File size: 23,771 Bytes
1dfd1f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
2024-03-26 10:08:27,529 ----------------------------------------------------------------------------------------------------
2024-03-26 10:08:27,530 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(31103, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=17, bias=True)
(loss_function): CrossEntropyLoss()
)"
2024-03-26 10:08:27,530 ----------------------------------------------------------------------------------------------------
2024-03-26 10:08:27,530 Corpus: 758 train + 94 dev + 96 test sentences
2024-03-26 10:08:27,530 ----------------------------------------------------------------------------------------------------
2024-03-26 10:08:27,530 Train: 758 sentences
2024-03-26 10:08:27,530 (train_with_dev=False, train_with_test=False)
2024-03-26 10:08:27,530 ----------------------------------------------------------------------------------------------------
2024-03-26 10:08:27,530 Training Params:
2024-03-26 10:08:27,530 - learning_rate: "3e-05"
2024-03-26 10:08:27,530 - mini_batch_size: "8"
2024-03-26 10:08:27,530 - max_epochs: "10"
2024-03-26 10:08:27,530 - shuffle: "True"
2024-03-26 10:08:27,530 ----------------------------------------------------------------------------------------------------
2024-03-26 10:08:27,530 Plugins:
2024-03-26 10:08:27,530 - TensorboardLogger
2024-03-26 10:08:27,530 - LinearScheduler | warmup_fraction: '0.1'
2024-03-26 10:08:27,530 ----------------------------------------------------------------------------------------------------
2024-03-26 10:08:27,530 Final evaluation on model from best epoch (best-model.pt)
2024-03-26 10:08:27,530 - metric: "('micro avg', 'f1-score')"
2024-03-26 10:08:27,530 ----------------------------------------------------------------------------------------------------
2024-03-26 10:08:27,530 Computation:
2024-03-26 10:08:27,530 - compute on device: cuda:0
2024-03-26 10:08:27,530 - embedding storage: none
2024-03-26 10:08:27,530 ----------------------------------------------------------------------------------------------------
2024-03-26 10:08:27,530 Model training base path: "flair-co-funer-gbert_base-bs8-e10-lr3e-05-3"
2024-03-26 10:08:27,530 ----------------------------------------------------------------------------------------------------
2024-03-26 10:08:27,530 ----------------------------------------------------------------------------------------------------
2024-03-26 10:08:27,530 Logging anything other than scalars to TensorBoard is currently not supported.
2024-03-26 10:08:28,894 epoch 1 - iter 9/95 - loss 3.33554699 - time (sec): 1.36 - samples/sec: 2339.39 - lr: 0.000003 - momentum: 0.000000
2024-03-26 10:08:30,720 epoch 1 - iter 18/95 - loss 3.19797484 - time (sec): 3.19 - samples/sec: 1979.89 - lr: 0.000005 - momentum: 0.000000
2024-03-26 10:08:32,649 epoch 1 - iter 27/95 - loss 2.97461067 - time (sec): 5.12 - samples/sec: 1930.07 - lr: 0.000008 - momentum: 0.000000
2024-03-26 10:08:34,027 epoch 1 - iter 36/95 - loss 2.75332136 - time (sec): 6.50 - samples/sec: 1947.46 - lr: 0.000011 - momentum: 0.000000
2024-03-26 10:08:35,938 epoch 1 - iter 45/95 - loss 2.59851272 - time (sec): 8.41 - samples/sec: 1929.36 - lr: 0.000014 - momentum: 0.000000
2024-03-26 10:08:37,303 epoch 1 - iter 54/95 - loss 2.45841522 - time (sec): 9.77 - samples/sec: 1953.13 - lr: 0.000017 - momentum: 0.000000
2024-03-26 10:08:38,555 epoch 1 - iter 63/95 - loss 2.33834595 - time (sec): 11.02 - samples/sec: 1980.60 - lr: 0.000020 - momentum: 0.000000
2024-03-26 10:08:40,505 epoch 1 - iter 72/95 - loss 2.19376938 - time (sec): 12.97 - samples/sec: 1966.88 - lr: 0.000022 - momentum: 0.000000
2024-03-26 10:08:42,493 epoch 1 - iter 81/95 - loss 2.04587440 - time (sec): 14.96 - samples/sec: 1951.25 - lr: 0.000025 - momentum: 0.000000
2024-03-26 10:08:44,026 epoch 1 - iter 90/95 - loss 1.92876562 - time (sec): 16.50 - samples/sec: 1969.18 - lr: 0.000028 - momentum: 0.000000
2024-03-26 10:08:45,081 ----------------------------------------------------------------------------------------------------
2024-03-26 10:08:45,081 EPOCH 1 done: loss 1.8562 - lr: 0.000028
2024-03-26 10:08:46,033 DEV : loss 0.5581119656562805 - f1-score (micro avg) 0.6418
2024-03-26 10:08:46,034 saving best model
2024-03-26 10:08:46,319 ----------------------------------------------------------------------------------------------------
2024-03-26 10:08:47,674 epoch 2 - iter 9/95 - loss 0.66546774 - time (sec): 1.35 - samples/sec: 2022.54 - lr: 0.000030 - momentum: 0.000000
2024-03-26 10:08:49,508 epoch 2 - iter 18/95 - loss 0.54284628 - time (sec): 3.19 - samples/sec: 1915.63 - lr: 0.000029 - momentum: 0.000000
2024-03-26 10:08:50,678 epoch 2 - iter 27/95 - loss 0.51960536 - time (sec): 4.36 - samples/sec: 1968.72 - lr: 0.000029 - momentum: 0.000000
2024-03-26 10:08:52,927 epoch 2 - iter 36/95 - loss 0.49655748 - time (sec): 6.61 - samples/sec: 1918.83 - lr: 0.000029 - momentum: 0.000000
2024-03-26 10:08:54,866 epoch 2 - iter 45/95 - loss 0.47810842 - time (sec): 8.55 - samples/sec: 1924.12 - lr: 0.000028 - momentum: 0.000000
2024-03-26 10:08:57,021 epoch 2 - iter 54/95 - loss 0.46197107 - time (sec): 10.70 - samples/sec: 1895.84 - lr: 0.000028 - momentum: 0.000000
2024-03-26 10:08:59,025 epoch 2 - iter 63/95 - loss 0.44425485 - time (sec): 12.71 - samples/sec: 1850.15 - lr: 0.000028 - momentum: 0.000000
2024-03-26 10:09:00,540 epoch 2 - iter 72/95 - loss 0.44340772 - time (sec): 14.22 - samples/sec: 1857.68 - lr: 0.000028 - momentum: 0.000000
2024-03-26 10:09:01,979 epoch 2 - iter 81/95 - loss 0.44607382 - time (sec): 15.66 - samples/sec: 1881.11 - lr: 0.000027 - momentum: 0.000000
2024-03-26 10:09:04,191 epoch 2 - iter 90/95 - loss 0.43041023 - time (sec): 17.87 - samples/sec: 1856.06 - lr: 0.000027 - momentum: 0.000000
2024-03-26 10:09:04,830 ----------------------------------------------------------------------------------------------------
2024-03-26 10:09:04,830 EPOCH 2 done: loss 0.4258 - lr: 0.000027
2024-03-26 10:09:05,720 DEV : loss 0.2841838002204895 - f1-score (micro avg) 0.8242
2024-03-26 10:09:05,721 saving best model
2024-03-26 10:09:06,177 ----------------------------------------------------------------------------------------------------
2024-03-26 10:09:07,810 epoch 3 - iter 9/95 - loss 0.24170767 - time (sec): 1.63 - samples/sec: 1830.36 - lr: 0.000026 - momentum: 0.000000
2024-03-26 10:09:09,596 epoch 3 - iter 18/95 - loss 0.23005411 - time (sec): 3.42 - samples/sec: 1852.45 - lr: 0.000026 - momentum: 0.000000
2024-03-26 10:09:10,786 epoch 3 - iter 27/95 - loss 0.24030877 - time (sec): 4.61 - samples/sec: 2027.95 - lr: 0.000026 - momentum: 0.000000
2024-03-26 10:09:12,339 epoch 3 - iter 36/95 - loss 0.22730704 - time (sec): 6.16 - samples/sec: 2016.47 - lr: 0.000025 - momentum: 0.000000
2024-03-26 10:09:13,752 epoch 3 - iter 45/95 - loss 0.23076599 - time (sec): 7.57 - samples/sec: 2023.93 - lr: 0.000025 - momentum: 0.000000
2024-03-26 10:09:15,747 epoch 3 - iter 54/95 - loss 0.22498599 - time (sec): 9.57 - samples/sec: 1975.21 - lr: 0.000025 - momentum: 0.000000
2024-03-26 10:09:17,740 epoch 3 - iter 63/95 - loss 0.22620463 - time (sec): 11.56 - samples/sec: 1925.53 - lr: 0.000025 - momentum: 0.000000
2024-03-26 10:09:19,577 epoch 3 - iter 72/95 - loss 0.22489015 - time (sec): 13.40 - samples/sec: 1909.05 - lr: 0.000024 - momentum: 0.000000
2024-03-26 10:09:21,583 epoch 3 - iter 81/95 - loss 0.21879733 - time (sec): 15.41 - samples/sec: 1881.98 - lr: 0.000024 - momentum: 0.000000
2024-03-26 10:09:23,545 epoch 3 - iter 90/95 - loss 0.22689307 - time (sec): 17.37 - samples/sec: 1882.69 - lr: 0.000024 - momentum: 0.000000
2024-03-26 10:09:24,635 ----------------------------------------------------------------------------------------------------
2024-03-26 10:09:24,635 EPOCH 3 done: loss 0.2202 - lr: 0.000024
2024-03-26 10:09:25,529 DEV : loss 0.22958670556545258 - f1-score (micro avg) 0.8489
2024-03-26 10:09:25,530 saving best model
2024-03-26 10:09:26,003 ----------------------------------------------------------------------------------------------------
2024-03-26 10:09:27,292 epoch 4 - iter 9/95 - loss 0.16111365 - time (sec): 1.29 - samples/sec: 2155.79 - lr: 0.000023 - momentum: 0.000000
2024-03-26 10:09:29,139 epoch 4 - iter 18/95 - loss 0.14919663 - time (sec): 3.13 - samples/sec: 1960.47 - lr: 0.000023 - momentum: 0.000000
2024-03-26 10:09:31,065 epoch 4 - iter 27/95 - loss 0.14644479 - time (sec): 5.06 - samples/sec: 1908.24 - lr: 0.000022 - momentum: 0.000000
2024-03-26 10:09:32,548 epoch 4 - iter 36/95 - loss 0.14385233 - time (sec): 6.54 - samples/sec: 1916.88 - lr: 0.000022 - momentum: 0.000000
2024-03-26 10:09:34,984 epoch 4 - iter 45/95 - loss 0.14276960 - time (sec): 8.98 - samples/sec: 1840.15 - lr: 0.000022 - momentum: 0.000000
2024-03-26 10:09:36,848 epoch 4 - iter 54/95 - loss 0.13773929 - time (sec): 10.84 - samples/sec: 1819.90 - lr: 0.000022 - momentum: 0.000000
2024-03-26 10:09:38,790 epoch 4 - iter 63/95 - loss 0.13313938 - time (sec): 12.79 - samples/sec: 1798.79 - lr: 0.000021 - momentum: 0.000000
2024-03-26 10:09:40,670 epoch 4 - iter 72/95 - loss 0.14004047 - time (sec): 14.67 - samples/sec: 1814.15 - lr: 0.000021 - momentum: 0.000000
2024-03-26 10:09:42,693 epoch 4 - iter 81/95 - loss 0.14802288 - time (sec): 16.69 - samples/sec: 1811.70 - lr: 0.000021 - momentum: 0.000000
2024-03-26 10:09:43,671 epoch 4 - iter 90/95 - loss 0.14738465 - time (sec): 17.67 - samples/sec: 1851.18 - lr: 0.000020 - momentum: 0.000000
2024-03-26 10:09:44,699 ----------------------------------------------------------------------------------------------------
2024-03-26 10:09:44,699 EPOCH 4 done: loss 0.1476 - lr: 0.000020
2024-03-26 10:09:45,593 DEV : loss 0.18175187706947327 - f1-score (micro avg) 0.8926
2024-03-26 10:09:45,594 saving best model
2024-03-26 10:09:46,046 ----------------------------------------------------------------------------------------------------
2024-03-26 10:09:47,930 epoch 5 - iter 9/95 - loss 0.09143063 - time (sec): 1.88 - samples/sec: 1826.09 - lr: 0.000020 - momentum: 0.000000
2024-03-26 10:09:49,363 epoch 5 - iter 18/95 - loss 0.09824734 - time (sec): 3.31 - samples/sec: 1888.04 - lr: 0.000019 - momentum: 0.000000
2024-03-26 10:09:50,724 epoch 5 - iter 27/95 - loss 0.10332613 - time (sec): 4.68 - samples/sec: 1931.27 - lr: 0.000019 - momentum: 0.000000
2024-03-26 10:09:52,603 epoch 5 - iter 36/95 - loss 0.10675406 - time (sec): 6.55 - samples/sec: 1872.34 - lr: 0.000019 - momentum: 0.000000
2024-03-26 10:09:54,890 epoch 5 - iter 45/95 - loss 0.10676981 - time (sec): 8.84 - samples/sec: 1841.19 - lr: 0.000019 - momentum: 0.000000
2024-03-26 10:09:57,324 epoch 5 - iter 54/95 - loss 0.10270566 - time (sec): 11.28 - samples/sec: 1801.32 - lr: 0.000018 - momentum: 0.000000
2024-03-26 10:09:58,986 epoch 5 - iter 63/95 - loss 0.10148077 - time (sec): 12.94 - samples/sec: 1795.70 - lr: 0.000018 - momentum: 0.000000
2024-03-26 10:10:00,751 epoch 5 - iter 72/95 - loss 0.10182338 - time (sec): 14.70 - samples/sec: 1798.64 - lr: 0.000018 - momentum: 0.000000
2024-03-26 10:10:02,950 epoch 5 - iter 81/95 - loss 0.10627975 - time (sec): 16.90 - samples/sec: 1785.23 - lr: 0.000017 - momentum: 0.000000
2024-03-26 10:10:04,337 epoch 5 - iter 90/95 - loss 0.10709497 - time (sec): 18.29 - samples/sec: 1802.11 - lr: 0.000017 - momentum: 0.000000
2024-03-26 10:10:05,102 ----------------------------------------------------------------------------------------------------
2024-03-26 10:10:05,102 EPOCH 5 done: loss 0.1049 - lr: 0.000017
2024-03-26 10:10:06,013 DEV : loss 0.15699249505996704 - f1-score (micro avg) 0.9156
2024-03-26 10:10:06,014 saving best model
2024-03-26 10:10:06,467 ----------------------------------------------------------------------------------------------------
2024-03-26 10:10:08,404 epoch 6 - iter 9/95 - loss 0.07898146 - time (sec): 1.94 - samples/sec: 1802.35 - lr: 0.000016 - momentum: 0.000000
2024-03-26 10:10:09,954 epoch 6 - iter 18/95 - loss 0.08189262 - time (sec): 3.49 - samples/sec: 1824.53 - lr: 0.000016 - momentum: 0.000000
2024-03-26 10:10:11,860 epoch 6 - iter 27/95 - loss 0.07955601 - time (sec): 5.39 - samples/sec: 1834.02 - lr: 0.000016 - momentum: 0.000000
2024-03-26 10:10:13,430 epoch 6 - iter 36/95 - loss 0.08207944 - time (sec): 6.96 - samples/sec: 1831.73 - lr: 0.000016 - momentum: 0.000000
2024-03-26 10:10:14,880 epoch 6 - iter 45/95 - loss 0.07878711 - time (sec): 8.41 - samples/sec: 1869.51 - lr: 0.000015 - momentum: 0.000000
2024-03-26 10:10:16,329 epoch 6 - iter 54/95 - loss 0.07682753 - time (sec): 9.86 - samples/sec: 1867.79 - lr: 0.000015 - momentum: 0.000000
2024-03-26 10:10:17,606 epoch 6 - iter 63/95 - loss 0.07419095 - time (sec): 11.14 - samples/sec: 1930.45 - lr: 0.000015 - momentum: 0.000000
2024-03-26 10:10:19,852 epoch 6 - iter 72/95 - loss 0.08078885 - time (sec): 13.38 - samples/sec: 1897.36 - lr: 0.000014 - momentum: 0.000000
2024-03-26 10:10:21,433 epoch 6 - iter 81/95 - loss 0.07732747 - time (sec): 14.96 - samples/sec: 1914.85 - lr: 0.000014 - momentum: 0.000000
2024-03-26 10:10:23,139 epoch 6 - iter 90/95 - loss 0.07983208 - time (sec): 16.67 - samples/sec: 1933.33 - lr: 0.000014 - momentum: 0.000000
2024-03-26 10:10:24,405 ----------------------------------------------------------------------------------------------------
2024-03-26 10:10:24,405 EPOCH 6 done: loss 0.0808 - lr: 0.000014
2024-03-26 10:10:25,320 DEV : loss 0.16210442781448364 - f1-score (micro avg) 0.9114
2024-03-26 10:10:25,321 ----------------------------------------------------------------------------------------------------
2024-03-26 10:10:27,208 epoch 7 - iter 9/95 - loss 0.07576515 - time (sec): 1.89 - samples/sec: 1684.03 - lr: 0.000013 - momentum: 0.000000
2024-03-26 10:10:29,242 epoch 7 - iter 18/95 - loss 0.06224530 - time (sec): 3.92 - samples/sec: 1672.44 - lr: 0.000013 - momentum: 0.000000
2024-03-26 10:10:30,776 epoch 7 - iter 27/95 - loss 0.05614093 - time (sec): 5.45 - samples/sec: 1793.70 - lr: 0.000013 - momentum: 0.000000
2024-03-26 10:10:32,724 epoch 7 - iter 36/95 - loss 0.05508867 - time (sec): 7.40 - samples/sec: 1780.19 - lr: 0.000012 - momentum: 0.000000
2024-03-26 10:10:35,103 epoch 7 - iter 45/95 - loss 0.06099413 - time (sec): 9.78 - samples/sec: 1772.80 - lr: 0.000012 - momentum: 0.000000
2024-03-26 10:10:36,627 epoch 7 - iter 54/95 - loss 0.06007902 - time (sec): 11.30 - samples/sec: 1779.41 - lr: 0.000012 - momentum: 0.000000
2024-03-26 10:10:38,814 epoch 7 - iter 63/95 - loss 0.05988849 - time (sec): 13.49 - samples/sec: 1784.97 - lr: 0.000011 - momentum: 0.000000
2024-03-26 10:10:40,594 epoch 7 - iter 72/95 - loss 0.06350792 - time (sec): 15.27 - samples/sec: 1792.44 - lr: 0.000011 - momentum: 0.000000
2024-03-26 10:10:42,014 epoch 7 - iter 81/95 - loss 0.05993214 - time (sec): 16.69 - samples/sec: 1804.64 - lr: 0.000011 - momentum: 0.000000
2024-03-26 10:10:43,984 epoch 7 - iter 90/95 - loss 0.06299791 - time (sec): 18.66 - samples/sec: 1784.97 - lr: 0.000010 - momentum: 0.000000
2024-03-26 10:10:44,467 ----------------------------------------------------------------------------------------------------
2024-03-26 10:10:44,467 EPOCH 7 done: loss 0.0641 - lr: 0.000010
2024-03-26 10:10:45,364 DEV : loss 0.15182051062583923 - f1-score (micro avg) 0.9275
2024-03-26 10:10:45,365 saving best model
2024-03-26 10:10:45,816 ----------------------------------------------------------------------------------------------------
2024-03-26 10:10:47,691 epoch 8 - iter 9/95 - loss 0.04093905 - time (sec): 1.87 - samples/sec: 1710.97 - lr: 0.000010 - momentum: 0.000000
2024-03-26 10:10:50,179 epoch 8 - iter 18/95 - loss 0.03651141 - time (sec): 4.36 - samples/sec: 1698.06 - lr: 0.000010 - momentum: 0.000000
2024-03-26 10:10:51,943 epoch 8 - iter 27/95 - loss 0.03614220 - time (sec): 6.13 - samples/sec: 1736.98 - lr: 0.000009 - momentum: 0.000000
2024-03-26 10:10:53,486 epoch 8 - iter 36/95 - loss 0.03690008 - time (sec): 7.67 - samples/sec: 1728.69 - lr: 0.000009 - momentum: 0.000000
2024-03-26 10:10:54,998 epoch 8 - iter 45/95 - loss 0.03446730 - time (sec): 9.18 - samples/sec: 1759.04 - lr: 0.000009 - momentum: 0.000000
2024-03-26 10:10:56,657 epoch 8 - iter 54/95 - loss 0.03525247 - time (sec): 10.84 - samples/sec: 1779.42 - lr: 0.000008 - momentum: 0.000000
2024-03-26 10:10:58,853 epoch 8 - iter 63/95 - loss 0.04458381 - time (sec): 13.04 - samples/sec: 1775.29 - lr: 0.000008 - momentum: 0.000000
2024-03-26 10:11:01,101 epoch 8 - iter 72/95 - loss 0.04856792 - time (sec): 15.28 - samples/sec: 1755.92 - lr: 0.000008 - momentum: 0.000000
2024-03-26 10:11:02,760 epoch 8 - iter 81/95 - loss 0.05222485 - time (sec): 16.94 - samples/sec: 1758.08 - lr: 0.000007 - momentum: 0.000000
2024-03-26 10:11:04,053 epoch 8 - iter 90/95 - loss 0.05236197 - time (sec): 18.24 - samples/sec: 1800.43 - lr: 0.000007 - momentum: 0.000000
2024-03-26 10:11:04,949 ----------------------------------------------------------------------------------------------------
2024-03-26 10:11:04,949 EPOCH 8 done: loss 0.0509 - lr: 0.000007
2024-03-26 10:11:05,851 DEV : loss 0.14655029773712158 - f1-score (micro avg) 0.9337
2024-03-26 10:11:05,852 saving best model
2024-03-26 10:11:06,294 ----------------------------------------------------------------------------------------------------
2024-03-26 10:11:08,265 epoch 9 - iter 9/95 - loss 0.02126199 - time (sec): 1.97 - samples/sec: 1789.49 - lr: 0.000007 - momentum: 0.000000
2024-03-26 10:11:10,061 epoch 9 - iter 18/95 - loss 0.03879203 - time (sec): 3.77 - samples/sec: 1777.15 - lr: 0.000006 - momentum: 0.000000
2024-03-26 10:11:11,930 epoch 9 - iter 27/95 - loss 0.04085316 - time (sec): 5.64 - samples/sec: 1812.78 - lr: 0.000006 - momentum: 0.000000
2024-03-26 10:11:13,786 epoch 9 - iter 36/95 - loss 0.03895674 - time (sec): 7.49 - samples/sec: 1812.92 - lr: 0.000006 - momentum: 0.000000
2024-03-26 10:11:16,045 epoch 9 - iter 45/95 - loss 0.03523787 - time (sec): 9.75 - samples/sec: 1738.45 - lr: 0.000005 - momentum: 0.000000
2024-03-26 10:11:17,969 epoch 9 - iter 54/95 - loss 0.04020057 - time (sec): 11.67 - samples/sec: 1729.24 - lr: 0.000005 - momentum: 0.000000
2024-03-26 10:11:19,855 epoch 9 - iter 63/95 - loss 0.03879557 - time (sec): 13.56 - samples/sec: 1741.15 - lr: 0.000005 - momentum: 0.000000
2024-03-26 10:11:21,740 epoch 9 - iter 72/95 - loss 0.04013875 - time (sec): 15.45 - samples/sec: 1744.73 - lr: 0.000004 - momentum: 0.000000
2024-03-26 10:11:22,989 epoch 9 - iter 81/95 - loss 0.04101646 - time (sec): 16.69 - samples/sec: 1768.48 - lr: 0.000004 - momentum: 0.000000
2024-03-26 10:11:24,390 epoch 9 - iter 90/95 - loss 0.04377843 - time (sec): 18.10 - samples/sec: 1791.00 - lr: 0.000004 - momentum: 0.000000
2024-03-26 10:11:25,341 ----------------------------------------------------------------------------------------------------
2024-03-26 10:11:25,341 EPOCH 9 done: loss 0.0436 - lr: 0.000004
2024-03-26 10:11:26,244 DEV : loss 0.15030568838119507 - f1-score (micro avg) 0.9421
2024-03-26 10:11:26,245 saving best model
2024-03-26 10:11:26,697 ----------------------------------------------------------------------------------------------------
2024-03-26 10:11:28,828 epoch 10 - iter 9/95 - loss 0.02320407 - time (sec): 2.13 - samples/sec: 1789.47 - lr: 0.000003 - momentum: 0.000000
2024-03-26 10:11:30,093 epoch 10 - iter 18/95 - loss 0.02217229 - time (sec): 3.39 - samples/sec: 1907.07 - lr: 0.000003 - momentum: 0.000000
2024-03-26 10:11:31,401 epoch 10 - iter 27/95 - loss 0.04519325 - time (sec): 4.70 - samples/sec: 2016.50 - lr: 0.000003 - momentum: 0.000000
2024-03-26 10:11:32,755 epoch 10 - iter 36/95 - loss 0.04245546 - time (sec): 6.06 - samples/sec: 2036.53 - lr: 0.000002 - momentum: 0.000000
2024-03-26 10:11:34,631 epoch 10 - iter 45/95 - loss 0.03751937 - time (sec): 7.93 - samples/sec: 2007.47 - lr: 0.000002 - momentum: 0.000000
2024-03-26 10:11:36,210 epoch 10 - iter 54/95 - loss 0.03686825 - time (sec): 9.51 - samples/sec: 1993.00 - lr: 0.000002 - momentum: 0.000000
2024-03-26 10:11:38,733 epoch 10 - iter 63/95 - loss 0.03767893 - time (sec): 12.03 - samples/sec: 1910.37 - lr: 0.000001 - momentum: 0.000000
2024-03-26 10:11:40,022 epoch 10 - iter 72/95 - loss 0.03674440 - time (sec): 13.32 - samples/sec: 1913.90 - lr: 0.000001 - momentum: 0.000000
2024-03-26 10:11:42,365 epoch 10 - iter 81/95 - loss 0.03457245 - time (sec): 15.67 - samples/sec: 1859.29 - lr: 0.000001 - momentum: 0.000000
2024-03-26 10:11:44,581 epoch 10 - iter 90/95 - loss 0.03657945 - time (sec): 17.88 - samples/sec: 1839.05 - lr: 0.000000 - momentum: 0.000000
2024-03-26 10:11:45,635 ----------------------------------------------------------------------------------------------------
2024-03-26 10:11:45,635 EPOCH 10 done: loss 0.0367 - lr: 0.000000
2024-03-26 10:11:46,537 DEV : loss 0.14958544075489044 - f1-score (micro avg) 0.9397
2024-03-26 10:11:46,820 ----------------------------------------------------------------------------------------------------
2024-03-26 10:11:46,820 Loading model from best epoch ...
2024-03-26 10:11:47,739 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
2024-03-26 10:11:48,486
Results:
- F-score (micro) 0.9056
- F-score (macro) 0.6892
- Accuracy 0.8333
By class:
precision recall f1-score support
Unternehmen 0.9216 0.8835 0.9021 266
Auslagerung 0.8376 0.9116 0.8731 249
Ort 0.9708 0.9925 0.9815 134
Software 0.0000 0.0000 0.0000 0
micro avg 0.8947 0.9168 0.9056 649
macro avg 0.6825 0.6969 0.6892 649
weighted avg 0.8995 0.9168 0.9074 649
2024-03-26 10:11:48,486 ----------------------------------------------------------------------------------------------------
|