File size: 26,708 Bytes
4ce6349 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
2024-03-26 10:55:09,597 ----------------------------------------------------------------------------------------------------
2024-03-26 10:55:09,597 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(30001, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=17, bias=True)
(loss_function): CrossEntropyLoss()
)"
2024-03-26 10:55:09,597 ----------------------------------------------------------------------------------------------------
2024-03-26 10:55:09,597 Corpus: 758 train + 94 dev + 96 test sentences
2024-03-26 10:55:09,597 ----------------------------------------------------------------------------------------------------
2024-03-26 10:55:09,597 Train: 758 sentences
2024-03-26 10:55:09,597 (train_with_dev=False, train_with_test=False)
2024-03-26 10:55:09,597 ----------------------------------------------------------------------------------------------------
2024-03-26 10:55:09,598 Training Params:
2024-03-26 10:55:09,598 - learning_rate: "3e-05"
2024-03-26 10:55:09,598 - mini_batch_size: "16"
2024-03-26 10:55:09,598 - max_epochs: "10"
2024-03-26 10:55:09,598 - shuffle: "True"
2024-03-26 10:55:09,598 ----------------------------------------------------------------------------------------------------
2024-03-26 10:55:09,598 Plugins:
2024-03-26 10:55:09,598 - TensorboardLogger
2024-03-26 10:55:09,598 - LinearScheduler | warmup_fraction: '0.1'
2024-03-26 10:55:09,598 ----------------------------------------------------------------------------------------------------
2024-03-26 10:55:09,598 Final evaluation on model from best epoch (best-model.pt)
2024-03-26 10:55:09,598 - metric: "('micro avg', 'f1-score')"
2024-03-26 10:55:09,598 ----------------------------------------------------------------------------------------------------
2024-03-26 10:55:09,598 Computation:
2024-03-26 10:55:09,598 - compute on device: cuda:0
2024-03-26 10:55:09,598 - embedding storage: none
2024-03-26 10:55:09,598 ----------------------------------------------------------------------------------------------------
2024-03-26 10:55:09,598 Model training base path: "flair-co-funer-german_bert_base-bs16-e10-lr3e-05-1"
2024-03-26 10:55:09,598 ----------------------------------------------------------------------------------------------------
2024-03-26 10:55:09,598 ----------------------------------------------------------------------------------------------------
2024-03-26 10:55:09,598 Logging anything other than scalars to TensorBoard is currently not supported.
2024-03-26 10:55:11,752 epoch 1 - iter 4/48 - loss 3.18136204 - time (sec): 2.15 - samples/sec: 1260.53 - lr: 0.000002 - momentum: 0.000000
2024-03-26 10:55:13,064 epoch 1 - iter 8/48 - loss 3.26104187 - time (sec): 3.47 - samples/sec: 1555.09 - lr: 0.000004 - momentum: 0.000000
2024-03-26 10:55:16,152 epoch 1 - iter 12/48 - loss 3.20211529 - time (sec): 6.55 - samples/sec: 1327.87 - lr: 0.000007 - momentum: 0.000000
2024-03-26 10:55:19,396 epoch 1 - iter 16/48 - loss 3.11692024 - time (sec): 9.80 - samples/sec: 1244.50 - lr: 0.000009 - momentum: 0.000000
2024-03-26 10:55:21,894 epoch 1 - iter 20/48 - loss 2.98646881 - time (sec): 12.30 - samples/sec: 1251.03 - lr: 0.000012 - momentum: 0.000000
2024-03-26 10:55:23,619 epoch 1 - iter 24/48 - loss 2.85768210 - time (sec): 14.02 - samples/sec: 1300.72 - lr: 0.000014 - momentum: 0.000000
2024-03-26 10:55:25,219 epoch 1 - iter 28/48 - loss 2.74291622 - time (sec): 15.62 - samples/sec: 1325.19 - lr: 0.000017 - momentum: 0.000000
2024-03-26 10:55:27,326 epoch 1 - iter 32/48 - loss 2.63361563 - time (sec): 17.73 - samples/sec: 1333.24 - lr: 0.000019 - momentum: 0.000000
2024-03-26 10:55:28,289 epoch 1 - iter 36/48 - loss 2.55063314 - time (sec): 18.69 - samples/sec: 1393.65 - lr: 0.000022 - momentum: 0.000000
2024-03-26 10:55:30,274 epoch 1 - iter 40/48 - loss 2.46376363 - time (sec): 20.68 - samples/sec: 1408.22 - lr: 0.000024 - momentum: 0.000000
2024-03-26 10:55:32,292 epoch 1 - iter 44/48 - loss 2.37711797 - time (sec): 22.69 - samples/sec: 1396.02 - lr: 0.000027 - momentum: 0.000000
2024-03-26 10:55:33,804 epoch 1 - iter 48/48 - loss 2.27943829 - time (sec): 24.21 - samples/sec: 1424.14 - lr: 0.000029 - momentum: 0.000000
2024-03-26 10:55:33,804 ----------------------------------------------------------------------------------------------------
2024-03-26 10:55:33,804 EPOCH 1 done: loss 2.2794 - lr: 0.000029
2024-03-26 10:55:34,638 DEV : loss 0.8841983079910278 - f1-score (micro avg) 0.3292
2024-03-26 10:55:34,639 saving best model
2024-03-26 10:55:34,944 ----------------------------------------------------------------------------------------------------
2024-03-26 10:55:37,559 epoch 2 - iter 4/48 - loss 1.06963551 - time (sec): 2.61 - samples/sec: 1186.48 - lr: 0.000030 - momentum: 0.000000
2024-03-26 10:55:39,674 epoch 2 - iter 8/48 - loss 1.02472331 - time (sec): 4.73 - samples/sec: 1397.79 - lr: 0.000030 - momentum: 0.000000
2024-03-26 10:55:41,963 epoch 2 - iter 12/48 - loss 0.95761277 - time (sec): 7.02 - samples/sec: 1319.21 - lr: 0.000029 - momentum: 0.000000
2024-03-26 10:55:44,022 epoch 2 - iter 16/48 - loss 0.90790118 - time (sec): 9.08 - samples/sec: 1312.57 - lr: 0.000029 - momentum: 0.000000
2024-03-26 10:55:46,126 epoch 2 - iter 20/48 - loss 0.85036938 - time (sec): 11.18 - samples/sec: 1341.05 - lr: 0.000029 - momentum: 0.000000
2024-03-26 10:55:49,236 epoch 2 - iter 24/48 - loss 0.77726093 - time (sec): 14.29 - samples/sec: 1294.67 - lr: 0.000028 - momentum: 0.000000
2024-03-26 10:55:51,622 epoch 2 - iter 28/48 - loss 0.75313006 - time (sec): 16.68 - samples/sec: 1291.59 - lr: 0.000028 - momentum: 0.000000
2024-03-26 10:55:53,372 epoch 2 - iter 32/48 - loss 0.72383530 - time (sec): 18.43 - samples/sec: 1309.23 - lr: 0.000028 - momentum: 0.000000
2024-03-26 10:55:54,428 epoch 2 - iter 36/48 - loss 0.70149258 - time (sec): 19.48 - samples/sec: 1357.69 - lr: 0.000028 - momentum: 0.000000
2024-03-26 10:55:56,284 epoch 2 - iter 40/48 - loss 0.67432397 - time (sec): 21.34 - samples/sec: 1377.62 - lr: 0.000027 - momentum: 0.000000
2024-03-26 10:55:58,311 epoch 2 - iter 44/48 - loss 0.65523371 - time (sec): 23.37 - samples/sec: 1374.06 - lr: 0.000027 - momentum: 0.000000
2024-03-26 10:55:59,735 epoch 2 - iter 48/48 - loss 0.63761461 - time (sec): 24.79 - samples/sec: 1390.52 - lr: 0.000027 - momentum: 0.000000
2024-03-26 10:55:59,735 ----------------------------------------------------------------------------------------------------
2024-03-26 10:55:59,735 EPOCH 2 done: loss 0.6376 - lr: 0.000027
2024-03-26 10:56:00,749 DEV : loss 0.3372988700866699 - f1-score (micro avg) 0.7573
2024-03-26 10:56:00,750 saving best model
2024-03-26 10:56:01,223 ----------------------------------------------------------------------------------------------------
2024-03-26 10:56:03,751 epoch 3 - iter 4/48 - loss 0.38597010 - time (sec): 2.53 - samples/sec: 1208.26 - lr: 0.000026 - momentum: 0.000000
2024-03-26 10:56:05,605 epoch 3 - iter 8/48 - loss 0.34811982 - time (sec): 4.38 - samples/sec: 1339.46 - lr: 0.000026 - momentum: 0.000000
2024-03-26 10:56:07,422 epoch 3 - iter 12/48 - loss 0.35445530 - time (sec): 6.20 - samples/sec: 1417.83 - lr: 0.000026 - momentum: 0.000000
2024-03-26 10:56:09,791 epoch 3 - iter 16/48 - loss 0.33399667 - time (sec): 8.57 - samples/sec: 1425.65 - lr: 0.000026 - momentum: 0.000000
2024-03-26 10:56:11,255 epoch 3 - iter 20/48 - loss 0.34563570 - time (sec): 10.03 - samples/sec: 1475.18 - lr: 0.000025 - momentum: 0.000000
2024-03-26 10:56:14,190 epoch 3 - iter 24/48 - loss 0.32843371 - time (sec): 12.96 - samples/sec: 1458.63 - lr: 0.000025 - momentum: 0.000000
2024-03-26 10:56:14,942 epoch 3 - iter 28/48 - loss 0.31446138 - time (sec): 13.72 - samples/sec: 1533.97 - lr: 0.000025 - momentum: 0.000000
2024-03-26 10:56:17,608 epoch 3 - iter 32/48 - loss 0.29864600 - time (sec): 16.38 - samples/sec: 1466.40 - lr: 0.000025 - momentum: 0.000000
2024-03-26 10:56:19,631 epoch 3 - iter 36/48 - loss 0.28700422 - time (sec): 18.41 - samples/sec: 1459.20 - lr: 0.000024 - momentum: 0.000000
2024-03-26 10:56:21,564 epoch 3 - iter 40/48 - loss 0.28584502 - time (sec): 20.34 - samples/sec: 1446.69 - lr: 0.000024 - momentum: 0.000000
2024-03-26 10:56:23,776 epoch 3 - iter 44/48 - loss 0.27720640 - time (sec): 22.55 - samples/sec: 1446.34 - lr: 0.000024 - momentum: 0.000000
2024-03-26 10:56:25,049 epoch 3 - iter 48/48 - loss 0.27449823 - time (sec): 23.82 - samples/sec: 1446.95 - lr: 0.000023 - momentum: 0.000000
2024-03-26 10:56:25,049 ----------------------------------------------------------------------------------------------------
2024-03-26 10:56:25,049 EPOCH 3 done: loss 0.2745 - lr: 0.000023
2024-03-26 10:56:25,977 DEV : loss 0.26073935627937317 - f1-score (micro avg) 0.8484
2024-03-26 10:56:25,979 saving best model
2024-03-26 10:56:26,464 ----------------------------------------------------------------------------------------------------
2024-03-26 10:56:27,937 epoch 4 - iter 4/48 - loss 0.19093305 - time (sec): 1.47 - samples/sec: 1852.02 - lr: 0.000023 - momentum: 0.000000
2024-03-26 10:56:30,418 epoch 4 - iter 8/48 - loss 0.18898170 - time (sec): 3.95 - samples/sec: 1451.37 - lr: 0.000023 - momentum: 0.000000
2024-03-26 10:56:32,511 epoch 4 - iter 12/48 - loss 0.20110181 - time (sec): 6.05 - samples/sec: 1445.00 - lr: 0.000023 - momentum: 0.000000
2024-03-26 10:56:34,730 epoch 4 - iter 16/48 - loss 0.18320119 - time (sec): 8.27 - samples/sec: 1448.64 - lr: 0.000022 - momentum: 0.000000
2024-03-26 10:56:37,704 epoch 4 - iter 20/48 - loss 0.17234055 - time (sec): 11.24 - samples/sec: 1378.13 - lr: 0.000022 - momentum: 0.000000
2024-03-26 10:56:39,167 epoch 4 - iter 24/48 - loss 0.17634685 - time (sec): 12.70 - samples/sec: 1418.82 - lr: 0.000022 - momentum: 0.000000
2024-03-26 10:56:40,684 epoch 4 - iter 28/48 - loss 0.17459195 - time (sec): 14.22 - samples/sec: 1458.49 - lr: 0.000022 - momentum: 0.000000
2024-03-26 10:56:43,284 epoch 4 - iter 32/48 - loss 0.17854116 - time (sec): 16.82 - samples/sec: 1441.08 - lr: 0.000021 - momentum: 0.000000
2024-03-26 10:56:44,303 epoch 4 - iter 36/48 - loss 0.18073101 - time (sec): 17.84 - samples/sec: 1489.43 - lr: 0.000021 - momentum: 0.000000
2024-03-26 10:56:46,702 epoch 4 - iter 40/48 - loss 0.17591819 - time (sec): 20.24 - samples/sec: 1443.13 - lr: 0.000021 - momentum: 0.000000
2024-03-26 10:56:48,542 epoch 4 - iter 44/48 - loss 0.17572825 - time (sec): 22.08 - samples/sec: 1461.47 - lr: 0.000020 - momentum: 0.000000
2024-03-26 10:56:49,925 epoch 4 - iter 48/48 - loss 0.17431063 - time (sec): 23.46 - samples/sec: 1469.37 - lr: 0.000020 - momentum: 0.000000
2024-03-26 10:56:49,925 ----------------------------------------------------------------------------------------------------
2024-03-26 10:56:49,925 EPOCH 4 done: loss 0.1743 - lr: 0.000020
2024-03-26 10:56:50,845 DEV : loss 0.22804546356201172 - f1-score (micro avg) 0.8739
2024-03-26 10:56:50,846 saving best model
2024-03-26 10:56:51,332 ----------------------------------------------------------------------------------------------------
2024-03-26 10:56:53,239 epoch 5 - iter 4/48 - loss 0.14175185 - time (sec): 1.91 - samples/sec: 1463.66 - lr: 0.000020 - momentum: 0.000000
2024-03-26 10:56:55,735 epoch 5 - iter 8/48 - loss 0.13481281 - time (sec): 4.40 - samples/sec: 1348.74 - lr: 0.000020 - momentum: 0.000000
2024-03-26 10:56:57,772 epoch 5 - iter 12/48 - loss 0.13837671 - time (sec): 6.44 - samples/sec: 1330.44 - lr: 0.000019 - momentum: 0.000000
2024-03-26 10:56:59,801 epoch 5 - iter 16/48 - loss 0.13341679 - time (sec): 8.47 - samples/sec: 1364.24 - lr: 0.000019 - momentum: 0.000000
2024-03-26 10:57:01,739 epoch 5 - iter 20/48 - loss 0.13770967 - time (sec): 10.41 - samples/sec: 1375.23 - lr: 0.000019 - momentum: 0.000000
2024-03-26 10:57:03,284 epoch 5 - iter 24/48 - loss 0.14293971 - time (sec): 11.95 - samples/sec: 1423.20 - lr: 0.000018 - momentum: 0.000000
2024-03-26 10:57:05,585 epoch 5 - iter 28/48 - loss 0.14527389 - time (sec): 14.25 - samples/sec: 1413.39 - lr: 0.000018 - momentum: 0.000000
2024-03-26 10:57:08,217 epoch 5 - iter 32/48 - loss 0.14233404 - time (sec): 16.88 - samples/sec: 1402.10 - lr: 0.000018 - momentum: 0.000000
2024-03-26 10:57:10,561 epoch 5 - iter 36/48 - loss 0.13484154 - time (sec): 19.23 - samples/sec: 1411.34 - lr: 0.000018 - momentum: 0.000000
2024-03-26 10:57:11,473 epoch 5 - iter 40/48 - loss 0.13458303 - time (sec): 20.14 - samples/sec: 1452.79 - lr: 0.000017 - momentum: 0.000000
2024-03-26 10:57:14,103 epoch 5 - iter 44/48 - loss 0.12839504 - time (sec): 22.77 - samples/sec: 1422.22 - lr: 0.000017 - momentum: 0.000000
2024-03-26 10:57:15,569 epoch 5 - iter 48/48 - loss 0.12741136 - time (sec): 24.24 - samples/sec: 1422.38 - lr: 0.000017 - momentum: 0.000000
2024-03-26 10:57:15,569 ----------------------------------------------------------------------------------------------------
2024-03-26 10:57:15,569 EPOCH 5 done: loss 0.1274 - lr: 0.000017
2024-03-26 10:57:16,515 DEV : loss 0.20272430777549744 - f1-score (micro avg) 0.8804
2024-03-26 10:57:16,516 saving best model
2024-03-26 10:57:16,984 ----------------------------------------------------------------------------------------------------
2024-03-26 10:57:18,992 epoch 6 - iter 4/48 - loss 0.07592408 - time (sec): 2.01 - samples/sec: 1317.35 - lr: 0.000017 - momentum: 0.000000
2024-03-26 10:57:21,186 epoch 6 - iter 8/48 - loss 0.10267334 - time (sec): 4.20 - samples/sec: 1316.74 - lr: 0.000016 - momentum: 0.000000
2024-03-26 10:57:23,020 epoch 6 - iter 12/48 - loss 0.10704529 - time (sec): 6.04 - samples/sec: 1431.77 - lr: 0.000016 - momentum: 0.000000
2024-03-26 10:57:25,277 epoch 6 - iter 16/48 - loss 0.10464018 - time (sec): 8.29 - samples/sec: 1385.41 - lr: 0.000016 - momentum: 0.000000
2024-03-26 10:57:27,081 epoch 6 - iter 20/48 - loss 0.11108015 - time (sec): 10.10 - samples/sec: 1389.85 - lr: 0.000015 - momentum: 0.000000
2024-03-26 10:57:29,574 epoch 6 - iter 24/48 - loss 0.10630629 - time (sec): 12.59 - samples/sec: 1367.78 - lr: 0.000015 - momentum: 0.000000
2024-03-26 10:57:31,519 epoch 6 - iter 28/48 - loss 0.10378445 - time (sec): 14.53 - samples/sec: 1360.83 - lr: 0.000015 - momentum: 0.000000
2024-03-26 10:57:34,025 epoch 6 - iter 32/48 - loss 0.10357046 - time (sec): 17.04 - samples/sec: 1341.33 - lr: 0.000015 - momentum: 0.000000
2024-03-26 10:57:37,488 epoch 6 - iter 36/48 - loss 0.09818676 - time (sec): 20.50 - samples/sec: 1300.63 - lr: 0.000014 - momentum: 0.000000
2024-03-26 10:57:39,188 epoch 6 - iter 40/48 - loss 0.09582576 - time (sec): 22.20 - samples/sec: 1330.90 - lr: 0.000014 - momentum: 0.000000
2024-03-26 10:57:41,073 epoch 6 - iter 44/48 - loss 0.09400591 - time (sec): 24.09 - samples/sec: 1333.22 - lr: 0.000014 - momentum: 0.000000
2024-03-26 10:57:42,362 epoch 6 - iter 48/48 - loss 0.09775463 - time (sec): 25.38 - samples/sec: 1358.38 - lr: 0.000014 - momentum: 0.000000
2024-03-26 10:57:42,362 ----------------------------------------------------------------------------------------------------
2024-03-26 10:57:42,362 EPOCH 6 done: loss 0.0978 - lr: 0.000014
2024-03-26 10:57:43,416 DEV : loss 0.20098459720611572 - f1-score (micro avg) 0.8917
2024-03-26 10:57:43,417 saving best model
2024-03-26 10:57:43,882 ----------------------------------------------------------------------------------------------------
2024-03-26 10:57:45,548 epoch 7 - iter 4/48 - loss 0.09646501 - time (sec): 1.67 - samples/sec: 1650.04 - lr: 0.000013 - momentum: 0.000000
2024-03-26 10:57:47,647 epoch 7 - iter 8/48 - loss 0.08084940 - time (sec): 3.76 - samples/sec: 1428.49 - lr: 0.000013 - momentum: 0.000000
2024-03-26 10:57:49,930 epoch 7 - iter 12/48 - loss 0.08590358 - time (sec): 6.05 - samples/sec: 1372.76 - lr: 0.000013 - momentum: 0.000000
2024-03-26 10:57:52,559 epoch 7 - iter 16/48 - loss 0.08260125 - time (sec): 8.68 - samples/sec: 1330.22 - lr: 0.000012 - momentum: 0.000000
2024-03-26 10:57:54,936 epoch 7 - iter 20/48 - loss 0.08060122 - time (sec): 11.05 - samples/sec: 1322.25 - lr: 0.000012 - momentum: 0.000000
2024-03-26 10:57:56,303 epoch 7 - iter 24/48 - loss 0.07855381 - time (sec): 12.42 - samples/sec: 1377.33 - lr: 0.000012 - momentum: 0.000000
2024-03-26 10:57:57,723 epoch 7 - iter 28/48 - loss 0.07878124 - time (sec): 13.84 - samples/sec: 1441.14 - lr: 0.000012 - momentum: 0.000000
2024-03-26 10:57:59,728 epoch 7 - iter 32/48 - loss 0.07627449 - time (sec): 15.85 - samples/sec: 1431.35 - lr: 0.000011 - momentum: 0.000000
2024-03-26 10:58:01,913 epoch 7 - iter 36/48 - loss 0.07425843 - time (sec): 18.03 - samples/sec: 1420.51 - lr: 0.000011 - momentum: 0.000000
2024-03-26 10:58:04,470 epoch 7 - iter 40/48 - loss 0.07509344 - time (sec): 20.59 - samples/sec: 1396.05 - lr: 0.000011 - momentum: 0.000000
2024-03-26 10:58:06,346 epoch 7 - iter 44/48 - loss 0.07606956 - time (sec): 22.46 - samples/sec: 1411.21 - lr: 0.000010 - momentum: 0.000000
2024-03-26 10:58:08,338 epoch 7 - iter 48/48 - loss 0.07594269 - time (sec): 24.46 - samples/sec: 1409.57 - lr: 0.000010 - momentum: 0.000000
2024-03-26 10:58:08,338 ----------------------------------------------------------------------------------------------------
2024-03-26 10:58:08,338 EPOCH 7 done: loss 0.0759 - lr: 0.000010
2024-03-26 10:58:09,277 DEV : loss 0.18951921164989471 - f1-score (micro avg) 0.8989
2024-03-26 10:58:09,278 saving best model
2024-03-26 10:58:09,759 ----------------------------------------------------------------------------------------------------
2024-03-26 10:58:11,825 epoch 8 - iter 4/48 - loss 0.06179609 - time (sec): 2.07 - samples/sec: 1308.88 - lr: 0.000010 - momentum: 0.000000
2024-03-26 10:58:14,623 epoch 8 - iter 8/48 - loss 0.05406802 - time (sec): 4.86 - samples/sec: 1142.42 - lr: 0.000010 - momentum: 0.000000
2024-03-26 10:58:15,947 epoch 8 - iter 12/48 - loss 0.05651994 - time (sec): 6.19 - samples/sec: 1290.20 - lr: 0.000009 - momentum: 0.000000
2024-03-26 10:58:18,398 epoch 8 - iter 16/48 - loss 0.06729804 - time (sec): 8.64 - samples/sec: 1303.19 - lr: 0.000009 - momentum: 0.000000
2024-03-26 10:58:20,988 epoch 8 - iter 20/48 - loss 0.06041800 - time (sec): 11.23 - samples/sec: 1341.99 - lr: 0.000009 - momentum: 0.000000
2024-03-26 10:58:22,321 epoch 8 - iter 24/48 - loss 0.06144765 - time (sec): 12.56 - samples/sec: 1416.83 - lr: 0.000009 - momentum: 0.000000
2024-03-26 10:58:25,656 epoch 8 - iter 28/48 - loss 0.06053862 - time (sec): 15.90 - samples/sec: 1372.70 - lr: 0.000008 - momentum: 0.000000
2024-03-26 10:58:27,673 epoch 8 - iter 32/48 - loss 0.06204024 - time (sec): 17.91 - samples/sec: 1376.29 - lr: 0.000008 - momentum: 0.000000
2024-03-26 10:58:28,730 epoch 8 - iter 36/48 - loss 0.06119637 - time (sec): 18.97 - samples/sec: 1415.54 - lr: 0.000008 - momentum: 0.000000
2024-03-26 10:58:30,430 epoch 8 - iter 40/48 - loss 0.06095629 - time (sec): 20.67 - samples/sec: 1413.97 - lr: 0.000007 - momentum: 0.000000
2024-03-26 10:58:32,073 epoch 8 - iter 44/48 - loss 0.06097632 - time (sec): 22.31 - samples/sec: 1431.98 - lr: 0.000007 - momentum: 0.000000
2024-03-26 10:58:34,072 epoch 8 - iter 48/48 - loss 0.06172598 - time (sec): 24.31 - samples/sec: 1417.89 - lr: 0.000007 - momentum: 0.000000
2024-03-26 10:58:34,073 ----------------------------------------------------------------------------------------------------
2024-03-26 10:58:34,073 EPOCH 8 done: loss 0.0617 - lr: 0.000007
2024-03-26 10:58:35,009 DEV : loss 0.19442327320575714 - f1-score (micro avg) 0.9037
2024-03-26 10:58:35,010 saving best model
2024-03-26 10:58:35,492 ----------------------------------------------------------------------------------------------------
2024-03-26 10:58:37,420 epoch 9 - iter 4/48 - loss 0.03787709 - time (sec): 1.93 - samples/sec: 1389.85 - lr: 0.000007 - momentum: 0.000000
2024-03-26 10:58:40,657 epoch 9 - iter 8/48 - loss 0.02721893 - time (sec): 5.16 - samples/sec: 1209.21 - lr: 0.000006 - momentum: 0.000000
2024-03-26 10:58:42,375 epoch 9 - iter 12/48 - loss 0.03793841 - time (sec): 6.88 - samples/sec: 1262.76 - lr: 0.000006 - momentum: 0.000000
2024-03-26 10:58:44,628 epoch 9 - iter 16/48 - loss 0.04341471 - time (sec): 9.13 - samples/sec: 1261.32 - lr: 0.000006 - momentum: 0.000000
2024-03-26 10:58:46,982 epoch 9 - iter 20/48 - loss 0.05014430 - time (sec): 11.49 - samples/sec: 1287.78 - lr: 0.000006 - momentum: 0.000000
2024-03-26 10:58:49,212 epoch 9 - iter 24/48 - loss 0.05183345 - time (sec): 13.72 - samples/sec: 1303.60 - lr: 0.000005 - momentum: 0.000000
2024-03-26 10:58:51,578 epoch 9 - iter 28/48 - loss 0.05030911 - time (sec): 16.09 - samples/sec: 1302.97 - lr: 0.000005 - momentum: 0.000000
2024-03-26 10:58:54,009 epoch 9 - iter 32/48 - loss 0.05050612 - time (sec): 18.52 - samples/sec: 1296.84 - lr: 0.000005 - momentum: 0.000000
2024-03-26 10:58:55,907 epoch 9 - iter 36/48 - loss 0.05285281 - time (sec): 20.41 - samples/sec: 1311.41 - lr: 0.000004 - momentum: 0.000000
2024-03-26 10:58:58,155 epoch 9 - iter 40/48 - loss 0.05425255 - time (sec): 22.66 - samples/sec: 1301.12 - lr: 0.000004 - momentum: 0.000000
2024-03-26 10:59:00,300 epoch 9 - iter 44/48 - loss 0.05319438 - time (sec): 24.81 - samples/sec: 1314.23 - lr: 0.000004 - momentum: 0.000000
2024-03-26 10:59:01,098 epoch 9 - iter 48/48 - loss 0.05376715 - time (sec): 25.61 - samples/sec: 1346.29 - lr: 0.000004 - momentum: 0.000000
2024-03-26 10:59:01,098 ----------------------------------------------------------------------------------------------------
2024-03-26 10:59:01,098 EPOCH 9 done: loss 0.0538 - lr: 0.000004
2024-03-26 10:59:02,047 DEV : loss 0.18321390450000763 - f1-score (micro avg) 0.9084
2024-03-26 10:59:02,048 saving best model
2024-03-26 10:59:02,515 ----------------------------------------------------------------------------------------------------
2024-03-26 10:59:04,383 epoch 10 - iter 4/48 - loss 0.03045480 - time (sec): 1.87 - samples/sec: 1407.80 - lr: 0.000003 - momentum: 0.000000
2024-03-26 10:59:06,446 epoch 10 - iter 8/48 - loss 0.03749981 - time (sec): 3.93 - samples/sec: 1409.71 - lr: 0.000003 - momentum: 0.000000
2024-03-26 10:59:09,113 epoch 10 - iter 12/48 - loss 0.03813115 - time (sec): 6.60 - samples/sec: 1322.73 - lr: 0.000003 - momentum: 0.000000
2024-03-26 10:59:11,061 epoch 10 - iter 16/48 - loss 0.04613621 - time (sec): 8.55 - samples/sec: 1342.43 - lr: 0.000002 - momentum: 0.000000
2024-03-26 10:59:12,999 epoch 10 - iter 20/48 - loss 0.04639203 - time (sec): 10.48 - samples/sec: 1379.82 - lr: 0.000002 - momentum: 0.000000
2024-03-26 10:59:14,686 epoch 10 - iter 24/48 - loss 0.05611524 - time (sec): 12.17 - samples/sec: 1393.39 - lr: 0.000002 - momentum: 0.000000
2024-03-26 10:59:16,506 epoch 10 - iter 28/48 - loss 0.05319972 - time (sec): 13.99 - samples/sec: 1414.20 - lr: 0.000002 - momentum: 0.000000
2024-03-26 10:59:17,731 epoch 10 - iter 32/48 - loss 0.05157465 - time (sec): 15.22 - samples/sec: 1447.46 - lr: 0.000001 - momentum: 0.000000
2024-03-26 10:59:20,788 epoch 10 - iter 36/48 - loss 0.04699753 - time (sec): 18.27 - samples/sec: 1401.78 - lr: 0.000001 - momentum: 0.000000
2024-03-26 10:59:23,662 epoch 10 - iter 40/48 - loss 0.05009458 - time (sec): 21.15 - samples/sec: 1375.18 - lr: 0.000001 - momentum: 0.000000
2024-03-26 10:59:26,468 epoch 10 - iter 44/48 - loss 0.04782682 - time (sec): 23.95 - samples/sec: 1347.81 - lr: 0.000001 - momentum: 0.000000
2024-03-26 10:59:28,113 epoch 10 - iter 48/48 - loss 0.04668607 - time (sec): 25.60 - samples/sec: 1346.68 - lr: 0.000000 - momentum: 0.000000
2024-03-26 10:59:28,114 ----------------------------------------------------------------------------------------------------
2024-03-26 10:59:28,114 EPOCH 10 done: loss 0.0467 - lr: 0.000000
2024-03-26 10:59:29,068 DEV : loss 0.18393239378929138 - f1-score (micro avg) 0.9136
2024-03-26 10:59:29,069 saving best model
2024-03-26 10:59:29,855 ----------------------------------------------------------------------------------------------------
2024-03-26 10:59:29,855 Loading model from best epoch ...
2024-03-26 10:59:30,803 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
2024-03-26 10:59:31,572
Results:
- F-score (micro) 0.9003
- F-score (macro) 0.6853
- Accuracy 0.821
By class:
precision recall f1-score support
Unternehmen 0.8923 0.8722 0.8821 266
Auslagerung 0.8677 0.8956 0.8814 249
Ort 0.9706 0.9851 0.9778 134
Software 0.0000 0.0000 0.0000 0
micro avg 0.8962 0.9045 0.9003 649
macro avg 0.6827 0.6882 0.6853 649
weighted avg 0.8990 0.9045 0.9016 649
2024-03-26 10:59:31,572 ----------------------------------------------------------------------------------------------------
|