File size: 23,782 Bytes
2bb1af2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
2024-03-26 12:12:19,300 ----------------------------------------------------------------------------------------------------
2024-03-26 12:12:19,300 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(30001, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=17, bias=True)
(loss_function): CrossEntropyLoss()
)"
2024-03-26 12:12:19,300 ----------------------------------------------------------------------------------------------------
2024-03-26 12:12:19,300 Corpus: 758 train + 94 dev + 96 test sentences
2024-03-26 12:12:19,300 ----------------------------------------------------------------------------------------------------
2024-03-26 12:12:19,300 Train: 758 sentences
2024-03-26 12:12:19,300 (train_with_dev=False, train_with_test=False)
2024-03-26 12:12:19,300 ----------------------------------------------------------------------------------------------------
2024-03-26 12:12:19,300 Training Params:
2024-03-26 12:12:19,300 - learning_rate: "3e-05"
2024-03-26 12:12:19,300 - mini_batch_size: "8"
2024-03-26 12:12:19,300 - max_epochs: "10"
2024-03-26 12:12:19,300 - shuffle: "True"
2024-03-26 12:12:19,300 ----------------------------------------------------------------------------------------------------
2024-03-26 12:12:19,301 Plugins:
2024-03-26 12:12:19,301 - TensorboardLogger
2024-03-26 12:12:19,301 - LinearScheduler | warmup_fraction: '0.1'
2024-03-26 12:12:19,301 ----------------------------------------------------------------------------------------------------
2024-03-26 12:12:19,301 Final evaluation on model from best epoch (best-model.pt)
2024-03-26 12:12:19,301 - metric: "('micro avg', 'f1-score')"
2024-03-26 12:12:19,301 ----------------------------------------------------------------------------------------------------
2024-03-26 12:12:19,301 Computation:
2024-03-26 12:12:19,301 - compute on device: cuda:0
2024-03-26 12:12:19,301 - embedding storage: none
2024-03-26 12:12:19,301 ----------------------------------------------------------------------------------------------------
2024-03-26 12:12:19,301 Model training base path: "flair-co-funer-german_bert_base-bs8-e10-lr3e-05-5"
2024-03-26 12:12:19,301 ----------------------------------------------------------------------------------------------------
2024-03-26 12:12:19,301 ----------------------------------------------------------------------------------------------------
2024-03-26 12:12:19,301 Logging anything other than scalars to TensorBoard is currently not supported.
2024-03-26 12:12:21,208 epoch 1 - iter 9/95 - loss 3.13025724 - time (sec): 1.91 - samples/sec: 1644.18 - lr: 0.000003 - momentum: 0.000000
2024-03-26 12:12:23,119 epoch 1 - iter 18/95 - loss 3.02143589 - time (sec): 3.82 - samples/sec: 1737.47 - lr: 0.000005 - momentum: 0.000000
2024-03-26 12:12:25,540 epoch 1 - iter 27/95 - loss 2.85748883 - time (sec): 6.24 - samples/sec: 1662.40 - lr: 0.000008 - momentum: 0.000000
2024-03-26 12:12:27,055 epoch 1 - iter 36/95 - loss 2.68721258 - time (sec): 7.75 - samples/sec: 1742.22 - lr: 0.000011 - momentum: 0.000000
2024-03-26 12:12:29,242 epoch 1 - iter 45/95 - loss 2.53500844 - time (sec): 9.94 - samples/sec: 1728.71 - lr: 0.000014 - momentum: 0.000000
2024-03-26 12:12:30,855 epoch 1 - iter 54/95 - loss 2.38005317 - time (sec): 11.55 - samples/sec: 1751.24 - lr: 0.000017 - momentum: 0.000000
2024-03-26 12:12:32,532 epoch 1 - iter 63/95 - loss 2.24884194 - time (sec): 13.23 - samples/sec: 1768.75 - lr: 0.000020 - momentum: 0.000000
2024-03-26 12:12:34,462 epoch 1 - iter 72/95 - loss 2.11810715 - time (sec): 15.16 - samples/sec: 1761.01 - lr: 0.000022 - momentum: 0.000000
2024-03-26 12:12:36,555 epoch 1 - iter 81/95 - loss 1.97458181 - time (sec): 17.25 - samples/sec: 1747.37 - lr: 0.000025 - momentum: 0.000000
2024-03-26 12:12:38,201 epoch 1 - iter 90/95 - loss 1.86443011 - time (sec): 18.90 - samples/sec: 1742.15 - lr: 0.000028 - momentum: 0.000000
2024-03-26 12:12:38,984 ----------------------------------------------------------------------------------------------------
2024-03-26 12:12:38,984 EPOCH 1 done: loss 1.8102 - lr: 0.000028
2024-03-26 12:12:39,981 DEV : loss 0.4937804043292999 - f1-score (micro avg) 0.6384
2024-03-26 12:12:39,982 saving best model
2024-03-26 12:12:40,246 ----------------------------------------------------------------------------------------------------
2024-03-26 12:12:42,553 epoch 2 - iter 9/95 - loss 0.58742447 - time (sec): 2.31 - samples/sec: 1654.76 - lr: 0.000030 - momentum: 0.000000
2024-03-26 12:12:44,506 epoch 2 - iter 18/95 - loss 0.53837974 - time (sec): 4.26 - samples/sec: 1642.13 - lr: 0.000029 - momentum: 0.000000
2024-03-26 12:12:46,904 epoch 2 - iter 27/95 - loss 0.49843502 - time (sec): 6.66 - samples/sec: 1606.77 - lr: 0.000029 - momentum: 0.000000
2024-03-26 12:12:48,273 epoch 2 - iter 36/95 - loss 0.48166426 - time (sec): 8.03 - samples/sec: 1721.68 - lr: 0.000029 - momentum: 0.000000
2024-03-26 12:12:50,276 epoch 2 - iter 45/95 - loss 0.45221242 - time (sec): 10.03 - samples/sec: 1682.88 - lr: 0.000028 - momentum: 0.000000
2024-03-26 12:12:51,625 epoch 2 - iter 54/95 - loss 0.44817256 - time (sec): 11.38 - samples/sec: 1727.43 - lr: 0.000028 - momentum: 0.000000
2024-03-26 12:12:53,236 epoch 2 - iter 63/95 - loss 0.43139087 - time (sec): 12.99 - samples/sec: 1742.36 - lr: 0.000028 - momentum: 0.000000
2024-03-26 12:12:55,342 epoch 2 - iter 72/95 - loss 0.42449041 - time (sec): 15.10 - samples/sec: 1736.33 - lr: 0.000028 - momentum: 0.000000
2024-03-26 12:12:57,273 epoch 2 - iter 81/95 - loss 0.43031127 - time (sec): 17.03 - samples/sec: 1738.10 - lr: 0.000027 - momentum: 0.000000
2024-03-26 12:12:59,245 epoch 2 - iter 90/95 - loss 0.41306546 - time (sec): 19.00 - samples/sec: 1740.98 - lr: 0.000027 - momentum: 0.000000
2024-03-26 12:12:59,832 ----------------------------------------------------------------------------------------------------
2024-03-26 12:12:59,832 EPOCH 2 done: loss 0.4122 - lr: 0.000027
2024-03-26 12:13:00,762 DEV : loss 0.3092578947544098 - f1-score (micro avg) 0.8154
2024-03-26 12:13:00,765 saving best model
2024-03-26 12:13:01,193 ----------------------------------------------------------------------------------------------------
2024-03-26 12:13:02,422 epoch 3 - iter 9/95 - loss 0.34113790 - time (sec): 1.23 - samples/sec: 2112.58 - lr: 0.000026 - momentum: 0.000000
2024-03-26 12:13:04,696 epoch 3 - iter 18/95 - loss 0.28031594 - time (sec): 3.50 - samples/sec: 1833.74 - lr: 0.000026 - momentum: 0.000000
2024-03-26 12:13:06,415 epoch 3 - iter 27/95 - loss 0.27279972 - time (sec): 5.22 - samples/sec: 1869.20 - lr: 0.000026 - momentum: 0.000000
2024-03-26 12:13:08,180 epoch 3 - iter 36/95 - loss 0.26278997 - time (sec): 6.98 - samples/sec: 1885.44 - lr: 0.000025 - momentum: 0.000000
2024-03-26 12:13:09,639 epoch 3 - iter 45/95 - loss 0.24443392 - time (sec): 8.44 - samples/sec: 1880.76 - lr: 0.000025 - momentum: 0.000000
2024-03-26 12:13:11,835 epoch 3 - iter 54/95 - loss 0.23529485 - time (sec): 10.64 - samples/sec: 1815.61 - lr: 0.000025 - momentum: 0.000000
2024-03-26 12:13:13,566 epoch 3 - iter 63/95 - loss 0.23725847 - time (sec): 12.37 - samples/sec: 1799.13 - lr: 0.000025 - momentum: 0.000000
2024-03-26 12:13:15,909 epoch 3 - iter 72/95 - loss 0.22499834 - time (sec): 14.71 - samples/sec: 1762.87 - lr: 0.000024 - momentum: 0.000000
2024-03-26 12:13:18,163 epoch 3 - iter 81/95 - loss 0.22402785 - time (sec): 16.97 - samples/sec: 1754.21 - lr: 0.000024 - momentum: 0.000000
2024-03-26 12:13:19,920 epoch 3 - iter 90/95 - loss 0.22009592 - time (sec): 18.73 - samples/sec: 1747.41 - lr: 0.000024 - momentum: 0.000000
2024-03-26 12:13:20,816 ----------------------------------------------------------------------------------------------------
2024-03-26 12:13:20,816 EPOCH 3 done: loss 0.2181 - lr: 0.000024
2024-03-26 12:13:21,744 DEV : loss 0.24916645884513855 - f1-score (micro avg) 0.8601
2024-03-26 12:13:21,745 saving best model
2024-03-26 12:13:22,175 ----------------------------------------------------------------------------------------------------
2024-03-26 12:13:25,101 epoch 4 - iter 9/95 - loss 0.11820412 - time (sec): 2.92 - samples/sec: 1459.63 - lr: 0.000023 - momentum: 0.000000
2024-03-26 12:13:26,164 epoch 4 - iter 18/95 - loss 0.15462492 - time (sec): 3.99 - samples/sec: 1669.39 - lr: 0.000023 - momentum: 0.000000
2024-03-26 12:13:28,776 epoch 4 - iter 27/95 - loss 0.14114747 - time (sec): 6.60 - samples/sec: 1612.13 - lr: 0.000022 - momentum: 0.000000
2024-03-26 12:13:31,431 epoch 4 - iter 36/95 - loss 0.13929534 - time (sec): 9.25 - samples/sec: 1568.22 - lr: 0.000022 - momentum: 0.000000
2024-03-26 12:13:33,158 epoch 4 - iter 45/95 - loss 0.13082601 - time (sec): 10.98 - samples/sec: 1603.96 - lr: 0.000022 - momentum: 0.000000
2024-03-26 12:13:34,890 epoch 4 - iter 54/95 - loss 0.13322136 - time (sec): 12.71 - samples/sec: 1620.46 - lr: 0.000022 - momentum: 0.000000
2024-03-26 12:13:36,852 epoch 4 - iter 63/95 - loss 0.13291566 - time (sec): 14.67 - samples/sec: 1646.11 - lr: 0.000021 - momentum: 0.000000
2024-03-26 12:13:38,612 epoch 4 - iter 72/95 - loss 0.13863198 - time (sec): 16.43 - samples/sec: 1688.91 - lr: 0.000021 - momentum: 0.000000
2024-03-26 12:13:39,651 epoch 4 - iter 81/95 - loss 0.14000391 - time (sec): 17.47 - samples/sec: 1729.15 - lr: 0.000021 - momentum: 0.000000
2024-03-26 12:13:41,104 epoch 4 - iter 90/95 - loss 0.13896442 - time (sec): 18.93 - samples/sec: 1753.54 - lr: 0.000020 - momentum: 0.000000
2024-03-26 12:13:41,661 ----------------------------------------------------------------------------------------------------
2024-03-26 12:13:41,661 EPOCH 4 done: loss 0.1403 - lr: 0.000020
2024-03-26 12:13:42,613 DEV : loss 0.20587997138500214 - f1-score (micro avg) 0.8791
2024-03-26 12:13:42,614 saving best model
2024-03-26 12:13:43,044 ----------------------------------------------------------------------------------------------------
2024-03-26 12:13:44,716 epoch 5 - iter 9/95 - loss 0.12833967 - time (sec): 1.67 - samples/sec: 1960.98 - lr: 0.000020 - momentum: 0.000000
2024-03-26 12:13:46,724 epoch 5 - iter 18/95 - loss 0.10224678 - time (sec): 3.68 - samples/sec: 1935.84 - lr: 0.000019 - momentum: 0.000000
2024-03-26 12:13:48,896 epoch 5 - iter 27/95 - loss 0.08891684 - time (sec): 5.85 - samples/sec: 1809.69 - lr: 0.000019 - momentum: 0.000000
2024-03-26 12:13:50,265 epoch 5 - iter 36/95 - loss 0.10021714 - time (sec): 7.22 - samples/sec: 1862.38 - lr: 0.000019 - momentum: 0.000000
2024-03-26 12:13:52,392 epoch 5 - iter 45/95 - loss 0.09830224 - time (sec): 9.35 - samples/sec: 1823.04 - lr: 0.000019 - momentum: 0.000000
2024-03-26 12:13:53,589 epoch 5 - iter 54/95 - loss 0.09884655 - time (sec): 10.54 - samples/sec: 1857.10 - lr: 0.000018 - momentum: 0.000000
2024-03-26 12:13:55,110 epoch 5 - iter 63/95 - loss 0.10262264 - time (sec): 12.06 - samples/sec: 1868.69 - lr: 0.000018 - momentum: 0.000000
2024-03-26 12:13:57,140 epoch 5 - iter 72/95 - loss 0.10403952 - time (sec): 14.09 - samples/sec: 1832.27 - lr: 0.000018 - momentum: 0.000000
2024-03-26 12:13:58,948 epoch 5 - iter 81/95 - loss 0.10088906 - time (sec): 15.90 - samples/sec: 1821.49 - lr: 0.000017 - momentum: 0.000000
2024-03-26 12:14:01,414 epoch 5 - iter 90/95 - loss 0.10022864 - time (sec): 18.37 - samples/sec: 1789.96 - lr: 0.000017 - momentum: 0.000000
2024-03-26 12:14:02,413 ----------------------------------------------------------------------------------------------------
2024-03-26 12:14:02,413 EPOCH 5 done: loss 0.0980 - lr: 0.000017
2024-03-26 12:14:03,349 DEV : loss 0.2219552993774414 - f1-score (micro avg) 0.8969
2024-03-26 12:14:03,350 saving best model
2024-03-26 12:14:03,771 ----------------------------------------------------------------------------------------------------
2024-03-26 12:14:05,854 epoch 6 - iter 9/95 - loss 0.08154132 - time (sec): 2.08 - samples/sec: 1567.72 - lr: 0.000016 - momentum: 0.000000
2024-03-26 12:14:08,363 epoch 6 - iter 18/95 - loss 0.07889917 - time (sec): 4.59 - samples/sec: 1615.59 - lr: 0.000016 - momentum: 0.000000
2024-03-26 12:14:09,530 epoch 6 - iter 27/95 - loss 0.09804581 - time (sec): 5.76 - samples/sec: 1717.55 - lr: 0.000016 - momentum: 0.000000
2024-03-26 12:14:11,239 epoch 6 - iter 36/95 - loss 0.08941652 - time (sec): 7.47 - samples/sec: 1728.34 - lr: 0.000016 - momentum: 0.000000
2024-03-26 12:14:13,231 epoch 6 - iter 45/95 - loss 0.08535015 - time (sec): 9.46 - samples/sec: 1727.49 - lr: 0.000015 - momentum: 0.000000
2024-03-26 12:14:15,437 epoch 6 - iter 54/95 - loss 0.07909457 - time (sec): 11.66 - samples/sec: 1696.57 - lr: 0.000015 - momentum: 0.000000
2024-03-26 12:14:17,136 epoch 6 - iter 63/95 - loss 0.08119408 - time (sec): 13.36 - samples/sec: 1718.81 - lr: 0.000015 - momentum: 0.000000
2024-03-26 12:14:18,741 epoch 6 - iter 72/95 - loss 0.08171248 - time (sec): 14.97 - samples/sec: 1739.95 - lr: 0.000014 - momentum: 0.000000
2024-03-26 12:14:20,009 epoch 6 - iter 81/95 - loss 0.08051873 - time (sec): 16.24 - samples/sec: 1770.49 - lr: 0.000014 - momentum: 0.000000
2024-03-26 12:14:21,915 epoch 6 - iter 90/95 - loss 0.07683396 - time (sec): 18.14 - samples/sec: 1771.12 - lr: 0.000014 - momentum: 0.000000
2024-03-26 12:14:23,478 ----------------------------------------------------------------------------------------------------
2024-03-26 12:14:23,478 EPOCH 6 done: loss 0.0741 - lr: 0.000014
2024-03-26 12:14:24,413 DEV : loss 0.20766964554786682 - f1-score (micro avg) 0.9088
2024-03-26 12:14:24,414 saving best model
2024-03-26 12:14:24,842 ----------------------------------------------------------------------------------------------------
2024-03-26 12:14:26,546 epoch 7 - iter 9/95 - loss 0.03701075 - time (sec): 1.70 - samples/sec: 1850.51 - lr: 0.000013 - momentum: 0.000000
2024-03-26 12:14:28,062 epoch 7 - iter 18/95 - loss 0.05482186 - time (sec): 3.22 - samples/sec: 1828.40 - lr: 0.000013 - momentum: 0.000000
2024-03-26 12:14:29,376 epoch 7 - iter 27/95 - loss 0.07014500 - time (sec): 4.53 - samples/sec: 1868.91 - lr: 0.000013 - momentum: 0.000000
2024-03-26 12:14:31,662 epoch 7 - iter 36/95 - loss 0.06250571 - time (sec): 6.82 - samples/sec: 1864.31 - lr: 0.000012 - momentum: 0.000000
2024-03-26 12:14:33,631 epoch 7 - iter 45/95 - loss 0.06506855 - time (sec): 8.79 - samples/sec: 1853.20 - lr: 0.000012 - momentum: 0.000000
2024-03-26 12:14:35,345 epoch 7 - iter 54/95 - loss 0.06315221 - time (sec): 10.50 - samples/sec: 1846.73 - lr: 0.000012 - momentum: 0.000000
2024-03-26 12:14:36,942 epoch 7 - iter 63/95 - loss 0.06212348 - time (sec): 12.10 - samples/sec: 1863.11 - lr: 0.000011 - momentum: 0.000000
2024-03-26 12:14:38,488 epoch 7 - iter 72/95 - loss 0.06190864 - time (sec): 13.64 - samples/sec: 1852.74 - lr: 0.000011 - momentum: 0.000000
2024-03-26 12:14:41,298 epoch 7 - iter 81/95 - loss 0.05880913 - time (sec): 16.45 - samples/sec: 1785.58 - lr: 0.000011 - momentum: 0.000000
2024-03-26 12:14:42,960 epoch 7 - iter 90/95 - loss 0.05908614 - time (sec): 18.11 - samples/sec: 1792.78 - lr: 0.000010 - momentum: 0.000000
2024-03-26 12:14:44,132 ----------------------------------------------------------------------------------------------------
2024-03-26 12:14:44,132 EPOCH 7 done: loss 0.0586 - lr: 0.000010
2024-03-26 12:14:45,067 DEV : loss 0.19811469316482544 - f1-score (micro avg) 0.9226
2024-03-26 12:14:45,068 saving best model
2024-03-26 12:14:45,497 ----------------------------------------------------------------------------------------------------
2024-03-26 12:14:47,696 epoch 8 - iter 9/95 - loss 0.06801757 - time (sec): 2.20 - samples/sec: 1538.06 - lr: 0.000010 - momentum: 0.000000
2024-03-26 12:14:49,260 epoch 8 - iter 18/95 - loss 0.05022268 - time (sec): 3.76 - samples/sec: 1622.38 - lr: 0.000010 - momentum: 0.000000
2024-03-26 12:14:51,319 epoch 8 - iter 27/95 - loss 0.04794309 - time (sec): 5.82 - samples/sec: 1685.88 - lr: 0.000009 - momentum: 0.000000
2024-03-26 12:14:53,325 epoch 8 - iter 36/95 - loss 0.04331981 - time (sec): 7.83 - samples/sec: 1720.28 - lr: 0.000009 - momentum: 0.000000
2024-03-26 12:14:54,748 epoch 8 - iter 45/95 - loss 0.04240732 - time (sec): 9.25 - samples/sec: 1779.36 - lr: 0.000009 - momentum: 0.000000
2024-03-26 12:14:56,234 epoch 8 - iter 54/95 - loss 0.04200843 - time (sec): 10.74 - samples/sec: 1851.18 - lr: 0.000008 - momentum: 0.000000
2024-03-26 12:14:57,883 epoch 8 - iter 63/95 - loss 0.04390145 - time (sec): 12.38 - samples/sec: 1836.31 - lr: 0.000008 - momentum: 0.000000
2024-03-26 12:15:00,025 epoch 8 - iter 72/95 - loss 0.04192389 - time (sec): 14.53 - samples/sec: 1802.44 - lr: 0.000008 - momentum: 0.000000
2024-03-26 12:15:01,629 epoch 8 - iter 81/95 - loss 0.04350733 - time (sec): 16.13 - samples/sec: 1825.49 - lr: 0.000007 - momentum: 0.000000
2024-03-26 12:15:03,720 epoch 8 - iter 90/95 - loss 0.04499955 - time (sec): 18.22 - samples/sec: 1804.50 - lr: 0.000007 - momentum: 0.000000
2024-03-26 12:15:04,366 ----------------------------------------------------------------------------------------------------
2024-03-26 12:15:04,366 EPOCH 8 done: loss 0.0462 - lr: 0.000007
2024-03-26 12:15:05,325 DEV : loss 0.20118741691112518 - f1-score (micro avg) 0.9394
2024-03-26 12:15:05,326 saving best model
2024-03-26 12:15:05,774 ----------------------------------------------------------------------------------------------------
2024-03-26 12:15:08,384 epoch 9 - iter 9/95 - loss 0.02615153 - time (sec): 2.61 - samples/sec: 1653.42 - lr: 0.000007 - momentum: 0.000000
2024-03-26 12:15:09,978 epoch 9 - iter 18/95 - loss 0.03326910 - time (sec): 4.20 - samples/sec: 1720.59 - lr: 0.000006 - momentum: 0.000000
2024-03-26 12:15:12,592 epoch 9 - iter 27/95 - loss 0.03556908 - time (sec): 6.82 - samples/sec: 1658.17 - lr: 0.000006 - momentum: 0.000000
2024-03-26 12:15:14,456 epoch 9 - iter 36/95 - loss 0.04028057 - time (sec): 8.68 - samples/sec: 1669.48 - lr: 0.000006 - momentum: 0.000000
2024-03-26 12:15:15,637 epoch 9 - iter 45/95 - loss 0.03852358 - time (sec): 9.86 - samples/sec: 1729.66 - lr: 0.000005 - momentum: 0.000000
2024-03-26 12:15:17,406 epoch 9 - iter 54/95 - loss 0.03538469 - time (sec): 11.63 - samples/sec: 1725.02 - lr: 0.000005 - momentum: 0.000000
2024-03-26 12:15:18,828 epoch 9 - iter 63/95 - loss 0.04012157 - time (sec): 13.05 - samples/sec: 1769.75 - lr: 0.000005 - momentum: 0.000000
2024-03-26 12:15:20,027 epoch 9 - iter 72/95 - loss 0.03841923 - time (sec): 14.25 - samples/sec: 1817.85 - lr: 0.000004 - momentum: 0.000000
2024-03-26 12:15:21,570 epoch 9 - iter 81/95 - loss 0.03652668 - time (sec): 15.80 - samples/sec: 1818.78 - lr: 0.000004 - momentum: 0.000000
2024-03-26 12:15:24,370 epoch 9 - iter 90/95 - loss 0.03907133 - time (sec): 18.60 - samples/sec: 1773.31 - lr: 0.000004 - momentum: 0.000000
2024-03-26 12:15:25,165 ----------------------------------------------------------------------------------------------------
2024-03-26 12:15:25,165 EPOCH 9 done: loss 0.0383 - lr: 0.000004
2024-03-26 12:15:26,112 DEV : loss 0.19695152342319489 - f1-score (micro avg) 0.9206
2024-03-26 12:15:26,114 ----------------------------------------------------------------------------------------------------
2024-03-26 12:15:28,623 epoch 10 - iter 9/95 - loss 0.02975017 - time (sec): 2.51 - samples/sec: 1608.89 - lr: 0.000003 - momentum: 0.000000
2024-03-26 12:15:30,201 epoch 10 - iter 18/95 - loss 0.02892990 - time (sec): 4.09 - samples/sec: 1706.28 - lr: 0.000003 - momentum: 0.000000
2024-03-26 12:15:32,208 epoch 10 - iter 27/95 - loss 0.02863351 - time (sec): 6.09 - samples/sec: 1653.77 - lr: 0.000003 - momentum: 0.000000
2024-03-26 12:15:34,382 epoch 10 - iter 36/95 - loss 0.02798792 - time (sec): 8.27 - samples/sec: 1650.65 - lr: 0.000002 - momentum: 0.000000
2024-03-26 12:15:36,278 epoch 10 - iter 45/95 - loss 0.02736004 - time (sec): 10.16 - samples/sec: 1669.06 - lr: 0.000002 - momentum: 0.000000
2024-03-26 12:15:37,439 epoch 10 - iter 54/95 - loss 0.02848430 - time (sec): 11.32 - samples/sec: 1730.11 - lr: 0.000002 - momentum: 0.000000
2024-03-26 12:15:39,106 epoch 10 - iter 63/95 - loss 0.03460360 - time (sec): 12.99 - samples/sec: 1751.63 - lr: 0.000001 - momentum: 0.000000
2024-03-26 12:15:40,958 epoch 10 - iter 72/95 - loss 0.03291993 - time (sec): 14.84 - samples/sec: 1742.85 - lr: 0.000001 - momentum: 0.000000
2024-03-26 12:15:42,680 epoch 10 - iter 81/95 - loss 0.03440719 - time (sec): 16.57 - samples/sec: 1752.77 - lr: 0.000001 - momentum: 0.000000
2024-03-26 12:15:45,525 epoch 10 - iter 90/95 - loss 0.03165072 - time (sec): 19.41 - samples/sec: 1717.54 - lr: 0.000000 - momentum: 0.000000
2024-03-26 12:15:46,076 ----------------------------------------------------------------------------------------------------
2024-03-26 12:15:46,076 EPOCH 10 done: loss 0.0315 - lr: 0.000000
2024-03-26 12:15:47,013 DEV : loss 0.20343400537967682 - f1-score (micro avg) 0.9299
2024-03-26 12:15:47,277 ----------------------------------------------------------------------------------------------------
2024-03-26 12:15:47,277 Loading model from best epoch ...
2024-03-26 12:15:48,132 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
2024-03-26 12:15:48,895
Results:
- F-score (micro) 0.903
- F-score (macro) 0.6866
- Accuracy 0.8254
By class:
precision recall f1-score support
Unternehmen 0.8893 0.8759 0.8826 266
Auslagerung 0.8726 0.9076 0.8898 249
Ort 0.9635 0.9851 0.9742 134
Software 0.0000 0.0000 0.0000 0
micro avg 0.8955 0.9106 0.9030 649
macro avg 0.6814 0.6922 0.6866 649
weighted avg 0.8982 0.9106 0.9042 649
2024-03-26 12:15:48,895 ----------------------------------------------------------------------------------------------------
|