File size: 26,566 Bytes
7f797cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
2024-03-26 09:47:48,954 ----------------------------------------------------------------------------------------------------
2024-03-26 09:47:48,954 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(31103, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=17, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2024-03-26 09:47:48,954 ----------------------------------------------------------------------------------------------------
2024-03-26 09:47:48,955 Corpus: 758 train + 94 dev + 96 test sentences
2024-03-26 09:47:48,955 ----------------------------------------------------------------------------------------------------
2024-03-26 09:47:48,955 Train:  758 sentences
2024-03-26 09:47:48,955         (train_with_dev=False, train_with_test=False)
2024-03-26 09:47:48,955 ----------------------------------------------------------------------------------------------------
2024-03-26 09:47:48,955 Training Params:
2024-03-26 09:47:48,955  - learning_rate: "5e-05" 
2024-03-26 09:47:48,955  - mini_batch_size: "16"
2024-03-26 09:47:48,955  - max_epochs: "10"
2024-03-26 09:47:48,955  - shuffle: "True"
2024-03-26 09:47:48,955 ----------------------------------------------------------------------------------------------------
2024-03-26 09:47:48,955 Plugins:
2024-03-26 09:47:48,955  - TensorboardLogger
2024-03-26 09:47:48,955  - LinearScheduler | warmup_fraction: '0.1'
2024-03-26 09:47:48,955 ----------------------------------------------------------------------------------------------------
2024-03-26 09:47:48,955 Final evaluation on model from best epoch (best-model.pt)
2024-03-26 09:47:48,955  - metric: "('micro avg', 'f1-score')"
2024-03-26 09:47:48,955 ----------------------------------------------------------------------------------------------------
2024-03-26 09:47:48,955 Computation:
2024-03-26 09:47:48,955  - compute on device: cuda:0
2024-03-26 09:47:48,955  - embedding storage: none
2024-03-26 09:47:48,955 ----------------------------------------------------------------------------------------------------
2024-03-26 09:47:48,955 Model training base path: "flair-co-funer-gbert_base-bs16-e10-lr5e-05-2"
2024-03-26 09:47:48,955 ----------------------------------------------------------------------------------------------------
2024-03-26 09:47:48,955 ----------------------------------------------------------------------------------------------------
2024-03-26 09:47:48,955 Logging anything other than scalars to TensorBoard is currently not supported.
2024-03-26 09:47:50,666 epoch 1 - iter 4/48 - loss 3.53642249 - time (sec): 1.71 - samples/sec: 1765.99 - lr: 0.000003 - momentum: 0.000000
2024-03-26 09:47:52,742 epoch 1 - iter 8/48 - loss 3.42388110 - time (sec): 3.79 - samples/sec: 1639.55 - lr: 0.000007 - momentum: 0.000000
2024-03-26 09:47:54,571 epoch 1 - iter 12/48 - loss 3.28212646 - time (sec): 5.62 - samples/sec: 1587.46 - lr: 0.000011 - momentum: 0.000000
2024-03-26 09:47:56,564 epoch 1 - iter 16/48 - loss 3.05656396 - time (sec): 7.61 - samples/sec: 1594.65 - lr: 0.000016 - momentum: 0.000000
2024-03-26 09:47:58,739 epoch 1 - iter 20/48 - loss 2.85927097 - time (sec): 9.78 - samples/sec: 1561.84 - lr: 0.000020 - momentum: 0.000000
2024-03-26 09:48:01,755 epoch 1 - iter 24/48 - loss 2.71663771 - time (sec): 12.80 - samples/sec: 1420.28 - lr: 0.000024 - momentum: 0.000000
2024-03-26 09:48:04,147 epoch 1 - iter 28/48 - loss 2.57661348 - time (sec): 15.19 - samples/sec: 1402.94 - lr: 0.000028 - momentum: 0.000000
2024-03-26 09:48:04,965 epoch 1 - iter 32/48 - loss 2.47900786 - time (sec): 16.01 - samples/sec: 1458.52 - lr: 0.000032 - momentum: 0.000000
2024-03-26 09:48:06,218 epoch 1 - iter 36/48 - loss 2.36200311 - time (sec): 17.26 - samples/sec: 1514.86 - lr: 0.000036 - momentum: 0.000000
2024-03-26 09:48:08,077 epoch 1 - iter 40/48 - loss 2.25770330 - time (sec): 19.12 - samples/sec: 1521.40 - lr: 0.000041 - momentum: 0.000000
2024-03-26 09:48:09,948 epoch 1 - iter 44/48 - loss 2.14726220 - time (sec): 20.99 - samples/sec: 1521.98 - lr: 0.000045 - momentum: 0.000000
2024-03-26 09:48:11,291 epoch 1 - iter 48/48 - loss 2.05694147 - time (sec): 22.34 - samples/sec: 1543.33 - lr: 0.000049 - momentum: 0.000000
2024-03-26 09:48:11,292 ----------------------------------------------------------------------------------------------------
2024-03-26 09:48:11,292 EPOCH 1 done: loss 2.0569 - lr: 0.000049
2024-03-26 09:48:12,093 DEV : loss 0.5836076736450195 - f1-score (micro avg)  0.6019
2024-03-26 09:48:12,094 saving best model
2024-03-26 09:48:12,373 ----------------------------------------------------------------------------------------------------
2024-03-26 09:48:13,675 epoch 2 - iter 4/48 - loss 0.88111172 - time (sec): 1.30 - samples/sec: 2230.04 - lr: 0.000050 - momentum: 0.000000
2024-03-26 09:48:15,489 epoch 2 - iter 8/48 - loss 0.72062731 - time (sec): 3.11 - samples/sec: 1957.65 - lr: 0.000049 - momentum: 0.000000
2024-03-26 09:48:18,899 epoch 2 - iter 12/48 - loss 0.62239608 - time (sec): 6.52 - samples/sec: 1559.76 - lr: 0.000049 - momentum: 0.000000
2024-03-26 09:48:21,358 epoch 2 - iter 16/48 - loss 0.57386908 - time (sec): 8.98 - samples/sec: 1482.50 - lr: 0.000048 - momentum: 0.000000
2024-03-26 09:48:23,990 epoch 2 - iter 20/48 - loss 0.53883182 - time (sec): 11.62 - samples/sec: 1430.14 - lr: 0.000048 - momentum: 0.000000
2024-03-26 09:48:25,862 epoch 2 - iter 24/48 - loss 0.50635336 - time (sec): 13.49 - samples/sec: 1429.34 - lr: 0.000047 - momentum: 0.000000
2024-03-26 09:48:27,632 epoch 2 - iter 28/48 - loss 0.50264568 - time (sec): 15.26 - samples/sec: 1437.42 - lr: 0.000047 - momentum: 0.000000
2024-03-26 09:48:29,329 epoch 2 - iter 32/48 - loss 0.49297626 - time (sec): 16.95 - samples/sec: 1451.15 - lr: 0.000046 - momentum: 0.000000
2024-03-26 09:48:31,161 epoch 2 - iter 36/48 - loss 0.48197253 - time (sec): 18.79 - samples/sec: 1460.12 - lr: 0.000046 - momentum: 0.000000
2024-03-26 09:48:32,170 epoch 2 - iter 40/48 - loss 0.47295079 - time (sec): 19.80 - samples/sec: 1507.97 - lr: 0.000046 - momentum: 0.000000
2024-03-26 09:48:33,591 epoch 2 - iter 44/48 - loss 0.47014713 - time (sec): 21.22 - samples/sec: 1527.80 - lr: 0.000045 - momentum: 0.000000
2024-03-26 09:48:35,108 epoch 2 - iter 48/48 - loss 0.45670664 - time (sec): 22.73 - samples/sec: 1516.34 - lr: 0.000045 - momentum: 0.000000
2024-03-26 09:48:35,108 ----------------------------------------------------------------------------------------------------
2024-03-26 09:48:35,108 EPOCH 2 done: loss 0.4567 - lr: 0.000045
2024-03-26 09:48:36,014 DEV : loss 0.2943086624145508 - f1-score (micro avg)  0.8037
2024-03-26 09:48:36,017 saving best model
2024-03-26 09:48:36,504 ----------------------------------------------------------------------------------------------------
2024-03-26 09:48:39,054 epoch 3 - iter 4/48 - loss 0.28683702 - time (sec): 2.55 - samples/sec: 1180.57 - lr: 0.000044 - momentum: 0.000000
2024-03-26 09:48:41,186 epoch 3 - iter 8/48 - loss 0.28361676 - time (sec): 4.68 - samples/sec: 1356.68 - lr: 0.000044 - momentum: 0.000000
2024-03-26 09:48:42,755 epoch 3 - iter 12/48 - loss 0.29235243 - time (sec): 6.25 - samples/sec: 1419.71 - lr: 0.000043 - momentum: 0.000000
2024-03-26 09:48:44,487 epoch 3 - iter 16/48 - loss 0.27063291 - time (sec): 7.98 - samples/sec: 1423.98 - lr: 0.000043 - momentum: 0.000000
2024-03-26 09:48:45,629 epoch 3 - iter 20/48 - loss 0.27417182 - time (sec): 9.12 - samples/sec: 1499.70 - lr: 0.000042 - momentum: 0.000000
2024-03-26 09:48:47,465 epoch 3 - iter 24/48 - loss 0.28225090 - time (sec): 10.96 - samples/sec: 1501.48 - lr: 0.000042 - momentum: 0.000000
2024-03-26 09:48:49,904 epoch 3 - iter 28/48 - loss 0.27774390 - time (sec): 13.40 - samples/sec: 1443.98 - lr: 0.000041 - momentum: 0.000000
2024-03-26 09:48:51,742 epoch 3 - iter 32/48 - loss 0.27232927 - time (sec): 15.24 - samples/sec: 1453.05 - lr: 0.000041 - momentum: 0.000000
2024-03-26 09:48:53,165 epoch 3 - iter 36/48 - loss 0.26448046 - time (sec): 16.66 - samples/sec: 1487.41 - lr: 0.000040 - momentum: 0.000000
2024-03-26 09:48:55,424 epoch 3 - iter 40/48 - loss 0.25424281 - time (sec): 18.92 - samples/sec: 1459.40 - lr: 0.000040 - momentum: 0.000000
2024-03-26 09:48:58,678 epoch 3 - iter 44/48 - loss 0.23593615 - time (sec): 22.17 - samples/sec: 1453.31 - lr: 0.000040 - momentum: 0.000000
2024-03-26 09:48:59,937 epoch 3 - iter 48/48 - loss 0.23057082 - time (sec): 23.43 - samples/sec: 1471.19 - lr: 0.000039 - momentum: 0.000000
2024-03-26 09:48:59,937 ----------------------------------------------------------------------------------------------------
2024-03-26 09:48:59,937 EPOCH 3 done: loss 0.2306 - lr: 0.000039
2024-03-26 09:49:00,848 DEV : loss 0.22804519534111023 - f1-score (micro avg)  0.8586
2024-03-26 09:49:00,849 saving best model
2024-03-26 09:49:01,314 ----------------------------------------------------------------------------------------------------
2024-03-26 09:49:02,868 epoch 4 - iter 4/48 - loss 0.21189672 - time (sec): 1.55 - samples/sec: 1642.81 - lr: 0.000039 - momentum: 0.000000
2024-03-26 09:49:05,156 epoch 4 - iter 8/48 - loss 0.17986344 - time (sec): 3.84 - samples/sec: 1560.59 - lr: 0.000038 - momentum: 0.000000
2024-03-26 09:49:06,395 epoch 4 - iter 12/48 - loss 0.17779364 - time (sec): 5.08 - samples/sec: 1645.64 - lr: 0.000038 - momentum: 0.000000
2024-03-26 09:49:08,607 epoch 4 - iter 16/48 - loss 0.17969234 - time (sec): 7.29 - samples/sec: 1546.22 - lr: 0.000037 - momentum: 0.000000
2024-03-26 09:49:11,130 epoch 4 - iter 20/48 - loss 0.16736457 - time (sec): 9.81 - samples/sec: 1424.67 - lr: 0.000037 - momentum: 0.000000
2024-03-26 09:49:13,147 epoch 4 - iter 24/48 - loss 0.17458547 - time (sec): 11.83 - samples/sec: 1422.92 - lr: 0.000036 - momentum: 0.000000
2024-03-26 09:49:15,272 epoch 4 - iter 28/48 - loss 0.17017034 - time (sec): 13.96 - samples/sec: 1425.49 - lr: 0.000036 - momentum: 0.000000
2024-03-26 09:49:17,828 epoch 4 - iter 32/48 - loss 0.16887576 - time (sec): 16.51 - samples/sec: 1396.54 - lr: 0.000035 - momentum: 0.000000
2024-03-26 09:49:20,631 epoch 4 - iter 36/48 - loss 0.16050873 - time (sec): 19.32 - samples/sec: 1384.91 - lr: 0.000035 - momentum: 0.000000
2024-03-26 09:49:22,312 epoch 4 - iter 40/48 - loss 0.15575668 - time (sec): 21.00 - samples/sec: 1385.70 - lr: 0.000034 - momentum: 0.000000
2024-03-26 09:49:24,301 epoch 4 - iter 44/48 - loss 0.15602446 - time (sec): 22.98 - samples/sec: 1388.89 - lr: 0.000034 - momentum: 0.000000
2024-03-26 09:49:25,962 epoch 4 - iter 48/48 - loss 0.15352497 - time (sec): 24.65 - samples/sec: 1398.71 - lr: 0.000034 - momentum: 0.000000
2024-03-26 09:49:25,962 ----------------------------------------------------------------------------------------------------
2024-03-26 09:49:25,962 EPOCH 4 done: loss 0.1535 - lr: 0.000034
2024-03-26 09:49:26,859 DEV : loss 0.18054579198360443 - f1-score (micro avg)  0.8954
2024-03-26 09:49:26,860 saving best model
2024-03-26 09:49:27,332 ----------------------------------------------------------------------------------------------------
2024-03-26 09:49:28,158 epoch 5 - iter 4/48 - loss 0.08079552 - time (sec): 0.82 - samples/sec: 2226.15 - lr: 0.000033 - momentum: 0.000000
2024-03-26 09:49:29,524 epoch 5 - iter 8/48 - loss 0.10472471 - time (sec): 2.19 - samples/sec: 2030.78 - lr: 0.000033 - momentum: 0.000000
2024-03-26 09:49:32,260 epoch 5 - iter 12/48 - loss 0.10165691 - time (sec): 4.93 - samples/sec: 1620.07 - lr: 0.000032 - momentum: 0.000000
2024-03-26 09:49:35,210 epoch 5 - iter 16/48 - loss 0.09744302 - time (sec): 7.88 - samples/sec: 1432.77 - lr: 0.000032 - momentum: 0.000000
2024-03-26 09:49:36,587 epoch 5 - iter 20/48 - loss 0.10007066 - time (sec): 9.25 - samples/sec: 1483.65 - lr: 0.000031 - momentum: 0.000000
2024-03-26 09:49:39,035 epoch 5 - iter 24/48 - loss 0.09831137 - time (sec): 11.70 - samples/sec: 1432.01 - lr: 0.000031 - momentum: 0.000000
2024-03-26 09:49:41,096 epoch 5 - iter 28/48 - loss 0.09668980 - time (sec): 13.76 - samples/sec: 1419.78 - lr: 0.000030 - momentum: 0.000000
2024-03-26 09:49:43,343 epoch 5 - iter 32/48 - loss 0.09776114 - time (sec): 16.01 - samples/sec: 1446.91 - lr: 0.000030 - momentum: 0.000000
2024-03-26 09:49:44,798 epoch 5 - iter 36/48 - loss 0.10267083 - time (sec): 17.46 - samples/sec: 1470.89 - lr: 0.000029 - momentum: 0.000000
2024-03-26 09:49:47,328 epoch 5 - iter 40/48 - loss 0.09952572 - time (sec): 19.99 - samples/sec: 1420.97 - lr: 0.000029 - momentum: 0.000000
2024-03-26 09:49:49,405 epoch 5 - iter 44/48 - loss 0.09960116 - time (sec): 22.07 - samples/sec: 1433.36 - lr: 0.000029 - momentum: 0.000000
2024-03-26 09:49:51,340 epoch 5 - iter 48/48 - loss 0.09992566 - time (sec): 24.01 - samples/sec: 1435.95 - lr: 0.000028 - momentum: 0.000000
2024-03-26 09:49:51,341 ----------------------------------------------------------------------------------------------------
2024-03-26 09:49:51,341 EPOCH 5 done: loss 0.0999 - lr: 0.000028
2024-03-26 09:49:52,240 DEV : loss 0.16526347398757935 - f1-score (micro avg)  0.898
2024-03-26 09:49:52,241 saving best model
2024-03-26 09:49:52,672 ----------------------------------------------------------------------------------------------------
2024-03-26 09:49:54,247 epoch 6 - iter 4/48 - loss 0.07695899 - time (sec): 1.57 - samples/sec: 1583.06 - lr: 0.000028 - momentum: 0.000000
2024-03-26 09:49:56,630 epoch 6 - iter 8/48 - loss 0.08135486 - time (sec): 3.96 - samples/sec: 1617.83 - lr: 0.000027 - momentum: 0.000000
2024-03-26 09:49:58,553 epoch 6 - iter 12/48 - loss 0.08287219 - time (sec): 5.88 - samples/sec: 1540.90 - lr: 0.000027 - momentum: 0.000000
2024-03-26 09:50:00,545 epoch 6 - iter 16/48 - loss 0.08040351 - time (sec): 7.87 - samples/sec: 1540.60 - lr: 0.000026 - momentum: 0.000000
2024-03-26 09:50:03,274 epoch 6 - iter 20/48 - loss 0.08138121 - time (sec): 10.60 - samples/sec: 1507.26 - lr: 0.000026 - momentum: 0.000000
2024-03-26 09:50:04,781 epoch 6 - iter 24/48 - loss 0.09010974 - time (sec): 12.11 - samples/sec: 1528.95 - lr: 0.000025 - momentum: 0.000000
2024-03-26 09:50:06,134 epoch 6 - iter 28/48 - loss 0.09003451 - time (sec): 13.46 - samples/sec: 1535.59 - lr: 0.000025 - momentum: 0.000000
2024-03-26 09:50:07,290 epoch 6 - iter 32/48 - loss 0.08811901 - time (sec): 14.62 - samples/sec: 1556.50 - lr: 0.000024 - momentum: 0.000000
2024-03-26 09:50:08,750 epoch 6 - iter 36/48 - loss 0.08255487 - time (sec): 16.08 - samples/sec: 1588.29 - lr: 0.000024 - momentum: 0.000000
2024-03-26 09:50:10,642 epoch 6 - iter 40/48 - loss 0.08293763 - time (sec): 17.97 - samples/sec: 1577.18 - lr: 0.000023 - momentum: 0.000000
2024-03-26 09:50:12,807 epoch 6 - iter 44/48 - loss 0.07987206 - time (sec): 20.13 - samples/sec: 1597.11 - lr: 0.000023 - momentum: 0.000000
2024-03-26 09:50:14,448 epoch 6 - iter 48/48 - loss 0.07932191 - time (sec): 21.77 - samples/sec: 1583.18 - lr: 0.000023 - momentum: 0.000000
2024-03-26 09:50:14,448 ----------------------------------------------------------------------------------------------------
2024-03-26 09:50:14,448 EPOCH 6 done: loss 0.0793 - lr: 0.000023
2024-03-26 09:50:15,345 DEV : loss 0.15160244703292847 - f1-score (micro avg)  0.9208
2024-03-26 09:50:15,346 saving best model
2024-03-26 09:50:15,779 ----------------------------------------------------------------------------------------------------
2024-03-26 09:50:17,398 epoch 7 - iter 4/48 - loss 0.03393528 - time (sec): 1.62 - samples/sec: 1506.68 - lr: 0.000022 - momentum: 0.000000
2024-03-26 09:50:18,991 epoch 7 - iter 8/48 - loss 0.04828518 - time (sec): 3.21 - samples/sec: 1543.28 - lr: 0.000022 - momentum: 0.000000
2024-03-26 09:50:21,091 epoch 7 - iter 12/48 - loss 0.05131597 - time (sec): 5.31 - samples/sec: 1482.33 - lr: 0.000021 - momentum: 0.000000
2024-03-26 09:50:23,098 epoch 7 - iter 16/48 - loss 0.05011794 - time (sec): 7.32 - samples/sec: 1522.87 - lr: 0.000021 - momentum: 0.000000
2024-03-26 09:50:23,732 epoch 7 - iter 20/48 - loss 0.04799400 - time (sec): 7.95 - samples/sec: 1630.05 - lr: 0.000020 - momentum: 0.000000
2024-03-26 09:50:25,308 epoch 7 - iter 24/48 - loss 0.04996161 - time (sec): 9.53 - samples/sec: 1608.33 - lr: 0.000020 - momentum: 0.000000
2024-03-26 09:50:28,145 epoch 7 - iter 28/48 - loss 0.04902908 - time (sec): 12.36 - samples/sec: 1506.35 - lr: 0.000019 - momentum: 0.000000
2024-03-26 09:50:30,895 epoch 7 - iter 32/48 - loss 0.04822722 - time (sec): 15.11 - samples/sec: 1433.54 - lr: 0.000019 - momentum: 0.000000
2024-03-26 09:50:33,612 epoch 7 - iter 36/48 - loss 0.05162724 - time (sec): 17.83 - samples/sec: 1445.88 - lr: 0.000018 - momentum: 0.000000
2024-03-26 09:50:35,573 epoch 7 - iter 40/48 - loss 0.05440209 - time (sec): 19.79 - samples/sec: 1452.52 - lr: 0.000018 - momentum: 0.000000
2024-03-26 09:50:38,106 epoch 7 - iter 44/48 - loss 0.05663287 - time (sec): 22.32 - samples/sec: 1426.85 - lr: 0.000017 - momentum: 0.000000
2024-03-26 09:50:39,841 epoch 7 - iter 48/48 - loss 0.05640716 - time (sec): 24.06 - samples/sec: 1432.78 - lr: 0.000017 - momentum: 0.000000
2024-03-26 09:50:39,842 ----------------------------------------------------------------------------------------------------
2024-03-26 09:50:39,842 EPOCH 7 done: loss 0.0564 - lr: 0.000017
2024-03-26 09:50:40,741 DEV : loss 0.1558217704296112 - f1-score (micro avg)  0.9138
2024-03-26 09:50:40,742 ----------------------------------------------------------------------------------------------------
2024-03-26 09:50:43,456 epoch 8 - iter 4/48 - loss 0.05526487 - time (sec): 2.71 - samples/sec: 1217.07 - lr: 0.000017 - momentum: 0.000000
2024-03-26 09:50:45,503 epoch 8 - iter 8/48 - loss 0.04552815 - time (sec): 4.76 - samples/sec: 1232.56 - lr: 0.000016 - momentum: 0.000000
2024-03-26 09:50:48,677 epoch 8 - iter 12/48 - loss 0.04385440 - time (sec): 7.93 - samples/sec: 1221.41 - lr: 0.000016 - momentum: 0.000000
2024-03-26 09:50:50,591 epoch 8 - iter 16/48 - loss 0.05071680 - time (sec): 9.85 - samples/sec: 1253.33 - lr: 0.000015 - momentum: 0.000000
2024-03-26 09:50:52,022 epoch 8 - iter 20/48 - loss 0.04816494 - time (sec): 11.28 - samples/sec: 1301.96 - lr: 0.000015 - momentum: 0.000000
2024-03-26 09:50:54,424 epoch 8 - iter 24/48 - loss 0.04840064 - time (sec): 13.68 - samples/sec: 1304.28 - lr: 0.000014 - momentum: 0.000000
2024-03-26 09:50:56,158 epoch 8 - iter 28/48 - loss 0.05089514 - time (sec): 15.42 - samples/sec: 1341.41 - lr: 0.000014 - momentum: 0.000000
2024-03-26 09:50:57,810 epoch 8 - iter 32/48 - loss 0.04859750 - time (sec): 17.07 - samples/sec: 1363.04 - lr: 0.000013 - momentum: 0.000000
2024-03-26 09:50:59,089 epoch 8 - iter 36/48 - loss 0.04663531 - time (sec): 18.35 - samples/sec: 1394.40 - lr: 0.000013 - momentum: 0.000000
2024-03-26 09:51:01,385 epoch 8 - iter 40/48 - loss 0.04551566 - time (sec): 20.64 - samples/sec: 1404.50 - lr: 0.000012 - momentum: 0.000000
2024-03-26 09:51:04,178 epoch 8 - iter 44/48 - loss 0.04325259 - time (sec): 23.44 - samples/sec: 1374.72 - lr: 0.000012 - momentum: 0.000000
2024-03-26 09:51:06,078 epoch 8 - iter 48/48 - loss 0.04367567 - time (sec): 25.34 - samples/sec: 1360.59 - lr: 0.000011 - momentum: 0.000000
2024-03-26 09:51:06,079 ----------------------------------------------------------------------------------------------------
2024-03-26 09:51:06,079 EPOCH 8 done: loss 0.0437 - lr: 0.000011
2024-03-26 09:51:06,978 DEV : loss 0.1572684496641159 - f1-score (micro avg)  0.9364
2024-03-26 09:51:06,979 saving best model
2024-03-26 09:51:07,403 ----------------------------------------------------------------------------------------------------
2024-03-26 09:51:09,207 epoch 9 - iter 4/48 - loss 0.03484799 - time (sec): 1.80 - samples/sec: 1578.51 - lr: 0.000011 - momentum: 0.000000
2024-03-26 09:51:11,602 epoch 9 - iter 8/48 - loss 0.02955485 - time (sec): 4.20 - samples/sec: 1461.06 - lr: 0.000011 - momentum: 0.000000
2024-03-26 09:51:13,938 epoch 9 - iter 12/48 - loss 0.04064986 - time (sec): 6.53 - samples/sec: 1413.01 - lr: 0.000010 - momentum: 0.000000
2024-03-26 09:51:15,963 epoch 9 - iter 16/48 - loss 0.04182541 - time (sec): 8.56 - samples/sec: 1413.34 - lr: 0.000010 - momentum: 0.000000
2024-03-26 09:51:17,412 epoch 9 - iter 20/48 - loss 0.03717904 - time (sec): 10.01 - samples/sec: 1472.81 - lr: 0.000009 - momentum: 0.000000
2024-03-26 09:51:18,604 epoch 9 - iter 24/48 - loss 0.03459590 - time (sec): 11.20 - samples/sec: 1521.25 - lr: 0.000009 - momentum: 0.000000
2024-03-26 09:51:20,288 epoch 9 - iter 28/48 - loss 0.03321645 - time (sec): 12.88 - samples/sec: 1535.14 - lr: 0.000008 - momentum: 0.000000
2024-03-26 09:51:22,527 epoch 9 - iter 32/48 - loss 0.03736319 - time (sec): 15.12 - samples/sec: 1520.59 - lr: 0.000008 - momentum: 0.000000
2024-03-26 09:51:25,183 epoch 9 - iter 36/48 - loss 0.03761193 - time (sec): 17.78 - samples/sec: 1469.33 - lr: 0.000007 - momentum: 0.000000
2024-03-26 09:51:28,071 epoch 9 - iter 40/48 - loss 0.03806719 - time (sec): 20.67 - samples/sec: 1426.22 - lr: 0.000007 - momentum: 0.000000
2024-03-26 09:51:29,859 epoch 9 - iter 44/48 - loss 0.03734658 - time (sec): 22.45 - samples/sec: 1442.09 - lr: 0.000006 - momentum: 0.000000
2024-03-26 09:51:30,881 epoch 9 - iter 48/48 - loss 0.03713892 - time (sec): 23.48 - samples/sec: 1468.37 - lr: 0.000006 - momentum: 0.000000
2024-03-26 09:51:30,882 ----------------------------------------------------------------------------------------------------
2024-03-26 09:51:30,882 EPOCH 9 done: loss 0.0371 - lr: 0.000006
2024-03-26 09:51:31,787 DEV : loss 0.15151749551296234 - f1-score (micro avg)  0.933
2024-03-26 09:51:31,788 ----------------------------------------------------------------------------------------------------
2024-03-26 09:51:34,073 epoch 10 - iter 4/48 - loss 0.01152605 - time (sec): 2.28 - samples/sec: 1445.53 - lr: 0.000006 - momentum: 0.000000
2024-03-26 09:51:36,120 epoch 10 - iter 8/48 - loss 0.01842762 - time (sec): 4.33 - samples/sec: 1426.37 - lr: 0.000005 - momentum: 0.000000
2024-03-26 09:51:38,030 epoch 10 - iter 12/48 - loss 0.02046314 - time (sec): 6.24 - samples/sec: 1413.64 - lr: 0.000005 - momentum: 0.000000
2024-03-26 09:51:39,263 epoch 10 - iter 16/48 - loss 0.02028408 - time (sec): 7.47 - samples/sec: 1474.31 - lr: 0.000004 - momentum: 0.000000
2024-03-26 09:51:41,165 epoch 10 - iter 20/48 - loss 0.02706232 - time (sec): 9.38 - samples/sec: 1461.90 - lr: 0.000004 - momentum: 0.000000
2024-03-26 09:51:43,375 epoch 10 - iter 24/48 - loss 0.03307105 - time (sec): 11.59 - samples/sec: 1433.29 - lr: 0.000003 - momentum: 0.000000
2024-03-26 09:51:44,257 epoch 10 - iter 28/48 - loss 0.03239851 - time (sec): 12.47 - samples/sec: 1506.88 - lr: 0.000003 - momentum: 0.000000
2024-03-26 09:51:45,511 epoch 10 - iter 32/48 - loss 0.03121566 - time (sec): 13.72 - samples/sec: 1547.75 - lr: 0.000002 - momentum: 0.000000
2024-03-26 09:51:48,258 epoch 10 - iter 36/48 - loss 0.03064417 - time (sec): 16.47 - samples/sec: 1499.26 - lr: 0.000002 - momentum: 0.000000
2024-03-26 09:51:50,642 epoch 10 - iter 40/48 - loss 0.03093211 - time (sec): 18.85 - samples/sec: 1525.02 - lr: 0.000001 - momentum: 0.000000
2024-03-26 09:51:53,171 epoch 10 - iter 44/48 - loss 0.03125066 - time (sec): 21.38 - samples/sec: 1499.97 - lr: 0.000001 - momentum: 0.000000
2024-03-26 09:51:55,073 epoch 10 - iter 48/48 - loss 0.03079486 - time (sec): 23.28 - samples/sec: 1480.44 - lr: 0.000000 - momentum: 0.000000
2024-03-26 09:51:55,074 ----------------------------------------------------------------------------------------------------
2024-03-26 09:51:55,074 EPOCH 10 done: loss 0.0308 - lr: 0.000000
2024-03-26 09:51:55,970 DEV : loss 0.15536418557167053 - f1-score (micro avg)  0.9251
2024-03-26 09:51:56,252 ----------------------------------------------------------------------------------------------------
2024-03-26 09:51:56,252 Loading model from best epoch ...
2024-03-26 09:51:57,139 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
2024-03-26 09:51:57,975 
Results:
- F-score (micro) 0.9103
- F-score (macro) 0.6921
- Accuracy 0.8378

By class:
              precision    recall  f1-score   support

 Unternehmen     0.9080    0.8910    0.8994       266
 Auslagerung     0.8577    0.9197    0.8876       249
         Ort     0.9708    0.9925    0.9815       134
    Software     0.0000    0.0000    0.0000         0

   micro avg     0.8981    0.9230    0.9103       649
   macro avg     0.6841    0.7008    0.6921       649
weighted avg     0.9017    0.9230    0.9118       649

2024-03-26 09:51:57,975 ----------------------------------------------------------------------------------------------------