-03-26 16:04:51,441 epoch 3 - iter 24/48 - loss 0.27481321 - time (sec): 12.19 - samples/sec: 1402.53 - lr: 0.000025 - momentum: 0.000000
2024-03-26 16:04:53,895 epoch 3 - iter 28/48 - loss 0.26488170 - time (sec): 14.64 - samples/sec: 1362.11 - lr: 0.000025 - momentum: 0.000000
2024-03-26 16:04:56,442 epoch 3 - iter 32/48 - loss 0.26071963 - time (sec): 17.19 - samples/sec: 1337.56 - lr: 0.000025 - momentum: 0.000000
2024-03-26 16:04:58,546 epoch 3 - iter 36/48 - loss 0.25954332 - time (sec): 19.29 - samples/sec: 1341.72 - lr: 0.000024 - momentum: 0.000000
2024-03-26 16:05:00,842 epoch 3 - iter 40/48 - loss 0.26609240 - time (sec): 21.59 - samples/sec: 1357.38 - lr: 0.000024 - momentum: 0.000000
2024-03-26 16:05:03,359 epoch 3 - iter 44/48 - loss 0.25854646 - time (sec): 24.11 - samples/sec: 1340.25 - lr: 0.000024 - momentum: 0.000000
2024-03-26 16:05:04,864 epoch 3 - iter 48/48 - loss 0.25895918 - time (sec): 25.61 - samples/sec: 1345.95 - lr: 0.000023 - momentum: 0.000000
2024-03-26 16:05:04,864 ----------------------------------------------------------------------------------------------------
2024-03-26 16:05:04,864 EPOCH 3 done: loss 0.2590 - lr: 0.000023
2024-03-26 16:05:05,788 DEV : loss 0.2578723728656769 - f1-score (micro avg)  0.8517
2024-03-26 16:05:05,789 saving best model
2024-03-26 16:05:06,243 ----------------------------------------------------------------------------------------------------
2024-03-26 16:05:09,220 epoch 4 - iter 4/48 - loss 0.12629222 - time (sec): 2.98 - samples/sec: 1224.51 - lr: 0.000023 - momentum: 0.000000
2024-03-26 16:05:10,525 epoch 4 - iter 8/48 - loss 0.15790626 - time (sec): 4.28 - samples/sec: 1373.73 - lr: 0.000023 - momentum: 0.000000
2024-03-26 16:05:12,600 epoch 4 - iter 12/48 - loss 0.16547955 - time (sec): 6.36 - samples/sec: 1451.18 - lr: 0.000023 - momentum: 0.000000
2024-03-26 16:05:15,136 epoch 4 - iter 16/48 - loss 0.16938562 - time (sec): 8.89 - samples/sec: 1370.07 - lr: 0.000022 - momentum: 0.000000
2024-03-26 16:05:16,123 epoch 4 - iter 20/48 - loss 0.17108509 - time (sec): 9.88 - samples/sec: 1454.01 - lr: 0.000022 - momentum: 0.000000
2024-03-26 16:05:17,519 epoch 4 - iter 24/48 - loss 0.17307095 - time (sec): 11.27 - samples/sec: 1499.18 - lr: 0.000022 - momentum: 0.000000
2024-03-26 16:05:20,617 epoch 4 - iter 28/48 - loss 0.16591345 - time (sec): 14.37 - samples/sec: 1404.16 - lr: 0.000022 - momentum: 0.000000
2024-03-26 16:05:23,088 epoch 4 - iter 32/48 - loss 0.17880494 - time (sec): 16.84 - samples/sec: 1396.18 - lr: 0.000021 - momentum: 0.000000
2024-03-26 16:05:24,598 epoch 4 - iter 36/48 - loss 0.17838065 - time (sec): 18.35 - samples/sec: 1431.70 - lr: 0.000021 - momentum: 0.000000
2024-03-26 16:05:26,578 epoch 4 - iter 40/48 - loss 0.17479243 - time (sec): 20.33 - samples/sec: 1445.81 - lr: 0.000021 - momentum: 0.000000
2024-03-26 16:05:28,479 epoch 4 - iter 44/48 - loss 0.17457045 - time (sec): 22.24 - samples/sec: 1458.66 - lr: 0.000020 - momentum: 0.000000
2024-03-26 16:05:29,532 epoch 4 - iter 48/48 - loss 0.17660779 - time (sec): 23.29 - samples/sec: 1480.25 - lr: 0.000020 - momentum: 0.000000
2024-03-26 16:05:29,532 ----------------------------------------------------------------------------------------------------
2024-03-26 16:05:29,532 EPOCH 4 done: loss 0.1766 - lr: 0.000020
2024-03-26 16:05:30,444 DEV : loss 0.24019527435302734 - f1-score (micro avg)  0.8821
2024-03-26 16:05:30,445 saving best model
2024-03-26 16:05:30,882 ----------------------------------------------------------------------------------------------------
2024-03-26 16:05:31,935 epoch 5 - iter 4/48 - loss 0.21813518 - time (sec): 1.05 - samples/sec: 2416.12 - lr: 0.000020 - momentum: 0.000000
2024-03-26 16:05:33,823 epoch 5 - iter 8/48 - loss 0.18958705 - time (sec): 2.94 - samples/sec: 1762.05 - lr: 0.000020 - momentum: 0.000000
2024-03-26 16:05:36,015 epoch 5 - iter 12/48 - loss 0.17988105 - time (sec): 5.13 - samples/sec: 1559.36 - lr: 0.000019 - momentum: 0.000000
2024-03-26 16:05:38,273 epoch 5 - iter 16/48 - loss 0.16768415 - time (sec): 7.39 - samples/sec: 1500.73 - lr: 0.000019 - momentum: 0.000000
2024-03-26 16:05:40,512 epoch 5 - iter 20/48 - loss 0.16354606 - time (sec): 9.63 - samples/sec: 1421.07 - lr: 0.000019 - momentum: 0.000000
2024-03-26 16:05:42,669 epoch 5 - iter 24/48 - loss 0.15615852 - time (sec): 11.79 - samples/sec: 1441.51 - lr: 0.000018 - momentum: 0.000000
2024-03-26 16:05:44,264 epoch 5 - iter 28/48 - loss 0.15294373 - time (sec): 13.38 - samples/sec: 1470.82 - lr: 0.000018 - momentum: 0.000000
2024-03-26 16:05:46,350 epoch 5 - iter 32/48 - loss 0.14264617 - time (sec): 15.47 - samples/sec: 1493.61 - lr: 0.000018 - momentum: 0.000000
2024-03-26 16:05:47,737 epoch 5 - iter 36/48 - loss 0.14222184 - time (sec): 16.85 - samples/sec: 1518.84 - lr: 0.000018 - momentum: 0.000000
2024-03-26 16:05:50,265 epoch 5 - iter 40/48 - loss 0.13629646 - time (sec): 19.38 - samples/sec: 1487.30 - lr: 0.000017 - momentum: 0.000000
2024-03-26 16:05:53,174 epoch 5 - iter 44/48 - loss 0.13484468 - time (sec): 22.29 - samples/sec: 1436.75 - lr: 0.000017 - momentum: 0.000000
2024-03-26 16:05:54,669 epoch 5 - iter 48/48 - loss 0.13720050 - time (sec): 23.79 - samples/sec: 1449.24 - lr: 0.000017 - momentum: 0.000000
2024-03-26 16:05:54,669 ----------------------------------------------------------------------------------------------------
2024-03-26 16:05:54,669 EPOCH 5 done: loss 0.1372 - lr: 0.000017
2024-03-26 16:05:55,584 DEV : loss 0.17373321950435638 - f1-score (micro avg)  0.8822
2024-03-26 16:05:55,585 saving best model
2024-03-26 16:05:56,014 ----------------------------------------------------------------------------------------------------
2024-03-26 16:05:57,875 epoch 6 - iter 4/48 - loss 0.16156735 - time (sec): 1.86 - samples/sec: 1579.94 - lr: 0.000017 - momentum: 0.000000
2024-03-26 16:05:59,593 epoch 6 - iter 8/48 - loss 0.13747974 - time (sec): 3.58 - samples/sec: 1620.28 - lr: 0.000016 - momentum: 0.000000
2024-03-26 16:06:01,888 epoch 6 - iter 12/48 - loss 0.12654976 - time (sec): 5.87 - samples/sec: 1501.35 - lr: 0.000016 - momentum: 0.000000
2024-03-26 16:06:03,449 epoch 6 - iter 16/48 - loss 0.11499352 - time (sec): 7.43 - samples/sec: 1524.11 - lr: 0.000016 - momentum: 0.000000
2024-03-26 16:06:05,998 epoch 6 - iter 20/48 - loss 0.10474209 - time (sec): 9.98 - samples/sec: 1438.97 - lr: 0.000015 - momentum: 0.000000
2024-03-26 16:06:08,037 epoch 6 - iter 24/48 - loss 0.10414922 - time (sec): 12.02 - samples/sec: 1454.86 - lr: 0.000015 - momentum: 0.000000
2024-03-26 16:06:10,651 epoch 6 - iter 28/48 - loss 0.10373188 - time (sec): 14.64 - samples/sec: 1430.32 - lr: 0.000015 - momentum: 0.000000
2024-03-26 16:06:12,691 epoch 6 - iter 32/48 - loss 0.10040075 - time (sec): 16.68 - samples/sec: 1409.28 - lr: 0.000015 - momentum: 0.000000
2024-03-26 16:06:13,800 epoch 6 - iter 36/48 - loss 0.10266182 - time (sec): 17.79 - samples/sec: 1458.55 - lr: 0.000014 - momentum: 0.000000
2024-03-26 16:06:15,989 epoch 6 - iter 40/48 - loss 0.10436027 - time (sec): 19.97 - samples/sec: 1447.66 - lr: 0.000014 - momentum: 0.000000
2024-03-26 16:06:17,590 epoch 6 - iter 44/48 - loss 0.10624856 - time (sec): 21.58 - samples/sec: 1471.64 - lr: 0.000014 - momentum: 0.000000
2024-03-26 16:06:19,359 epoch 6 - iter 48/48 - loss 0.10324865 - time (sec): 23.34 - samples/sec: 1476.67 - lr: 0.000014 - momentum: 0.000000
2024-03-26 16:06:19,360 ----------------------------------------------------------------------------------------------------
2024-03-26 16:06:19,360 EPOCH 6 done: loss 0.1032 - lr: 0.000014
2024-03-26 16:06:20,259 DEV : loss 0.17608517408370972 - f1-score (micro avg)  0.9107
2024-03-26 16:06:20,260 saving best model
2024-03-26 16:06:20,713 ----------------------------------------------------------------------------------------------------
2024-03-26 16:06:22,243 epoch 7 - iter 4/48 - loss 0.10018007 - time (sec): 1.53 - samples/sec: 1831.90 - lr: 0.000013 - momentum: 0.000000
2024-03-26 16:06:24,347 epoch 7 - iter 8/48 - loss 0.07755405 - time (sec): 3.63 - samples/sec: 1685.16 - lr: 0.000013 - momentum: 0.000000
2024-03-26 16:06:26,578 epoch 7 - iter 12/48 - loss 0.07358055 - time (sec): 5.86 - samples/sec: 1502.66 - lr: 0.000013 - momentum: 0.000000
2024-03-26 16:06:27,747 epoch 7 - iter 16/48 - loss 0.08302123 - time (sec): 7.03 - samples/sec: 1600.65 - lr: 0.000012 - momentum: 0.000000
2024-03-26 16:06:29,853 epoch 7 - iter 20/48 - loss 0.08162502 - time (sec): 9.14 - samples/sec: 1569.94 - lr: 0.000012 - momentum: 0.000000
2024-03-26 16:06:31,362 epoch 7 - iter 24/48 - loss 0.07788313 - time (sec): 10.65 - samples/sec: 1616.72 - lr: 0.000012 - momentum: 0.000000
2024-03-26 16:06:33,464 epoch 7 - iter 28/48 - loss 0.07674570 - time (sec): 12.75 - samples/sec: 1574.63 - lr: 0.000012 - momentum: 0.000000
2024-03-26 16:06:36,225 epoch 7 - iter 32/48 - loss 0.07632740 - time (sec): 15.51 - samples/sec: 1501.58 - lr: 0.000011 - momentum: 0.000000
2024-03-26 16:06:38,184 epoch 7 - iter 36/48 - loss 0.07494768 - time (sec): 17.47 - samples/sec: 1502.13 - lr: 0.000011 - momentum: 0.000000
2024-03-26 16:06:39,300 epoch 7 - iter 40/48 - loss 0.07830908 - time (sec): 18.58 - samples/sec: 1533.48 - lr: 0.000011 - momentum: 0.000000
2024-03-26 16:06:41,890 epoch 7 - iter 44/48 - loss 0.07784393 - time (sec): 21.17 - samples/sec: 1514.14 - lr: 0.000010 - momentum: 0.000000
2024-03-26 16:06:42,990 epoch 7 - iter 48/48 - loss 0.07956492 - time (sec): 22.27 - samples/sec: 1547.57 - lr: 0.000010 - momentum: 0.000000
2024-03-26 16:06:42,990 ----------------------------------------------------------------------------------------------------
2024-03-26 16:06:42,991 EPOCH 7 done: loss 0.0796 - lr: 0.000010
2024-03-26 16:06:43,904 DEV : loss 0.1826418936252594 - f1-score (micro avg)  0.9269
2024-03-26 16:06:43,905 saving best model
2024-03-26 16:06:44,375 ----------------------------------------------------------------------------------------------------
2024-03-26 16:06:46,485 epoch 8 - iter 4/48 - loss 0.04736933 - time (sec): 2.11 - samples/sec: 1314.62 - lr: 0.000010 - momentum: 0.000000
2024-03-26 16:06:49,093 epoch 8 - iter 8/48 - loss 0.04070346 - time (sec): 4.72 - samples/sec: 1280.39 - lr: 0.000010 - momentum: 0.000000
2024-03-26 16:06:50,759 epoch 8 - iter 12/48 - loss 0.04177010 - time (sec): 6.38 - samples/sec: 1328.63 - lr: 0.000009 - momentum: 0.000000
2024-03-26 16:06:53,368 epoch 8 - iter 16/48 - loss 0.05117556 - time (sec): 8.99 - samples/sec: 1280.28 - lr: 0.000009 - momentum: 0.000000
2024-03-26 16:06:55,023 epoch 8 - iter 20/48 - loss 0.05209403 - time (sec): 10.65 - samples/sec: 1334.52 - lr: 0.000009 - momentum: 0.000000
2024-03-26 16:06:56,484 epoch 8 - iter 24/48 - loss 0.05785789 - time (sec): 12.11 - samples/sec: 1403.84 - lr: 0.000009 - momentum: 0.000000
2024-03-26 16:06:58,353 epoch 8 - iter 28/48 - loss 0.06393769 - time (sec): 13.98 - samples/sec: 1426.81 - lr: 0.000008 - momentum: 0.000000
2024-03-26 16:07:01,005 epoch 8 - iter 32/48 - loss 0.06493712 - time (sec): 16.63 - samples/sec: 1412.73 - lr: 0.000008 - momentum: 0.000000
2024-03-26 16:07:03,412 epoch 8 - iter 36/48 - loss 0.06609066 - time (sec): 19.04 - samples/sec: 1404.31 - lr: 0.000008 - momentum: 0.000000
2024-03-26 16:07:05,614 epoch 8 - iter 40/48 - loss 0.06561863 - time (sec): 21.24 - samples/sec: 1385.41 - lr: 0.000007 - momentum: 0.000000
2024-03-26 16:07:07,862 epoch 8 - iter 44/48 - loss 0.06415178 - time (sec): 23.49 - samples/sec: 1375.45 - lr: 0.000007 - momentum: 0.000000
2024-03-26 16:07:09,423 epoch 8 - iter 48/48 - loss 0.06483716 - time (sec): 25.05 - samples/sec: 1376.28 - lr: 0.000007 - momentum: 0.000000
2024-03-26 16:07:09,423 ----------------------------------------------------------------------------------------------------
2024-03-26 16:07:09,424 EPOCH 8 done: loss 0.0648 - lr: 0.000007
2024-03-26 16:07:10,376 DEV : loss 0.1771041601896286 - f1-score (micro avg)  0.9315
2024-03-26 16:07:10,378 saving best model
2024-03-26 16:07:10,843 ----------------------------------------------------------------------------------------------------
2024-03-26 16:07:12,700 epoch 9 - iter 4/48 - loss 0.07065489 - time (sec): 1.86 - samples/sec: 1556.01 - lr: 0.000007 - momentum: 0.000000
2024-03-26 16:07:15,940 epoch 9 - iter 8/48 - loss 0.06582465 - time (sec): 5.10 - samples/sec: 1235.16 - lr: 0.000006 - momentum: 0.000000
2024-03-26 16:07:17,586 epoch 9 - iter 12/48 - loss 0.05729645 - time (sec): 6.74 - samples/sec: 1282.83 - lr: 0.000006 - momentum: 0.000000
2024-03-26 16:07:19,465 epoch 9 - iter 16/48 - loss 0.06242567 - time (sec): 8.62 - samples/sec: 1326.10 - lr: 0.000006 - momentum: 0.000000
2024-03-26 16:07:22,345 epoch 9 - iter 20/48 - loss 0.05752235 - time (sec): 11.50 - samples/sec: 1291.33 - lr: 0.000006 - momentum: 0.000000
2024-03-26 16:07:23,878 epoch 9 - iter 24/48 - loss 0.05575202 - time (sec): 13.03 - samples/sec: 1338.69 - lr: 0.000005 - momentum: 0.000000
2024-03-26 16:07:25,822 epoch 9 - iter 28/48 - loss 0.05750958 - time (sec): 14.98 - samples/sec: 1363.86 - lr: 0.000005 - momentum: 0.000000
2024-03-26 16:07:28,150 epoch 9 - iter 32/48 - loss 0.05658503 - time (sec): 17.31 - samples/sec: 1342.34 - lr: 0.000005 - momentum: 0.000000
2024-03-26 16:07:29,453 epoch 9 - iter 36/48 - loss 0.06099649 - time (sec): 18.61 - samples/sec: 1373.69 - lr: 0.000004 - momentum: 0.000000
2024-03-26 16:07:32,663 epoch 9 - iter 40/48 - loss 0.05936938 - time (sec): 21.82 - samples/sec: 1326.27 - lr: 0.000004 - momentum: 0.000000
2024-03-26 16:07:34,786 epoch 9 - iter 44/48 - loss 0.05578945 - time (sec): 23.94 - samples/sec: 1349.03 - lr: 0.000004 - momentum: 0.000000
2024-03-26 16:07:35,785 epoch 9 - iter 48/48 - loss 0.05796324 - time (sec): 24.94 - samples/sec: 1382.14 - lr: 0.000004 - momentum: 0.000000
2024-03-26 16:07:35,785 ----------------------------------------------------------------------------------------------------
2024-03-26 16:07:35,785 EPOCH 9 done: loss 0.0580 - lr: 0.000004
2024-03-26 16:07:36,709 DEV : loss 0.175104558467865 - f1-score (micro avg)  0.9315
2024-03-26 16:07:36,710 ----------------------------------------------------------------------------------------------------
2024-03-26 16:07:38,586 epoch 10 - iter 4/48 - loss 0.06033202 - time (sec): 1.88 - samples/sec: 1378.38 - lr: 0.000003 - momentum: 0.000000
2024-03-26 16:07:41,367 epoch 10 - iter 8/48 - loss 0.04830006 - time (sec): 4.66 - samples/sec: 1242.55 - lr: 0.000003 - momentum: 0.000000
2024-03-26 16:07:43,394 epoch 10 - iter 12/48 - loss 0.05421156 - time (sec): 6.68 - samples/sec: 1303.69 - lr: 0.000003 - momentum: 0.000000
2024-03-26 16:07:45,419 epoch 10 - iter 16/48 - loss 0.04947033 - time (sec): 8.71 - samples/sec: 1397.01 - lr: 0.000002 - momentum: 0.000000
2024-03-26 16:07:46,290 epoch 10 - iter 20/48 - loss 0.04811459 - time (sec): 9.58 - samples/sec: 1473.72 - lr: 0.000002 - momentum: 0.000000
2024-03-26 16:07:47,976 epoch 10 - iter 24/48 - loss 0.04694625 - time (sec): 11.26 - samples/sec: 1501.57 - lr: 0.000002 - momentum: 0.000000
2024-03-26 16:07:48,915 epoch 10 - iter 28/48 - loss 0.04653300 - time (sec): 12.20 - samples/sec: 1565.69 - lr: 0.000002 - momentum: 0.000000
2024-03-26 16:07:51,240 epoch 10 - iter 32/48 - loss 0.04512651 - time (sec): 14.53 - samples/sec: 1531.23 - lr: 0.000001 - momentum: 0.000000
2024-03-26 16:07:53,733 epoch 10 - iter 36/48 - loss 0.04887373 - time (sec): 17.02 - samples/sec: 1497.74 - lr: 0.000001 - momentum: 0.000000
2024-03-26 16:07:55,630 epoch 10 - iter 40/48 - loss 0.05137305 - time (sec): 18.92 - samples/sec: 1491.37 - lr: 0.000001 - momentum: 0.000000
2024-03-26 16:07:58,196 epoch 10 - iter 44/48 - loss 0.04997394 - time (sec): 21.48 - samples/sec: 1480.08 - lr: 0.000001 - momentum: 0.000000
2024-03-26 16:07:59,793 epoch 10 - iter 48/48 - loss 0.05010805 - time (sec): 23.08 - samples/sec: 1493.44 - lr: 0.000000 - momentum: 0.000000
2024-03-26 16:07:59,794 ----------------------------------------------------------------------------------------------------
2024-03-26 16:07:59,794 EPOCH 10 done: loss 0.0501 - lr: 0.000000
2024-03-26 16:08:00,709 DEV : loss 0.17769017815589905 - f1-score (micro avg)  0.9391
2024-03-26 16:08:00,711 saving best model
2024-03-26 16:08:01,442 ----------------------------------------------------------------------------------------------------
2024-03-26 16:08:01,443 Loading model from best epoch ...
2024-03-26 16:08:02,222 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
2024-03-26 16:08:02,995 
Results:
- F-score (micro) 0.8991
- F-score (macro) 0.6833
- Accuracy 0.8201

By class:
              precision    recall  f1-score   support

 Unternehmen     0.8783    0.8684    0.8733       266
 Auslagerung     0.8824    0.9036    0.8929       249
         Ort     0.9496    0.9851    0.9670       134
    Software     0.0000    0.0000    0.0000         0

   micro avg     0.8923    0.9060    0.8991       649
   macro avg     0.6776    0.6893    0.6833       649
weighted avg     0.8946    0.9060    0.9002       649

2024-03-26 16:08:02,995 ----------------------------------------------------------------------------------------------------