File size: 26,566 Bytes
7f797cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
2024-03-26 09:47:48,954 ----------------------------------------------------------------------------------------------------
2024-03-26 09:47:48,954 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(31103, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=17, bias=True)
(loss_function): CrossEntropyLoss()
)"
2024-03-26 09:47:48,954 ----------------------------------------------------------------------------------------------------
2024-03-26 09:47:48,955 Corpus: 758 train + 94 dev + 96 test sentences
2024-03-26 09:47:48,955 ----------------------------------------------------------------------------------------------------
2024-03-26 09:47:48,955 Train: 758 sentences
2024-03-26 09:47:48,955 (train_with_dev=False, train_with_test=False)
2024-03-26 09:47:48,955 ----------------------------------------------------------------------------------------------------
2024-03-26 09:47:48,955 Training Params:
2024-03-26 09:47:48,955 - learning_rate: "5e-05"
2024-03-26 09:47:48,955 - mini_batch_size: "16"
2024-03-26 09:47:48,955 - max_epochs: "10"
2024-03-26 09:47:48,955 - shuffle: "True"
2024-03-26 09:47:48,955 ----------------------------------------------------------------------------------------------------
2024-03-26 09:47:48,955 Plugins:
2024-03-26 09:47:48,955 - TensorboardLogger
2024-03-26 09:47:48,955 - LinearScheduler | warmup_fraction: '0.1'
2024-03-26 09:47:48,955 ----------------------------------------------------------------------------------------------------
2024-03-26 09:47:48,955 Final evaluation on model from best epoch (best-model.pt)
2024-03-26 09:47:48,955 - metric: "('micro avg', 'f1-score')"
2024-03-26 09:47:48,955 ----------------------------------------------------------------------------------------------------
2024-03-26 09:47:48,955 Computation:
2024-03-26 09:47:48,955 - compute on device: cuda:0
2024-03-26 09:47:48,955 - embedding storage: none
2024-03-26 09:47:48,955 ----------------------------------------------------------------------------------------------------
2024-03-26 09:47:48,955 Model training base path: "flair-co-funer-gbert_base-bs16-e10-lr5e-05-2"
2024-03-26 09:47:48,955 ----------------------------------------------------------------------------------------------------
2024-03-26 09:47:48,955 ----------------------------------------------------------------------------------------------------
2024-03-26 09:47:48,955 Logging anything other than scalars to TensorBoard is currently not supported.
2024-03-26 09:47:50,666 epoch 1 - iter 4/48 - loss 3.53642249 - time (sec): 1.71 - samples/sec: 1765.99 - lr: 0.000003 - momentum: 0.000000
2024-03-26 09:47:52,742 epoch 1 - iter 8/48 - loss 3.42388110 - time (sec): 3.79 - samples/sec: 1639.55 - lr: 0.000007 - momentum: 0.000000
2024-03-26 09:47:54,571 epoch 1 - iter 12/48 - loss 3.28212646 - time (sec): 5.62 - samples/sec: 1587.46 - lr: 0.000011 - momentum: 0.000000
2024-03-26 09:47:56,564 epoch 1 - iter 16/48 - loss 3.05656396 - time (sec): 7.61 - samples/sec: 1594.65 - lr: 0.000016 - momentum: 0.000000
2024-03-26 09:47:58,739 epoch 1 - iter 20/48 - loss 2.85927097 - time (sec): 9.78 - samples/sec: 1561.84 - lr: 0.000020 - momentum: 0.000000
2024-03-26 09:48:01,755 epoch 1 - iter 24/48 - loss 2.71663771 - time (sec): 12.80 - samples/sec: 1420.28 - lr: 0.000024 - momentum: 0.000000
2024-03-26 09:48:04,147 epoch 1 - iter 28/48 - loss 2.57661348 - time (sec): 15.19 - samples/sec: 1402.94 - lr: 0.000028 - momentum: 0.000000
2024-03-26 09:48:04,965 epoch 1 - iter 32/48 - loss 2.47900786 - time (sec): 16.01 - samples/sec: 1458.52 - lr: 0.000032 - momentum: 0.000000
2024-03-26 09:48:06,218 epoch 1 - iter 36/48 - loss 2.36200311 - time (sec): 17.26 - samples/sec: 1514.86 - lr: 0.000036 - momentum: 0.000000
2024-03-26 09:48:08,077 epoch 1 - iter 40/48 - loss 2.25770330 - time (sec): 19.12 - samples/sec: 1521.40 - lr: 0.000041 - momentum: 0.000000
2024-03-26 09:48:09,948 epoch 1 - iter 44/48 - loss 2.14726220 - time (sec): 20.99 - samples/sec: 1521.98 - lr: 0.000045 - momentum: 0.000000
2024-03-26 09:48:11,291 epoch 1 - iter 48/48 - loss 2.05694147 - time (sec): 22.34 - samples/sec: 1543.33 - lr: 0.000049 - momentum: 0.000000
2024-03-26 09:48:11,292 ----------------------------------------------------------------------------------------------------
2024-03-26 09:48:11,292 EPOCH 1 done: loss 2.0569 - lr: 0.000049
2024-03-26 09:48:12,093 DEV : loss 0.5836076736450195 - f1-score (micro avg) 0.6019
2024-03-26 09:48:12,094 saving best model
2024-03-26 09:48:12,373 ----------------------------------------------------------------------------------------------------
2024-03-26 09:48:13,675 epoch 2 - iter 4/48 - loss 0.88111172 - time (sec): 1.30 - samples/sec: 2230.04 - lr: 0.000050 - momentum: 0.000000
2024-03-26 09:48:15,489 epoch 2 - iter 8/48 - loss 0.72062731 - time (sec): 3.11 - samples/sec: 1957.65 - lr: 0.000049 - momentum: 0.000000
2024-03-26 09:48:18,899 epoch 2 - iter 12/48 - loss 0.62239608 - time (sec): 6.52 - samples/sec: 1559.76 - lr: 0.000049 - momentum: 0.000000
2024-03-26 09:48:21,358 epoch 2 - iter 16/48 - loss 0.57386908 - time (sec): 8.98 - samples/sec: 1482.50 - lr: 0.000048 - momentum: 0.000000
2024-03-26 09:48:23,990 epoch 2 - iter 20/48 - loss 0.53883182 - time (sec): 11.62 - samples/sec: 1430.14 - lr: 0.000048 - momentum: 0.000000
2024-03-26 09:48:25,862 epoch 2 - iter 24/48 - loss 0.50635336 - time (sec): 13.49 - samples/sec: 1429.34 - lr: 0.000047 - momentum: 0.000000
2024-03-26 09:48:27,632 epoch 2 - iter 28/48 - loss 0.50264568 - time (sec): 15.26 - samples/sec: 1437.42 - lr: 0.000047 - momentum: 0.000000
2024-03-26 09:48:29,329 epoch 2 - iter 32/48 - loss 0.49297626 - time (sec): 16.95 - samples/sec: 1451.15 - lr: 0.000046 - momentum: 0.000000
2024-03-26 09:48:31,161 epoch 2 - iter 36/48 - loss 0.48197253 - time (sec): 18.79 - samples/sec: 1460.12 - lr: 0.000046 - momentum: 0.000000
2024-03-26 09:48:32,170 epoch 2 - iter 40/48 - loss 0.47295079 - time (sec): 19.80 - samples/sec: 1507.97 - lr: 0.000046 - momentum: 0.000000
2024-03-26 09:48:33,591 epoch 2 - iter 44/48 - loss 0.47014713 - time (sec): 21.22 - samples/sec: 1527.80 - lr: 0.000045 - momentum: 0.000000
2024-03-26 09:48:35,108 epoch 2 - iter 48/48 - loss 0.45670664 - time (sec): 22.73 - samples/sec: 1516.34 - lr: 0.000045 - momentum: 0.000000
2024-03-26 09:48:35,108 ----------------------------------------------------------------------------------------------------
2024-03-26 09:48:35,108 EPOCH 2 done: loss 0.4567 - lr: 0.000045
2024-03-26 09:48:36,014 DEV : loss 0.2943086624145508 - f1-score (micro avg) 0.8037
2024-03-26 09:48:36,017 saving best model
2024-03-26 09:48:36,504 ----------------------------------------------------------------------------------------------------
2024-03-26 09:48:39,054 epoch 3 - iter 4/48 - loss 0.28683702 - time (sec): 2.55 - samples/sec: 1180.57 - lr: 0.000044 - momentum: 0.000000
2024-03-26 09:48:41,186 epoch 3 - iter 8/48 - loss 0.28361676 - time (sec): 4.68 - samples/sec: 1356.68 - lr: 0.000044 - momentum: 0.000000
2024-03-26 09:48:42,755 epoch 3 - iter 12/48 - loss 0.29235243 - time (sec): 6.25 - samples/sec: 1419.71 - lr: 0.000043 - momentum: 0.000000
2024-03-26 09:48:44,487 epoch 3 - iter 16/48 - loss 0.27063291 - time (sec): 7.98 - samples/sec: 1423.98 - lr: 0.000043 - momentum: 0.000000
2024-03-26 09:48:45,629 epoch 3 - iter 20/48 - loss 0.27417182 - time (sec): 9.12 - samples/sec: 1499.70 - lr: 0.000042 - momentum: 0.000000
2024-03-26 09:48:47,465 epoch 3 - iter 24/48 - loss 0.28225090 - time (sec): 10.96 - samples/sec: 1501.48 - lr: 0.000042 - momentum: 0.000000
2024-03-26 09:48:49,904 epoch 3 - iter 28/48 - loss 0.27774390 - time (sec): 13.40 - samples/sec: 1443.98 - lr: 0.000041 - momentum: 0.000000
2024-03-26 09:48:51,742 epoch 3 - iter 32/48 - loss 0.27232927 - time (sec): 15.24 - samples/sec: 1453.05 - lr: 0.000041 - momentum: 0.000000
2024-03-26 09:48:53,165 epoch 3 - iter 36/48 - loss 0.26448046 - time (sec): 16.66 - samples/sec: 1487.41 - lr: 0.000040 - momentum: 0.000000
2024-03-26 09:48:55,424 epoch 3 - iter 40/48 - loss 0.25424281 - time (sec): 18.92 - samples/sec: 1459.40 - lr: 0.000040 - momentum: 0.000000
2024-03-26 09:48:58,678 epoch 3 - iter 44/48 - loss 0.23593615 - time (sec): 22.17 - samples/sec: 1453.31 - lr: 0.000040 - momentum: 0.000000
2024-03-26 09:48:59,937 epoch 3 - iter 48/48 - loss 0.23057082 - time (sec): 23.43 - samples/sec: 1471.19 - lr: 0.000039 - momentum: 0.000000
2024-03-26 09:48:59,937 ----------------------------------------------------------------------------------------------------
2024-03-26 09:48:59,937 EPOCH 3 done: loss 0.2306 - lr: 0.000039
2024-03-26 09:49:00,848 DEV : loss 0.22804519534111023 - f1-score (micro avg) 0.8586
2024-03-26 09:49:00,849 saving best model
2024-03-26 09:49:01,314 ----------------------------------------------------------------------------------------------------
2024-03-26 09:49:02,868 epoch 4 - iter 4/48 - loss 0.21189672 - time (sec): 1.55 - samples/sec: 1642.81 - lr: 0.000039 - momentum: 0.000000
2024-03-26 09:49:05,156 epoch 4 - iter 8/48 - loss 0.17986344 - time (sec): 3.84 - samples/sec: 1560.59 - lr: 0.000038 - momentum: 0.000000
2024-03-26 09:49:06,395 epoch 4 - iter 12/48 - loss 0.17779364 - time (sec): 5.08 - samples/sec: 1645.64 - lr: 0.000038 - momentum: 0.000000
2024-03-26 09:49:08,607 epoch 4 - iter 16/48 - loss 0.17969234 - time (sec): 7.29 - samples/sec: 1546.22 - lr: 0.000037 - momentum: 0.000000
2024-03-26 09:49:11,130 epoch 4 - iter 20/48 - loss 0.16736457 - time (sec): 9.81 - samples/sec: 1424.67 - lr: 0.000037 - momentum: 0.000000
2024-03-26 09:49:13,147 epoch 4 - iter 24/48 - loss 0.17458547 - time (sec): 11.83 - samples/sec: 1422.92 - lr: 0.000036 - momentum: 0.000000
2024-03-26 09:49:15,272 epoch 4 - iter 28/48 - loss 0.17017034 - time (sec): 13.96 - samples/sec: 1425.49 - lr: 0.000036 - momentum: 0.000000
2024-03-26 09:49:17,828 epoch 4 - iter 32/48 - loss 0.16887576 - time (sec): 16.51 - samples/sec: 1396.54 - lr: 0.000035 - momentum: 0.000000
2024-03-26 09:49:20,631 epoch 4 - iter 36/48 - loss 0.16050873 - time (sec): 19.32 - samples/sec: 1384.91 - lr: 0.000035 - momentum: 0.000000
2024-03-26 09:49:22,312 epoch 4 - iter 40/48 - loss 0.15575668 - time (sec): 21.00 - samples/sec: 1385.70 - lr: 0.000034 - momentum: 0.000000
2024-03-26 09:49:24,301 epoch 4 - iter 44/48 - loss 0.15602446 - time (sec): 22.98 - samples/sec: 1388.89 - lr: 0.000034 - momentum: 0.000000
2024-03-26 09:49:25,962 epoch 4 - iter 48/48 - loss 0.15352497 - time (sec): 24.65 - samples/sec: 1398.71 - lr: 0.000034 - momentum: 0.000000
2024-03-26 09:49:25,962 ----------------------------------------------------------------------------------------------------
2024-03-26 09:49:25,962 EPOCH 4 done: loss 0.1535 - lr: 0.000034
2024-03-26 09:49:26,859 DEV : loss 0.18054579198360443 - f1-score (micro avg) 0.8954
2024-03-26 09:49:26,860 saving best model
2024-03-26 09:49:27,332 ----------------------------------------------------------------------------------------------------
2024-03-26 09:49:28,158 epoch 5 - iter 4/48 - loss 0.08079552 - time (sec): 0.82 - samples/sec: 2226.15 - lr: 0.000033 - momentum: 0.000000
2024-03-26 09:49:29,524 epoch 5 - iter 8/48 - loss 0.10472471 - time (sec): 2.19 - samples/sec: 2030.78 - lr: 0.000033 - momentum: 0.000000
2024-03-26 09:49:32,260 epoch 5 - iter 12/48 - loss 0.10165691 - time (sec): 4.93 - samples/sec: 1620.07 - lr: 0.000032 - momentum: 0.000000
2024-03-26 09:49:35,210 epoch 5 - iter 16/48 - loss 0.09744302 - time (sec): 7.88 - samples/sec: 1432.77 - lr: 0.000032 - momentum: 0.000000
2024-03-26 09:49:36,587 epoch 5 - iter 20/48 - loss 0.10007066 - time (sec): 9.25 - samples/sec: 1483.65 - lr: 0.000031 - momentum: 0.000000
2024-03-26 09:49:39,035 epoch 5 - iter 24/48 - loss 0.09831137 - time (sec): 11.70 - samples/sec: 1432.01 - lr: 0.000031 - momentum: 0.000000
2024-03-26 09:49:41,096 epoch 5 - iter 28/48 - loss 0.09668980 - time (sec): 13.76 - samples/sec: 1419.78 - lr: 0.000030 - momentum: 0.000000
2024-03-26 09:49:43,343 epoch 5 - iter 32/48 - loss 0.09776114 - time (sec): 16.01 - samples/sec: 1446.91 - lr: 0.000030 - momentum: 0.000000
2024-03-26 09:49:44,798 epoch 5 - iter 36/48 - loss 0.10267083 - time (sec): 17.46 - samples/sec: 1470.89 - lr: 0.000029 - momentum: 0.000000
2024-03-26 09:49:47,328 epoch 5 - iter 40/48 - loss 0.09952572 - time (sec): 19.99 - samples/sec: 1420.97 - lr: 0.000029 - momentum: 0.000000
2024-03-26 09:49:49,405 epoch 5 - iter 44/48 - loss 0.09960116 - time (sec): 22.07 - samples/sec: 1433.36 - lr: 0.000029 - momentum: 0.000000
2024-03-26 09:49:51,340 epoch 5 - iter 48/48 - loss 0.09992566 - time (sec): 24.01 - samples/sec: 1435.95 - lr: 0.000028 - momentum: 0.000000
2024-03-26 09:49:51,341 ----------------------------------------------------------------------------------------------------
2024-03-26 09:49:51,341 EPOCH 5 done: loss 0.0999 - lr: 0.000028
2024-03-26 09:49:52,240 DEV : loss 0.16526347398757935 - f1-score (micro avg) 0.898
2024-03-26 09:49:52,241 saving best model
2024-03-26 09:49:52,672 ----------------------------------------------------------------------------------------------------
2024-03-26 09:49:54,247 epoch 6 - iter 4/48 - loss 0.07695899 - time (sec): 1.57 - samples/sec: 1583.06 - lr: 0.000028 - momentum: 0.000000
2024-03-26 09:49:56,630 epoch 6 - iter 8/48 - loss 0.08135486 - time (sec): 3.96 - samples/sec: 1617.83 - lr: 0.000027 - momentum: 0.000000
2024-03-26 09:49:58,553 epoch 6 - iter 12/48 - loss 0.08287219 - time (sec): 5.88 - samples/sec: 1540.90 - lr: 0.000027 - momentum: 0.000000
2024-03-26 09:50:00,545 epoch 6 - iter 16/48 - loss 0.08040351 - time (sec): 7.87 - samples/sec: 1540.60 - lr: 0.000026 - momentum: 0.000000
2024-03-26 09:50:03,274 epoch 6 - iter 20/48 - loss 0.08138121 - time (sec): 10.60 - samples/sec: 1507.26 - lr: 0.000026 - momentum: 0.000000
2024-03-26 09:50:04,781 epoch 6 - iter 24/48 - loss 0.09010974 - time (sec): 12.11 - samples/sec: 1528.95 - lr: 0.000025 - momentum: 0.000000
2024-03-26 09:50:06,134 epoch 6 - iter 28/48 - loss 0.09003451 - time (sec): 13.46 - samples/sec: 1535.59 - lr: 0.000025 - momentum: 0.000000
2024-03-26 09:50:07,290 epoch 6 - iter 32/48 - loss 0.08811901 - time (sec): 14.62 - samples/sec: 1556.50 - lr: 0.000024 - momentum: 0.000000
2024-03-26 09:50:08,750 epoch 6 - iter 36/48 - loss 0.08255487 - time (sec): 16.08 - samples/sec: 1588.29 - lr: 0.000024 - momentum: 0.000000
2024-03-26 09:50:10,642 epoch 6 - iter 40/48 - loss 0.08293763 - time (sec): 17.97 - samples/sec: 1577.18 - lr: 0.000023 - momentum: 0.000000
2024-03-26 09:50:12,807 epoch 6 - iter 44/48 - loss 0.07987206 - time (sec): 20.13 - samples/sec: 1597.11 - lr: 0.000023 - momentum: 0.000000
2024-03-26 09:50:14,448 epoch 6 - iter 48/48 - loss 0.07932191 - time (sec): 21.77 - samples/sec: 1583.18 - lr: 0.000023 - momentum: 0.000000
2024-03-26 09:50:14,448 ----------------------------------------------------------------------------------------------------
2024-03-26 09:50:14,448 EPOCH 6 done: loss 0.0793 - lr: 0.000023
2024-03-26 09:50:15,345 DEV : loss 0.15160244703292847 - f1-score (micro avg) 0.9208
2024-03-26 09:50:15,346 saving best model
2024-03-26 09:50:15,779 ----------------------------------------------------------------------------------------------------
2024-03-26 09:50:17,398 epoch 7 - iter 4/48 - loss 0.03393528 - time (sec): 1.62 - samples/sec: 1506.68 - lr: 0.000022 - momentum: 0.000000
2024-03-26 09:50:18,991 epoch 7 - iter 8/48 - loss 0.04828518 - time (sec): 3.21 - samples/sec: 1543.28 - lr: 0.000022 - momentum: 0.000000
2024-03-26 09:50:21,091 epoch 7 - iter 12/48 - loss 0.05131597 - time (sec): 5.31 - samples/sec: 1482.33 - lr: 0.000021 - momentum: 0.000000
2024-03-26 09:50:23,098 epoch 7 - iter 16/48 - loss 0.05011794 - time (sec): 7.32 - samples/sec: 1522.87 - lr: 0.000021 - momentum: 0.000000
2024-03-26 09:50:23,732 epoch 7 - iter 20/48 - loss 0.04799400 - time (sec): 7.95 - samples/sec: 1630.05 - lr: 0.000020 - momentum: 0.000000
2024-03-26 09:50:25,308 epoch 7 - iter 24/48 - loss 0.04996161 - time (sec): 9.53 - samples/sec: 1608.33 - lr: 0.000020 - momentum: 0.000000
2024-03-26 09:50:28,145 epoch 7 - iter 28/48 - loss 0.04902908 - time (sec): 12.36 - samples/sec: 1506.35 - lr: 0.000019 - momentum: 0.000000
2024-03-26 09:50:30,895 epoch 7 - iter 32/48 - loss 0.04822722 - time (sec): 15.11 - samples/sec: 1433.54 - lr: 0.000019 - momentum: 0.000000
2024-03-26 09:50:33,612 epoch 7 - iter 36/48 - loss 0.05162724 - time (sec): 17.83 - samples/sec: 1445.88 - lr: 0.000018 - momentum: 0.000000
2024-03-26 09:50:35,573 epoch 7 - iter 40/48 - loss 0.05440209 - time (sec): 19.79 - samples/sec: 1452.52 - lr: 0.000018 - momentum: 0.000000
2024-03-26 09:50:38,106 epoch 7 - iter 44/48 - loss 0.05663287 - time (sec): 22.32 - samples/sec: 1426.85 - lr: 0.000017 - momentum: 0.000000
2024-03-26 09:50:39,841 epoch 7 - iter 48/48 - loss 0.05640716 - time (sec): 24.06 - samples/sec: 1432.78 - lr: 0.000017 - momentum: 0.000000
2024-03-26 09:50:39,842 ----------------------------------------------------------------------------------------------------
2024-03-26 09:50:39,842 EPOCH 7 done: loss 0.0564 - lr: 0.000017
2024-03-26 09:50:40,741 DEV : loss 0.1558217704296112 - f1-score (micro avg) 0.9138
2024-03-26 09:50:40,742 ----------------------------------------------------------------------------------------------------
2024-03-26 09:50:43,456 epoch 8 - iter 4/48 - loss 0.05526487 - time (sec): 2.71 - samples/sec: 1217.07 - lr: 0.000017 - momentum: 0.000000
2024-03-26 09:50:45,503 epoch 8 - iter 8/48 - loss 0.04552815 - time (sec): 4.76 - samples/sec: 1232.56 - lr: 0.000016 - momentum: 0.000000
2024-03-26 09:50:48,677 epoch 8 - iter 12/48 - loss 0.04385440 - time (sec): 7.93 - samples/sec: 1221.41 - lr: 0.000016 - momentum: 0.000000
2024-03-26 09:50:50,591 epoch 8 - iter 16/48 - loss 0.05071680 - time (sec): 9.85 - samples/sec: 1253.33 - lr: 0.000015 - momentum: 0.000000
2024-03-26 09:50:52,022 epoch 8 - iter 20/48 - loss 0.04816494 - time (sec): 11.28 - samples/sec: 1301.96 - lr: 0.000015 - momentum: 0.000000
2024-03-26 09:50:54,424 epoch 8 - iter 24/48 - loss 0.04840064 - time (sec): 13.68 - samples/sec: 1304.28 - lr: 0.000014 - momentum: 0.000000
2024-03-26 09:50:56,158 epoch 8 - iter 28/48 - loss 0.05089514 - time (sec): 15.42 - samples/sec: 1341.41 - lr: 0.000014 - momentum: 0.000000
2024-03-26 09:50:57,810 epoch 8 - iter 32/48 - loss 0.04859750 - time (sec): 17.07 - samples/sec: 1363.04 - lr: 0.000013 - momentum: 0.000000
2024-03-26 09:50:59,089 epoch 8 - iter 36/48 - loss 0.04663531 - time (sec): 18.35 - samples/sec: 1394.40 - lr: 0.000013 - momentum: 0.000000
2024-03-26 09:51:01,385 epoch 8 - iter 40/48 - loss 0.04551566 - time (sec): 20.64 - samples/sec: 1404.50 - lr: 0.000012 - momentum: 0.000000
2024-03-26 09:51:04,178 epoch 8 - iter 44/48 - loss 0.04325259 - time (sec): 23.44 - samples/sec: 1374.72 - lr: 0.000012 - momentum: 0.000000
2024-03-26 09:51:06,078 epoch 8 - iter 48/48 - loss 0.04367567 - time (sec): 25.34 - samples/sec: 1360.59 - lr: 0.000011 - momentum: 0.000000
2024-03-26 09:51:06,079 ----------------------------------------------------------------------------------------------------
2024-03-26 09:51:06,079 EPOCH 8 done: loss 0.0437 - lr: 0.000011
2024-03-26 09:51:06,978 DEV : loss 0.1572684496641159 - f1-score (micro avg) 0.9364
2024-03-26 09:51:06,979 saving best model
2024-03-26 09:51:07,403 ----------------------------------------------------------------------------------------------------
2024-03-26 09:51:09,207 epoch 9 - iter 4/48 - loss 0.03484799 - time (sec): 1.80 - samples/sec: 1578.51 - lr: 0.000011 - momentum: 0.000000
2024-03-26 09:51:11,602 epoch 9 - iter 8/48 - loss 0.02955485 - time (sec): 4.20 - samples/sec: 1461.06 - lr: 0.000011 - momentum: 0.000000
2024-03-26 09:51:13,938 epoch 9 - iter 12/48 - loss 0.04064986 - time (sec): 6.53 - samples/sec: 1413.01 - lr: 0.000010 - momentum: 0.000000
2024-03-26 09:51:15,963 epoch 9 - iter 16/48 - loss 0.04182541 - time (sec): 8.56 - samples/sec: 1413.34 - lr: 0.000010 - momentum: 0.000000
2024-03-26 09:51:17,412 epoch 9 - iter 20/48 - loss 0.03717904 - time (sec): 10.01 - samples/sec: 1472.81 - lr: 0.000009 - momentum: 0.000000
2024-03-26 09:51:18,604 epoch 9 - iter 24/48 - loss 0.03459590 - time (sec): 11.20 - samples/sec: 1521.25 - lr: 0.000009 - momentum: 0.000000
2024-03-26 09:51:20,288 epoch 9 - iter 28/48 - loss 0.03321645 - time (sec): 12.88 - samples/sec: 1535.14 - lr: 0.000008 - momentum: 0.000000
2024-03-26 09:51:22,527 epoch 9 - iter 32/48 - loss 0.03736319 - time (sec): 15.12 - samples/sec: 1520.59 - lr: 0.000008 - momentum: 0.000000
2024-03-26 09:51:25,183 epoch 9 - iter 36/48 - loss 0.03761193 - time (sec): 17.78 - samples/sec: 1469.33 - lr: 0.000007 - momentum: 0.000000
2024-03-26 09:51:28,071 epoch 9 - iter 40/48 - loss 0.03806719 - time (sec): 20.67 - samples/sec: 1426.22 - lr: 0.000007 - momentum: 0.000000
2024-03-26 09:51:29,859 epoch 9 - iter 44/48 - loss 0.03734658 - time (sec): 22.45 - samples/sec: 1442.09 - lr: 0.000006 - momentum: 0.000000
2024-03-26 09:51:30,881 epoch 9 - iter 48/48 - loss 0.03713892 - time (sec): 23.48 - samples/sec: 1468.37 - lr: 0.000006 - momentum: 0.000000
2024-03-26 09:51:30,882 ----------------------------------------------------------------------------------------------------
2024-03-26 09:51:30,882 EPOCH 9 done: loss 0.0371 - lr: 0.000006
2024-03-26 09:51:31,787 DEV : loss 0.15151749551296234 - f1-score (micro avg) 0.933
2024-03-26 09:51:31,788 ----------------------------------------------------------------------------------------------------
2024-03-26 09:51:34,073 epoch 10 - iter 4/48 - loss 0.01152605 - time (sec): 2.28 - samples/sec: 1445.53 - lr: 0.000006 - momentum: 0.000000
2024-03-26 09:51:36,120 epoch 10 - iter 8/48 - loss 0.01842762 - time (sec): 4.33 - samples/sec: 1426.37 - lr: 0.000005 - momentum: 0.000000
2024-03-26 09:51:38,030 epoch 10 - iter 12/48 - loss 0.02046314 - time (sec): 6.24 - samples/sec: 1413.64 - lr: 0.000005 - momentum: 0.000000
2024-03-26 09:51:39,263 epoch 10 - iter 16/48 - loss 0.02028408 - time (sec): 7.47 - samples/sec: 1474.31 - lr: 0.000004 - momentum: 0.000000
2024-03-26 09:51:41,165 epoch 10 - iter 20/48 - loss 0.02706232 - time (sec): 9.38 - samples/sec: 1461.90 - lr: 0.000004 - momentum: 0.000000
2024-03-26 09:51:43,375 epoch 10 - iter 24/48 - loss 0.03307105 - time (sec): 11.59 - samples/sec: 1433.29 - lr: 0.000003 - momentum: 0.000000
2024-03-26 09:51:44,257 epoch 10 - iter 28/48 - loss 0.03239851 - time (sec): 12.47 - samples/sec: 1506.88 - lr: 0.000003 - momentum: 0.000000
2024-03-26 09:51:45,511 epoch 10 - iter 32/48 - loss 0.03121566 - time (sec): 13.72 - samples/sec: 1547.75 - lr: 0.000002 - momentum: 0.000000
2024-03-26 09:51:48,258 epoch 10 - iter 36/48 - loss 0.03064417 - time (sec): 16.47 - samples/sec: 1499.26 - lr: 0.000002 - momentum: 0.000000
2024-03-26 09:51:50,642 epoch 10 - iter 40/48 - loss 0.03093211 - time (sec): 18.85 - samples/sec: 1525.02 - lr: 0.000001 - momentum: 0.000000
2024-03-26 09:51:53,171 epoch 10 - iter 44/48 - loss 0.03125066 - time (sec): 21.38 - samples/sec: 1499.97 - lr: 0.000001 - momentum: 0.000000
2024-03-26 09:51:55,073 epoch 10 - iter 48/48 - loss 0.03079486 - time (sec): 23.28 - samples/sec: 1480.44 - lr: 0.000000 - momentum: 0.000000
2024-03-26 09:51:55,074 ----------------------------------------------------------------------------------------------------
2024-03-26 09:51:55,074 EPOCH 10 done: loss 0.0308 - lr: 0.000000
2024-03-26 09:51:55,970 DEV : loss 0.15536418557167053 - f1-score (micro avg) 0.9251
2024-03-26 09:51:56,252 ----------------------------------------------------------------------------------------------------
2024-03-26 09:51:56,252 Loading model from best epoch ...
2024-03-26 09:51:57,139 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
2024-03-26 09:51:57,975
Results:
- F-score (micro) 0.9103
- F-score (macro) 0.6921
- Accuracy 0.8378
By class:
precision recall f1-score support
Unternehmen 0.9080 0.8910 0.8994 266
Auslagerung 0.8577 0.9197 0.8876 249
Ort 0.9708 0.9925 0.9815 134
Software 0.0000 0.0000 0.0000 0
micro avg 0.8981 0.9230 0.9103 649
macro avg 0.6841 0.7008 0.6921 649
weighted avg 0.9017 0.9230 0.9118 649
2024-03-26 09:51:57,975 ----------------------------------------------------------------------------------------------------
|