File size: 26,571 Bytes
f8c18d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
2024-03-26 11:50:32,184 ----------------------------------------------------------------------------------------------------
2024-03-26 11:50:32,184 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(30001, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=17, bias=True)
(loss_function): CrossEntropyLoss()
)"
2024-03-26 11:50:32,185 ----------------------------------------------------------------------------------------------------
2024-03-26 11:50:32,185 Corpus: 758 train + 94 dev + 96 test sentences
2024-03-26 11:50:32,185 ----------------------------------------------------------------------------------------------------
2024-03-26 11:50:32,185 Train: 758 sentences
2024-03-26 11:50:32,185 (train_with_dev=False, train_with_test=False)
2024-03-26 11:50:32,185 ----------------------------------------------------------------------------------------------------
2024-03-26 11:50:32,185 Training Params:
2024-03-26 11:50:32,185 - learning_rate: "5e-05"
2024-03-26 11:50:32,185 - mini_batch_size: "16"
2024-03-26 11:50:32,185 - max_epochs: "10"
2024-03-26 11:50:32,185 - shuffle: "True"
2024-03-26 11:50:32,185 ----------------------------------------------------------------------------------------------------
2024-03-26 11:50:32,185 Plugins:
2024-03-26 11:50:32,185 - TensorboardLogger
2024-03-26 11:50:32,185 - LinearScheduler | warmup_fraction: '0.1'
2024-03-26 11:50:32,185 ----------------------------------------------------------------------------------------------------
2024-03-26 11:50:32,185 Final evaluation on model from best epoch (best-model.pt)
2024-03-26 11:50:32,185 - metric: "('micro avg', 'f1-score')"
2024-03-26 11:50:32,185 ----------------------------------------------------------------------------------------------------
2024-03-26 11:50:32,185 Computation:
2024-03-26 11:50:32,185 - compute on device: cuda:0
2024-03-26 11:50:32,185 - embedding storage: none
2024-03-26 11:50:32,185 ----------------------------------------------------------------------------------------------------
2024-03-26 11:50:32,185 Model training base path: "flair-co-funer-german_bert_base-bs16-e10-lr5e-05-4"
2024-03-26 11:50:32,185 ----------------------------------------------------------------------------------------------------
2024-03-26 11:50:32,185 ----------------------------------------------------------------------------------------------------
2024-03-26 11:50:32,185 Logging anything other than scalars to TensorBoard is currently not supported.
2024-03-26 11:50:33,652 epoch 1 - iter 4/48 - loss 3.09191904 - time (sec): 1.47 - samples/sec: 1778.87 - lr: 0.000003 - momentum: 0.000000
2024-03-26 11:50:35,595 epoch 1 - iter 8/48 - loss 3.02643970 - time (sec): 3.41 - samples/sec: 1502.31 - lr: 0.000007 - momentum: 0.000000
2024-03-26 11:50:36,980 epoch 1 - iter 12/48 - loss 2.89705049 - time (sec): 4.79 - samples/sec: 1522.91 - lr: 0.000011 - momentum: 0.000000
2024-03-26 11:50:39,603 epoch 1 - iter 16/48 - loss 2.67413210 - time (sec): 7.42 - samples/sec: 1442.39 - lr: 0.000016 - momentum: 0.000000
2024-03-26 11:50:41,764 epoch 1 - iter 20/48 - loss 2.51616525 - time (sec): 9.58 - samples/sec: 1430.08 - lr: 0.000020 - momentum: 0.000000
2024-03-26 11:50:44,429 epoch 1 - iter 24/48 - loss 2.37789495 - time (sec): 12.24 - samples/sec: 1382.39 - lr: 0.000024 - momentum: 0.000000
2024-03-26 11:50:47,019 epoch 1 - iter 28/48 - loss 2.24810861 - time (sec): 14.83 - samples/sec: 1367.59 - lr: 0.000028 - momentum: 0.000000
2024-03-26 11:50:48,900 epoch 1 - iter 32/48 - loss 2.14871723 - time (sec): 16.71 - samples/sec: 1368.52 - lr: 0.000032 - momentum: 0.000000
2024-03-26 11:50:49,846 epoch 1 - iter 36/48 - loss 2.07405562 - time (sec): 17.66 - samples/sec: 1414.47 - lr: 0.000036 - momentum: 0.000000
2024-03-26 11:50:51,759 epoch 1 - iter 40/48 - loss 1.96081698 - time (sec): 19.57 - samples/sec: 1422.95 - lr: 0.000041 - momentum: 0.000000
2024-03-26 11:50:53,872 epoch 1 - iter 44/48 - loss 1.83563996 - time (sec): 21.69 - samples/sec: 1440.03 - lr: 0.000045 - momentum: 0.000000
2024-03-26 11:50:55,635 epoch 1 - iter 48/48 - loss 1.74075518 - time (sec): 23.45 - samples/sec: 1470.02 - lr: 0.000049 - momentum: 0.000000
2024-03-26 11:50:55,636 ----------------------------------------------------------------------------------------------------
2024-03-26 11:50:55,636 EPOCH 1 done: loss 1.7408 - lr: 0.000049
2024-03-26 11:50:56,486 DEV : loss 0.5590143203735352 - f1-score (micro avg) 0.6215
2024-03-26 11:50:56,487 saving best model
2024-03-26 11:50:56,761 ----------------------------------------------------------------------------------------------------
2024-03-26 11:50:58,068 epoch 2 - iter 4/48 - loss 0.74927750 - time (sec): 1.31 - samples/sec: 1813.34 - lr: 0.000050 - momentum: 0.000000
2024-03-26 11:51:00,399 epoch 2 - iter 8/48 - loss 0.55633973 - time (sec): 3.64 - samples/sec: 1500.40 - lr: 0.000049 - momentum: 0.000000
2024-03-26 11:51:02,248 epoch 2 - iter 12/48 - loss 0.53592159 - time (sec): 5.49 - samples/sec: 1553.43 - lr: 0.000049 - momentum: 0.000000
2024-03-26 11:51:04,751 epoch 2 - iter 16/48 - loss 0.48174577 - time (sec): 7.99 - samples/sec: 1412.27 - lr: 0.000048 - momentum: 0.000000
2024-03-26 11:51:08,163 epoch 2 - iter 20/48 - loss 0.43660137 - time (sec): 11.40 - samples/sec: 1294.14 - lr: 0.000048 - momentum: 0.000000
2024-03-26 11:51:09,690 epoch 2 - iter 24/48 - loss 0.44556220 - time (sec): 12.93 - samples/sec: 1349.19 - lr: 0.000047 - momentum: 0.000000
2024-03-26 11:51:12,390 epoch 2 - iter 28/48 - loss 0.43334658 - time (sec): 15.63 - samples/sec: 1324.84 - lr: 0.000047 - momentum: 0.000000
2024-03-26 11:51:15,161 epoch 2 - iter 32/48 - loss 0.41770016 - time (sec): 18.40 - samples/sec: 1326.68 - lr: 0.000046 - momentum: 0.000000
2024-03-26 11:51:17,310 epoch 2 - iter 36/48 - loss 0.41558433 - time (sec): 20.55 - samples/sec: 1316.12 - lr: 0.000046 - momentum: 0.000000
2024-03-26 11:51:19,903 epoch 2 - iter 40/48 - loss 0.40243733 - time (sec): 23.14 - samples/sec: 1304.33 - lr: 0.000046 - momentum: 0.000000
2024-03-26 11:51:21,028 epoch 2 - iter 44/48 - loss 0.39684789 - time (sec): 24.27 - samples/sec: 1336.21 - lr: 0.000045 - momentum: 0.000000
2024-03-26 11:51:22,215 epoch 2 - iter 48/48 - loss 0.38872982 - time (sec): 25.45 - samples/sec: 1354.35 - lr: 0.000045 - momentum: 0.000000
2024-03-26 11:51:22,215 ----------------------------------------------------------------------------------------------------
2024-03-26 11:51:22,215 EPOCH 2 done: loss 0.3887 - lr: 0.000045
2024-03-26 11:51:23,158 DEV : loss 0.2667681574821472 - f1-score (micro avg) 0.8317
2024-03-26 11:51:23,159 saving best model
2024-03-26 11:51:23,612 ----------------------------------------------------------------------------------------------------
2024-03-26 11:51:25,734 epoch 3 - iter 4/48 - loss 0.22802041 - time (sec): 2.12 - samples/sec: 1157.60 - lr: 0.000044 - momentum: 0.000000
2024-03-26 11:51:27,299 epoch 3 - iter 8/48 - loss 0.17935289 - time (sec): 3.69 - samples/sec: 1299.68 - lr: 0.000044 - momentum: 0.000000
2024-03-26 11:51:29,925 epoch 3 - iter 12/48 - loss 0.20412596 - time (sec): 6.31 - samples/sec: 1232.54 - lr: 0.000043 - momentum: 0.000000
2024-03-26 11:51:32,088 epoch 3 - iter 16/48 - loss 0.20474341 - time (sec): 8.48 - samples/sec: 1258.27 - lr: 0.000043 - momentum: 0.000000
2024-03-26 11:51:34,119 epoch 3 - iter 20/48 - loss 0.20097314 - time (sec): 10.51 - samples/sec: 1317.88 - lr: 0.000042 - momentum: 0.000000
2024-03-26 11:51:36,366 epoch 3 - iter 24/48 - loss 0.19596982 - time (sec): 12.75 - samples/sec: 1340.53 - lr: 0.000042 - momentum: 0.000000
2024-03-26 11:51:38,961 epoch 3 - iter 28/48 - loss 0.19183246 - time (sec): 15.35 - samples/sec: 1299.58 - lr: 0.000041 - momentum: 0.000000
2024-03-26 11:51:41,654 epoch 3 - iter 32/48 - loss 0.18547973 - time (sec): 18.04 - samples/sec: 1274.49 - lr: 0.000041 - momentum: 0.000000
2024-03-26 11:51:43,846 epoch 3 - iter 36/48 - loss 0.18265888 - time (sec): 20.23 - samples/sec: 1279.47 - lr: 0.000040 - momentum: 0.000000
2024-03-26 11:51:46,235 epoch 3 - iter 40/48 - loss 0.19056221 - time (sec): 22.62 - samples/sec: 1295.44 - lr: 0.000040 - momentum: 0.000000
2024-03-26 11:51:48,874 epoch 3 - iter 44/48 - loss 0.18669032 - time (sec): 25.26 - samples/sec: 1279.02 - lr: 0.000040 - momentum: 0.000000
2024-03-26 11:51:50,421 epoch 3 - iter 48/48 - loss 0.18771402 - time (sec): 26.81 - samples/sec: 1285.87 - lr: 0.000039 - momentum: 0.000000
2024-03-26 11:51:50,422 ----------------------------------------------------------------------------------------------------
2024-03-26 11:51:50,422 EPOCH 3 done: loss 0.1877 - lr: 0.000039
2024-03-26 11:51:51,355 DEV : loss 0.21384288370609283 - f1-score (micro avg) 0.8696
2024-03-26 11:51:51,356 saving best model
2024-03-26 11:51:51,792 ----------------------------------------------------------------------------------------------------
2024-03-26 11:51:54,910 epoch 4 - iter 4/48 - loss 0.08055261 - time (sec): 3.12 - samples/sec: 1169.44 - lr: 0.000039 - momentum: 0.000000
2024-03-26 11:51:56,214 epoch 4 - iter 8/48 - loss 0.09810133 - time (sec): 4.42 - samples/sec: 1330.29 - lr: 0.000038 - momentum: 0.000000
2024-03-26 11:51:58,359 epoch 4 - iter 12/48 - loss 0.11670141 - time (sec): 6.57 - samples/sec: 1404.78 - lr: 0.000038 - momentum: 0.000000
2024-03-26 11:52:01,056 epoch 4 - iter 16/48 - loss 0.11824326 - time (sec): 9.26 - samples/sec: 1315.21 - lr: 0.000037 - momentum: 0.000000
2024-03-26 11:52:02,065 epoch 4 - iter 20/48 - loss 0.11907194 - time (sec): 10.27 - samples/sec: 1398.47 - lr: 0.000037 - momentum: 0.000000
2024-03-26 11:52:03,528 epoch 4 - iter 24/48 - loss 0.11905123 - time (sec): 11.74 - samples/sec: 1440.38 - lr: 0.000036 - momentum: 0.000000
2024-03-26 11:52:06,697 epoch 4 - iter 28/48 - loss 0.11424266 - time (sec): 14.90 - samples/sec: 1354.19 - lr: 0.000036 - momentum: 0.000000
2024-03-26 11:52:09,263 epoch 4 - iter 32/48 - loss 0.12479927 - time (sec): 17.47 - samples/sec: 1346.09 - lr: 0.000035 - momentum: 0.000000
2024-03-26 11:52:10,874 epoch 4 - iter 36/48 - loss 0.12327164 - time (sec): 19.08 - samples/sec: 1377.21 - lr: 0.000035 - momentum: 0.000000
2024-03-26 11:52:12,915 epoch 4 - iter 40/48 - loss 0.12170118 - time (sec): 21.12 - samples/sec: 1391.90 - lr: 0.000034 - momentum: 0.000000
2024-03-26 11:52:14,876 epoch 4 - iter 44/48 - loss 0.12158731 - time (sec): 23.08 - samples/sec: 1405.09 - lr: 0.000034 - momentum: 0.000000
2024-03-26 11:52:15,962 epoch 4 - iter 48/48 - loss 0.12234921 - time (sec): 24.17 - samples/sec: 1426.28 - lr: 0.000034 - momentum: 0.000000
2024-03-26 11:52:15,962 ----------------------------------------------------------------------------------------------------
2024-03-26 11:52:15,962 EPOCH 4 done: loss 0.1223 - lr: 0.000034
2024-03-26 11:52:16,902 DEV : loss 0.2320009469985962 - f1-score (micro avg) 0.8838
2024-03-26 11:52:16,903 saving best model
2024-03-26 11:52:17,342 ----------------------------------------------------------------------------------------------------
2024-03-26 11:52:18,454 epoch 5 - iter 4/48 - loss 0.14241480 - time (sec): 1.11 - samples/sec: 2291.05 - lr: 0.000033 - momentum: 0.000000
2024-03-26 11:52:20,452 epoch 5 - iter 8/48 - loss 0.12170118 - time (sec): 3.11 - samples/sec: 1666.99 - lr: 0.000033 - momentum: 0.000000
2024-03-26 11:52:22,622 epoch 5 - iter 12/48 - loss 0.10872669 - time (sec): 5.28 - samples/sec: 1516.14 - lr: 0.000032 - momentum: 0.000000
2024-03-26 11:52:25,017 epoch 5 - iter 16/48 - loss 0.10192099 - time (sec): 7.67 - samples/sec: 1445.48 - lr: 0.000032 - momentum: 0.000000
2024-03-26 11:52:27,291 epoch 5 - iter 20/48 - loss 0.10039604 - time (sec): 9.95 - samples/sec: 1375.72 - lr: 0.000031 - momentum: 0.000000
2024-03-26 11:52:29,517 epoch 5 - iter 24/48 - loss 0.09677573 - time (sec): 12.17 - samples/sec: 1395.72 - lr: 0.000031 - momentum: 0.000000
2024-03-26 11:52:31,245 epoch 5 - iter 28/48 - loss 0.09570667 - time (sec): 13.90 - samples/sec: 1415.80 - lr: 0.000030 - momentum: 0.000000
2024-03-26 11:52:33,409 epoch 5 - iter 32/48 - loss 0.08837081 - time (sec): 16.06 - samples/sec: 1438.06 - lr: 0.000030 - momentum: 0.000000
2024-03-26 11:52:34,876 epoch 5 - iter 36/48 - loss 0.08830167 - time (sec): 17.53 - samples/sec: 1460.14 - lr: 0.000029 - momentum: 0.000000
2024-03-26 11:52:37,584 epoch 5 - iter 40/48 - loss 0.08443272 - time (sec): 20.24 - samples/sec: 1424.26 - lr: 0.000029 - momentum: 0.000000
2024-03-26 11:52:40,594 epoch 5 - iter 44/48 - loss 0.08378061 - time (sec): 23.25 - samples/sec: 1377.49 - lr: 0.000029 - momentum: 0.000000
2024-03-26 11:52:42,160 epoch 5 - iter 48/48 - loss 0.08478604 - time (sec): 24.82 - samples/sec: 1389.10 - lr: 0.000028 - momentum: 0.000000
2024-03-26 11:52:42,160 ----------------------------------------------------------------------------------------------------
2024-03-26 11:52:42,160 EPOCH 5 done: loss 0.0848 - lr: 0.000028
2024-03-26 11:52:43,122 DEV : loss 0.17314665019512177 - f1-score (micro avg) 0.9055
2024-03-26 11:52:43,124 saving best model
2024-03-26 11:52:43,574 ----------------------------------------------------------------------------------------------------
2024-03-26 11:52:45,519 epoch 6 - iter 4/48 - loss 0.09272200 - time (sec): 1.94 - samples/sec: 1511.87 - lr: 0.000028 - momentum: 0.000000
2024-03-26 11:52:47,296 epoch 6 - iter 8/48 - loss 0.07485378 - time (sec): 3.72 - samples/sec: 1557.93 - lr: 0.000027 - momentum: 0.000000
2024-03-26 11:52:49,682 epoch 6 - iter 12/48 - loss 0.07041558 - time (sec): 6.11 - samples/sec: 1443.76 - lr: 0.000027 - momentum: 0.000000
2024-03-26 11:52:51,317 epoch 6 - iter 16/48 - loss 0.06510204 - time (sec): 7.74 - samples/sec: 1463.60 - lr: 0.000026 - momentum: 0.000000
2024-03-26 11:52:54,012 epoch 6 - iter 20/48 - loss 0.05955492 - time (sec): 10.44 - samples/sec: 1376.47 - lr: 0.000026 - momentum: 0.000000
2024-03-26 11:52:56,075 epoch 6 - iter 24/48 - loss 0.06109297 - time (sec): 12.50 - samples/sec: 1399.15 - lr: 0.000025 - momentum: 0.000000
2024-03-26 11:52:58,815 epoch 6 - iter 28/48 - loss 0.06141292 - time (sec): 15.24 - samples/sec: 1373.57 - lr: 0.000025 - momentum: 0.000000
2024-03-26 11:53:00,923 epoch 6 - iter 32/48 - loss 0.06055801 - time (sec): 17.35 - samples/sec: 1354.68 - lr: 0.000024 - momentum: 0.000000
2024-03-26 11:53:02,092 epoch 6 - iter 36/48 - loss 0.06095859 - time (sec): 18.52 - samples/sec: 1400.89 - lr: 0.000024 - momentum: 0.000000
2024-03-26 11:53:04,358 epoch 6 - iter 40/48 - loss 0.06004242 - time (sec): 20.78 - samples/sec: 1391.32 - lr: 0.000023 - momentum: 0.000000
2024-03-26 11:53:06,050 epoch 6 - iter 44/48 - loss 0.06403233 - time (sec): 22.48 - samples/sec: 1412.70 - lr: 0.000023 - momentum: 0.000000
2024-03-26 11:53:07,960 epoch 6 - iter 48/48 - loss 0.06292329 - time (sec): 24.39 - samples/sec: 1413.64 - lr: 0.000023 - momentum: 0.000000
2024-03-26 11:53:07,960 ----------------------------------------------------------------------------------------------------
2024-03-26 11:53:07,960 EPOCH 6 done: loss 0.0629 - lr: 0.000023
2024-03-26 11:53:08,931 DEV : loss 0.189381942152977 - f1-score (micro avg) 0.8991
2024-03-26 11:53:08,932 ----------------------------------------------------------------------------------------------------
2024-03-26 11:53:10,489 epoch 7 - iter 4/48 - loss 0.04704627 - time (sec): 1.56 - samples/sec: 1797.92 - lr: 0.000022 - momentum: 0.000000
2024-03-26 11:53:12,647 epoch 7 - iter 8/48 - loss 0.04048940 - time (sec): 3.71 - samples/sec: 1647.48 - lr: 0.000022 - momentum: 0.000000
2024-03-26 11:53:15,007 epoch 7 - iter 12/48 - loss 0.03980474 - time (sec): 6.07 - samples/sec: 1450.14 - lr: 0.000021 - momentum: 0.000000
2024-03-26 11:53:16,272 epoch 7 - iter 16/48 - loss 0.04476687 - time (sec): 7.34 - samples/sec: 1533.43 - lr: 0.000021 - momentum: 0.000000
2024-03-26 11:53:18,458 epoch 7 - iter 20/48 - loss 0.04349881 - time (sec): 9.52 - samples/sec: 1506.04 - lr: 0.000020 - momentum: 0.000000
2024-03-26 11:53:20,044 epoch 7 - iter 24/48 - loss 0.04224759 - time (sec): 11.11 - samples/sec: 1549.09 - lr: 0.000020 - momentum: 0.000000
2024-03-26 11:53:22,279 epoch 7 - iter 28/48 - loss 0.04243268 - time (sec): 13.35 - samples/sec: 1504.12 - lr: 0.000019 - momentum: 0.000000
2024-03-26 11:53:25,084 epoch 7 - iter 32/48 - loss 0.04481656 - time (sec): 16.15 - samples/sec: 1441.94 - lr: 0.000019 - momentum: 0.000000
2024-03-26 11:53:27,217 epoch 7 - iter 36/48 - loss 0.04402562 - time (sec): 18.28 - samples/sec: 1435.12 - lr: 0.000018 - momentum: 0.000000
2024-03-26 11:53:28,363 epoch 7 - iter 40/48 - loss 0.04695744 - time (sec): 19.43 - samples/sec: 1466.74 - lr: 0.000018 - momentum: 0.000000
2024-03-26 11:53:31,040 epoch 7 - iter 44/48 - loss 0.04939896 - time (sec): 22.11 - samples/sec: 1450.26 - lr: 0.000017 - momentum: 0.000000
2024-03-26 11:53:32,211 epoch 7 - iter 48/48 - loss 0.04967125 - time (sec): 23.28 - samples/sec: 1480.83 - lr: 0.000017 - momentum: 0.000000
2024-03-26 11:53:32,212 ----------------------------------------------------------------------------------------------------
2024-03-26 11:53:32,212 EPOCH 7 done: loss 0.0497 - lr: 0.000017
2024-03-26 11:53:33,165 DEV : loss 0.1776585429906845 - f1-score (micro avg) 0.918
2024-03-26 11:53:33,166 saving best model
2024-03-26 11:53:33,650 ----------------------------------------------------------------------------------------------------
2024-03-26 11:53:35,899 epoch 8 - iter 4/48 - loss 0.01606641 - time (sec): 2.25 - samples/sec: 1232.77 - lr: 0.000017 - momentum: 0.000000
2024-03-26 11:53:38,601 epoch 8 - iter 8/48 - loss 0.02001419 - time (sec): 4.95 - samples/sec: 1219.97 - lr: 0.000016 - momentum: 0.000000
2024-03-26 11:53:40,284 epoch 8 - iter 12/48 - loss 0.01944511 - time (sec): 6.63 - samples/sec: 1278.40 - lr: 0.000016 - momentum: 0.000000
2024-03-26 11:53:42,946 epoch 8 - iter 16/48 - loss 0.02496767 - time (sec): 9.30 - samples/sec: 1238.39 - lr: 0.000015 - momentum: 0.000000
2024-03-26 11:53:44,682 epoch 8 - iter 20/48 - loss 0.03010170 - time (sec): 11.03 - samples/sec: 1287.97 - lr: 0.000015 - momentum: 0.000000
2024-03-26 11:53:46,227 epoch 8 - iter 24/48 - loss 0.03609072 - time (sec): 12.58 - samples/sec: 1351.61 - lr: 0.000014 - momentum: 0.000000
2024-03-26 11:53:48,151 epoch 8 - iter 28/48 - loss 0.03779326 - time (sec): 14.50 - samples/sec: 1375.28 - lr: 0.000014 - momentum: 0.000000
2024-03-26 11:53:50,870 epoch 8 - iter 32/48 - loss 0.03941547 - time (sec): 17.22 - samples/sec: 1364.27 - lr: 0.000013 - momentum: 0.000000
2024-03-26 11:53:53,365 epoch 8 - iter 36/48 - loss 0.03979896 - time (sec): 19.71 - samples/sec: 1355.95 - lr: 0.000013 - momentum: 0.000000
2024-03-26 11:53:55,625 epoch 8 - iter 40/48 - loss 0.03932473 - time (sec): 21.97 - samples/sec: 1338.97 - lr: 0.000012 - momentum: 0.000000
2024-03-26 11:53:58,043 epoch 8 - iter 44/48 - loss 0.03756691 - time (sec): 24.39 - samples/sec: 1324.33 - lr: 0.000012 - momentum: 0.000000
2024-03-26 11:53:59,648 epoch 8 - iter 48/48 - loss 0.03706335 - time (sec): 26.00 - samples/sec: 1325.99 - lr: 0.000011 - momentum: 0.000000
2024-03-26 11:53:59,648 ----------------------------------------------------------------------------------------------------
2024-03-26 11:53:59,648 EPOCH 8 done: loss 0.0371 - lr: 0.000011
2024-03-26 11:54:00,585 DEV : loss 0.17568133771419525 - f1-score (micro avg) 0.9315
2024-03-26 11:54:00,586 saving best model
2024-03-26 11:54:01,026 ----------------------------------------------------------------------------------------------------
2024-03-26 11:54:02,945 epoch 9 - iter 4/48 - loss 0.03057517 - time (sec): 1.92 - samples/sec: 1504.93 - lr: 0.000011 - momentum: 0.000000
2024-03-26 11:54:06,225 epoch 9 - iter 8/48 - loss 0.02777670 - time (sec): 5.20 - samples/sec: 1210.84 - lr: 0.000011 - momentum: 0.000000
2024-03-26 11:54:07,959 epoch 9 - iter 12/48 - loss 0.02319110 - time (sec): 6.93 - samples/sec: 1247.46 - lr: 0.000010 - momentum: 0.000000
2024-03-26 11:54:09,943 epoch 9 - iter 16/48 - loss 0.02857044 - time (sec): 8.92 - samples/sec: 1282.11 - lr: 0.000010 - momentum: 0.000000
2024-03-26 11:54:12,838 epoch 9 - iter 20/48 - loss 0.02512622 - time (sec): 11.81 - samples/sec: 1257.43 - lr: 0.000009 - momentum: 0.000000
2024-03-26 11:54:14,417 epoch 9 - iter 24/48 - loss 0.02482773 - time (sec): 13.39 - samples/sec: 1303.02 - lr: 0.000009 - momentum: 0.000000
2024-03-26 11:54:16,447 epoch 9 - iter 28/48 - loss 0.02786716 - time (sec): 15.42 - samples/sec: 1324.71 - lr: 0.000008 - momentum: 0.000000
2024-03-26 11:54:18,876 epoch 9 - iter 32/48 - loss 0.02711697 - time (sec): 17.85 - samples/sec: 1301.45 - lr: 0.000008 - momentum: 0.000000
2024-03-26 11:54:20,202 epoch 9 - iter 36/48 - loss 0.03102021 - time (sec): 19.18 - samples/sec: 1333.10 - lr: 0.000007 - momentum: 0.000000
2024-03-26 11:54:23,481 epoch 9 - iter 40/48 - loss 0.03040776 - time (sec): 22.46 - samples/sec: 1288.71 - lr: 0.000007 - momentum: 0.000000
2024-03-26 11:54:25,619 epoch 9 - iter 44/48 - loss 0.02844050 - time (sec): 24.59 - samples/sec: 1313.34 - lr: 0.000006 - momentum: 0.000000
2024-03-26 11:54:26,608 epoch 9 - iter 48/48 - loss 0.02882616 - time (sec): 25.58 - samples/sec: 1347.54 - lr: 0.000006 - momentum: 0.000000
2024-03-26 11:54:26,608 ----------------------------------------------------------------------------------------------------
2024-03-26 11:54:26,608 EPOCH 9 done: loss 0.0288 - lr: 0.000006
2024-03-26 11:54:27,540 DEV : loss 0.1826149970293045 - f1-score (micro avg) 0.9308
2024-03-26 11:54:27,541 ----------------------------------------------------------------------------------------------------
2024-03-26 11:54:29,493 epoch 10 - iter 4/48 - loss 0.02449608 - time (sec): 1.95 - samples/sec: 1324.59 - lr: 0.000006 - momentum: 0.000000
2024-03-26 11:54:32,350 epoch 10 - iter 8/48 - loss 0.01705663 - time (sec): 4.81 - samples/sec: 1203.11 - lr: 0.000005 - momentum: 0.000000
2024-03-26 11:54:34,380 epoch 10 - iter 12/48 - loss 0.02218434 - time (sec): 6.84 - samples/sec: 1274.17 - lr: 0.000005 - momentum: 0.000000
2024-03-26 11:54:36,467 epoch 10 - iter 16/48 - loss 0.02207035 - time (sec): 8.93 - samples/sec: 1362.88 - lr: 0.000004 - momentum: 0.000000
2024-03-26 11:54:37,324 epoch 10 - iter 20/48 - loss 0.02077247 - time (sec): 9.78 - samples/sec: 1443.11 - lr: 0.000004 - momentum: 0.000000
2024-03-26 11:54:39,048 epoch 10 - iter 24/48 - loss 0.02024295 - time (sec): 11.51 - samples/sec: 1469.98 - lr: 0.000003 - momentum: 0.000000
2024-03-26 11:54:39,981 epoch 10 - iter 28/48 - loss 0.01939105 - time (sec): 12.44 - samples/sec: 1536.11 - lr: 0.000003 - momentum: 0.000000
2024-03-26 11:54:42,327 epoch 10 - iter 32/48 - loss 0.01801898 - time (sec): 14.79 - samples/sec: 1504.67 - lr: 0.000002 - momentum: 0.000000
2024-03-26 11:54:44,924 epoch 10 - iter 36/48 - loss 0.02222425 - time (sec): 17.38 - samples/sec: 1466.68 - lr: 0.000002 - momentum: 0.000000
2024-03-26 11:54:46,906 epoch 10 - iter 40/48 - loss 0.02282312 - time (sec): 19.36 - samples/sec: 1457.07 - lr: 0.000001 - momentum: 0.000000
2024-03-26 11:54:49,574 epoch 10 - iter 44/48 - loss 0.02314136 - time (sec): 22.03 - samples/sec: 1443.26 - lr: 0.000001 - momentum: 0.000000
2024-03-26 11:54:51,197 epoch 10 - iter 48/48 - loss 0.02323381 - time (sec): 23.66 - samples/sec: 1457.27 - lr: 0.000000 - momentum: 0.000000
2024-03-26 11:54:51,197 ----------------------------------------------------------------------------------------------------
2024-03-26 11:54:51,197 EPOCH 10 done: loss 0.0232 - lr: 0.000000
2024-03-26 11:54:52,159 DEV : loss 0.1922144740819931 - f1-score (micro avg) 0.9281
2024-03-26 11:54:52,449 ----------------------------------------------------------------------------------------------------
2024-03-26 11:54:52,450 Loading model from best epoch ...
2024-03-26 11:54:53,340 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
2024-03-26 11:54:54,197
Results:
- F-score (micro) 0.9009
- F-score (macro) 0.6853
- Accuracy 0.822
By class:
precision recall f1-score support
Unternehmen 0.9000 0.8797 0.8897 266
Auslagerung 0.8523 0.9036 0.8772 249
Ort 0.9635 0.9851 0.9742 134
Software 0.0000 0.0000 0.0000 0
micro avg 0.8914 0.9106 0.9009 649
macro avg 0.6789 0.6921 0.6853 649
weighted avg 0.8948 0.9106 0.9024 649
2024-03-26 11:54:54,197 ----------------------------------------------------------------------------------------------------
|