File size: 26,652 Bytes
eb9a1f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
2024-03-26 09:31:31,802 ----------------------------------------------------------------------------------------------------
2024-03-26 09:31:31,803 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(31103, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=17, bias=True)
(loss_function): CrossEntropyLoss()
)"
2024-03-26 09:31:31,803 ----------------------------------------------------------------------------------------------------
2024-03-26 09:31:31,803 Corpus: 758 train + 94 dev + 96 test sentences
2024-03-26 09:31:31,803 ----------------------------------------------------------------------------------------------------
2024-03-26 09:31:31,803 Train: 758 sentences
2024-03-26 09:31:31,803 (train_with_dev=False, train_with_test=False)
2024-03-26 09:31:31,803 ----------------------------------------------------------------------------------------------------
2024-03-26 09:31:31,803 Training Params:
2024-03-26 09:31:31,803 - learning_rate: "5e-05"
2024-03-26 09:31:31,803 - mini_batch_size: "16"
2024-03-26 09:31:31,803 - max_epochs: "10"
2024-03-26 09:31:31,803 - shuffle: "True"
2024-03-26 09:31:31,803 ----------------------------------------------------------------------------------------------------
2024-03-26 09:31:31,803 Plugins:
2024-03-26 09:31:31,803 - TensorboardLogger
2024-03-26 09:31:31,803 - LinearScheduler | warmup_fraction: '0.1'
2024-03-26 09:31:31,803 ----------------------------------------------------------------------------------------------------
2024-03-26 09:31:31,803 Final evaluation on model from best epoch (best-model.pt)
2024-03-26 09:31:31,803 - metric: "('micro avg', 'f1-score')"
2024-03-26 09:31:31,803 ----------------------------------------------------------------------------------------------------
2024-03-26 09:31:31,803 Computation:
2024-03-26 09:31:31,803 - compute on device: cuda:0
2024-03-26 09:31:31,803 - embedding storage: none
2024-03-26 09:31:31,803 ----------------------------------------------------------------------------------------------------
2024-03-26 09:31:31,803 Model training base path: "flair-co-funer-gbert_base-bs16-e10-lr5e-05-1"
2024-03-26 09:31:31,803 ----------------------------------------------------------------------------------------------------
2024-03-26 09:31:31,803 ----------------------------------------------------------------------------------------------------
2024-03-26 09:31:31,803 Logging anything other than scalars to TensorBoard is currently not supported.
2024-03-26 09:31:33,778 epoch 1 - iter 4/48 - loss 3.13464684 - time (sec): 1.97 - samples/sec: 1375.34 - lr: 0.000003 - momentum: 0.000000
2024-03-26 09:31:35,058 epoch 1 - iter 8/48 - loss 3.04063711 - time (sec): 3.25 - samples/sec: 1655.82 - lr: 0.000007 - momentum: 0.000000
2024-03-26 09:31:37,983 epoch 1 - iter 12/48 - loss 2.87498959 - time (sec): 6.18 - samples/sec: 1408.24 - lr: 0.000011 - momentum: 0.000000
2024-03-26 09:31:41,134 epoch 1 - iter 16/48 - loss 2.71452658 - time (sec): 9.33 - samples/sec: 1306.73 - lr: 0.000016 - momentum: 0.000000
2024-03-26 09:31:43,588 epoch 1 - iter 20/48 - loss 2.54396549 - time (sec): 11.78 - samples/sec: 1305.27 - lr: 0.000020 - momentum: 0.000000
2024-03-26 09:31:45,279 epoch 1 - iter 24/48 - loss 2.41159667 - time (sec): 13.48 - samples/sec: 1353.38 - lr: 0.000024 - momentum: 0.000000
2024-03-26 09:31:46,852 epoch 1 - iter 28/48 - loss 2.30256979 - time (sec): 15.05 - samples/sec: 1375.61 - lr: 0.000028 - momentum: 0.000000
2024-03-26 09:31:48,927 epoch 1 - iter 32/48 - loss 2.20655569 - time (sec): 17.12 - samples/sec: 1380.31 - lr: 0.000032 - momentum: 0.000000
2024-03-26 09:31:49,904 epoch 1 - iter 36/48 - loss 2.12627397 - time (sec): 18.10 - samples/sec: 1439.10 - lr: 0.000036 - momentum: 0.000000
2024-03-26 09:31:51,838 epoch 1 - iter 40/48 - loss 2.02856966 - time (sec): 20.03 - samples/sec: 1453.30 - lr: 0.000041 - momentum: 0.000000
2024-03-26 09:31:53,824 epoch 1 - iter 44/48 - loss 1.93943712 - time (sec): 22.02 - samples/sec: 1438.68 - lr: 0.000045 - momentum: 0.000000
2024-03-26 09:31:55,285 epoch 1 - iter 48/48 - loss 1.84110524 - time (sec): 23.48 - samples/sec: 1468.03 - lr: 0.000049 - momentum: 0.000000
2024-03-26 09:31:55,285 ----------------------------------------------------------------------------------------------------
2024-03-26 09:31:55,286 EPOCH 1 done: loss 1.8411 - lr: 0.000049
2024-03-26 09:31:56,090 DEV : loss 0.5449312925338745 - f1-score (micro avg) 0.6421
2024-03-26 09:31:56,091 saving best model
2024-03-26 09:31:56,350 ----------------------------------------------------------------------------------------------------
2024-03-26 09:31:58,809 epoch 2 - iter 4/48 - loss 0.63065975 - time (sec): 2.46 - samples/sec: 1262.10 - lr: 0.000050 - momentum: 0.000000
2024-03-26 09:32:00,855 epoch 2 - iter 8/48 - loss 0.61141871 - time (sec): 4.50 - samples/sec: 1467.84 - lr: 0.000049 - momentum: 0.000000
2024-03-26 09:32:03,090 epoch 2 - iter 12/48 - loss 0.58530365 - time (sec): 6.74 - samples/sec: 1373.84 - lr: 0.000049 - momentum: 0.000000
2024-03-26 09:32:05,122 epoch 2 - iter 16/48 - loss 0.56230651 - time (sec): 8.77 - samples/sec: 1358.57 - lr: 0.000048 - momentum: 0.000000
2024-03-26 09:32:07,226 epoch 2 - iter 20/48 - loss 0.54060094 - time (sec): 10.88 - samples/sec: 1378.87 - lr: 0.000048 - momentum: 0.000000
2024-03-26 09:32:10,380 epoch 2 - iter 24/48 - loss 0.49961752 - time (sec): 14.03 - samples/sec: 1318.89 - lr: 0.000047 - momentum: 0.000000
2024-03-26 09:32:12,732 epoch 2 - iter 28/48 - loss 0.48484578 - time (sec): 16.38 - samples/sec: 1314.96 - lr: 0.000047 - momentum: 0.000000
2024-03-26 09:32:14,439 epoch 2 - iter 32/48 - loss 0.47215469 - time (sec): 18.09 - samples/sec: 1333.85 - lr: 0.000046 - momentum: 0.000000
2024-03-26 09:32:15,461 epoch 2 - iter 36/48 - loss 0.46303288 - time (sec): 19.11 - samples/sec: 1384.22 - lr: 0.000046 - momentum: 0.000000
2024-03-26 09:32:17,319 epoch 2 - iter 40/48 - loss 0.45128966 - time (sec): 20.97 - samples/sec: 1402.01 - lr: 0.000046 - momentum: 0.000000
2024-03-26 09:32:19,328 epoch 2 - iter 44/48 - loss 0.44327526 - time (sec): 22.98 - samples/sec: 1397.39 - lr: 0.000045 - momentum: 0.000000
2024-03-26 09:32:20,773 epoch 2 - iter 48/48 - loss 0.43448719 - time (sec): 24.42 - samples/sec: 1411.53 - lr: 0.000045 - momentum: 0.000000
2024-03-26 09:32:20,773 ----------------------------------------------------------------------------------------------------
2024-03-26 09:32:20,773 EPOCH 2 done: loss 0.4345 - lr: 0.000045
2024-03-26 09:32:21,662 DEV : loss 0.2701604962348938 - f1-score (micro avg) 0.812
2024-03-26 09:32:21,663 saving best model
2024-03-26 09:32:22,173 ----------------------------------------------------------------------------------------------------
2024-03-26 09:32:24,643 epoch 3 - iter 4/48 - loss 0.31097284 - time (sec): 2.47 - samples/sec: 1236.92 - lr: 0.000044 - momentum: 0.000000
2024-03-26 09:32:26,455 epoch 3 - iter 8/48 - loss 0.27100056 - time (sec): 4.28 - samples/sec: 1371.11 - lr: 0.000044 - momentum: 0.000000
2024-03-26 09:32:28,248 epoch 3 - iter 12/48 - loss 0.27588384 - time (sec): 6.07 - samples/sec: 1447.17 - lr: 0.000043 - momentum: 0.000000
2024-03-26 09:32:30,630 epoch 3 - iter 16/48 - loss 0.25168783 - time (sec): 8.45 - samples/sec: 1444.54 - lr: 0.000043 - momentum: 0.000000
2024-03-26 09:32:32,057 epoch 3 - iter 20/48 - loss 0.26133874 - time (sec): 9.88 - samples/sec: 1497.43 - lr: 0.000042 - momentum: 0.000000
2024-03-26 09:32:34,963 epoch 3 - iter 24/48 - loss 0.24628684 - time (sec): 12.79 - samples/sec: 1478.89 - lr: 0.000042 - momentum: 0.000000
2024-03-26 09:32:35,719 epoch 3 - iter 28/48 - loss 0.23985620 - time (sec): 13.54 - samples/sec: 1553.61 - lr: 0.000041 - momentum: 0.000000
2024-03-26 09:32:38,236 epoch 3 - iter 32/48 - loss 0.22794958 - time (sec): 16.06 - samples/sec: 1495.88 - lr: 0.000041 - momentum: 0.000000
2024-03-26 09:32:40,224 epoch 3 - iter 36/48 - loss 0.21907449 - time (sec): 18.05 - samples/sec: 1488.15 - lr: 0.000040 - momentum: 0.000000
2024-03-26 09:32:42,104 epoch 3 - iter 40/48 - loss 0.21907616 - time (sec): 19.93 - samples/sec: 1476.48 - lr: 0.000040 - momentum: 0.000000
2024-03-26 09:32:44,222 epoch 3 - iter 44/48 - loss 0.21043578 - time (sec): 22.05 - samples/sec: 1479.42 - lr: 0.000040 - momentum: 0.000000
2024-03-26 09:32:45,439 epoch 3 - iter 48/48 - loss 0.20906826 - time (sec): 23.26 - samples/sec: 1481.82 - lr: 0.000039 - momentum: 0.000000
2024-03-26 09:32:45,439 ----------------------------------------------------------------------------------------------------
2024-03-26 09:32:45,439 EPOCH 3 done: loss 0.2091 - lr: 0.000039
2024-03-26 09:32:46,322 DEV : loss 0.2270229309797287 - f1-score (micro avg) 0.8544
2024-03-26 09:32:46,323 saving best model
2024-03-26 09:32:46,755 ----------------------------------------------------------------------------------------------------
2024-03-26 09:32:48,235 epoch 4 - iter 4/48 - loss 0.16865347 - time (sec): 1.48 - samples/sec: 1844.61 - lr: 0.000039 - momentum: 0.000000
2024-03-26 09:32:50,630 epoch 4 - iter 8/48 - loss 0.16492162 - time (sec): 3.87 - samples/sec: 1481.26 - lr: 0.000038 - momentum: 0.000000
2024-03-26 09:32:52,697 epoch 4 - iter 12/48 - loss 0.16216988 - time (sec): 5.94 - samples/sec: 1470.92 - lr: 0.000038 - momentum: 0.000000
2024-03-26 09:32:54,836 epoch 4 - iter 16/48 - loss 0.14441421 - time (sec): 8.08 - samples/sec: 1481.99 - lr: 0.000037 - momentum: 0.000000
2024-03-26 09:32:57,827 epoch 4 - iter 20/48 - loss 0.13635337 - time (sec): 11.07 - samples/sec: 1399.22 - lr: 0.000037 - momentum: 0.000000
2024-03-26 09:32:59,236 epoch 4 - iter 24/48 - loss 0.13563064 - time (sec): 12.48 - samples/sec: 1444.20 - lr: 0.000036 - momentum: 0.000000
2024-03-26 09:33:00,732 epoch 4 - iter 28/48 - loss 0.13427894 - time (sec): 13.98 - samples/sec: 1483.96 - lr: 0.000036 - momentum: 0.000000
2024-03-26 09:33:03,174 epoch 4 - iter 32/48 - loss 0.13956275 - time (sec): 16.42 - samples/sec: 1476.35 - lr: 0.000035 - momentum: 0.000000
2024-03-26 09:33:04,151 epoch 4 - iter 36/48 - loss 0.13898618 - time (sec): 17.39 - samples/sec: 1527.52 - lr: 0.000035 - momentum: 0.000000
2024-03-26 09:33:06,496 epoch 4 - iter 40/48 - loss 0.13510467 - time (sec): 19.74 - samples/sec: 1479.50 - lr: 0.000034 - momentum: 0.000000
2024-03-26 09:33:08,262 epoch 4 - iter 44/48 - loss 0.13614949 - time (sec): 21.51 - samples/sec: 1500.31 - lr: 0.000034 - momentum: 0.000000
2024-03-26 09:33:09,593 epoch 4 - iter 48/48 - loss 0.13528628 - time (sec): 22.84 - samples/sec: 1509.49 - lr: 0.000034 - momentum: 0.000000
2024-03-26 09:33:09,593 ----------------------------------------------------------------------------------------------------
2024-03-26 09:33:09,593 EPOCH 4 done: loss 0.1353 - lr: 0.000034
2024-03-26 09:33:10,485 DEV : loss 0.17390906810760498 - f1-score (micro avg) 0.8874
2024-03-26 09:33:10,486 saving best model
2024-03-26 09:33:10,918 ----------------------------------------------------------------------------------------------------
2024-03-26 09:33:12,819 epoch 5 - iter 4/48 - loss 0.10556470 - time (sec): 1.90 - samples/sec: 1468.92 - lr: 0.000033 - momentum: 0.000000
2024-03-26 09:33:15,231 epoch 5 - iter 8/48 - loss 0.09265636 - time (sec): 4.31 - samples/sec: 1377.48 - lr: 0.000033 - momentum: 0.000000
2024-03-26 09:33:17,165 epoch 5 - iter 12/48 - loss 0.09936621 - time (sec): 6.24 - samples/sec: 1372.04 - lr: 0.000032 - momentum: 0.000000
2024-03-26 09:33:19,146 epoch 5 - iter 16/48 - loss 0.10301987 - time (sec): 8.23 - samples/sec: 1404.36 - lr: 0.000032 - momentum: 0.000000
2024-03-26 09:33:21,038 epoch 5 - iter 20/48 - loss 0.10466271 - time (sec): 10.12 - samples/sec: 1414.52 - lr: 0.000031 - momentum: 0.000000
2024-03-26 09:33:22,531 epoch 5 - iter 24/48 - loss 0.11156514 - time (sec): 11.61 - samples/sec: 1464.98 - lr: 0.000031 - momentum: 0.000000
2024-03-26 09:33:24,700 epoch 5 - iter 28/48 - loss 0.11115749 - time (sec): 13.78 - samples/sec: 1461.94 - lr: 0.000030 - momentum: 0.000000
2024-03-26 09:33:27,280 epoch 5 - iter 32/48 - loss 0.10915818 - time (sec): 16.36 - samples/sec: 1447.00 - lr: 0.000030 - momentum: 0.000000
2024-03-26 09:33:29,609 epoch 5 - iter 36/48 - loss 0.10469563 - time (sec): 18.69 - samples/sec: 1452.08 - lr: 0.000029 - momentum: 0.000000
2024-03-26 09:33:30,483 epoch 5 - iter 40/48 - loss 0.10615079 - time (sec): 19.56 - samples/sec: 1495.65 - lr: 0.000029 - momentum: 0.000000
2024-03-26 09:33:33,063 epoch 5 - iter 44/48 - loss 0.10402087 - time (sec): 22.14 - samples/sec: 1462.55 - lr: 0.000029 - momentum: 0.000000
2024-03-26 09:33:34,511 epoch 5 - iter 48/48 - loss 0.10402272 - time (sec): 23.59 - samples/sec: 1461.29 - lr: 0.000028 - momentum: 0.000000
2024-03-26 09:33:34,511 ----------------------------------------------------------------------------------------------------
2024-03-26 09:33:34,511 EPOCH 5 done: loss 0.1040 - lr: 0.000028
2024-03-26 09:33:35,399 DEV : loss 0.16777649521827698 - f1-score (micro avg) 0.9018
2024-03-26 09:33:35,400 saving best model
2024-03-26 09:33:35,831 ----------------------------------------------------------------------------------------------------
2024-03-26 09:33:37,818 epoch 6 - iter 4/48 - loss 0.04935121 - time (sec): 1.98 - samples/sec: 1332.68 - lr: 0.000028 - momentum: 0.000000
2024-03-26 09:33:39,894 epoch 6 - iter 8/48 - loss 0.07739319 - time (sec): 4.06 - samples/sec: 1362.42 - lr: 0.000027 - momentum: 0.000000
2024-03-26 09:33:41,679 epoch 6 - iter 12/48 - loss 0.07870801 - time (sec): 5.85 - samples/sec: 1478.51 - lr: 0.000027 - momentum: 0.000000
2024-03-26 09:33:43,866 epoch 6 - iter 16/48 - loss 0.07730179 - time (sec): 8.03 - samples/sec: 1430.42 - lr: 0.000026 - momentum: 0.000000
2024-03-26 09:33:45,592 epoch 6 - iter 20/48 - loss 0.08151266 - time (sec): 9.76 - samples/sec: 1438.08 - lr: 0.000026 - momentum: 0.000000
2024-03-26 09:33:48,008 epoch 6 - iter 24/48 - loss 0.07871227 - time (sec): 12.17 - samples/sec: 1414.34 - lr: 0.000025 - momentum: 0.000000
2024-03-26 09:33:49,815 epoch 6 - iter 28/48 - loss 0.08023292 - time (sec): 13.98 - samples/sec: 1414.68 - lr: 0.000025 - momentum: 0.000000
2024-03-26 09:33:52,231 epoch 6 - iter 32/48 - loss 0.07986238 - time (sec): 16.40 - samples/sec: 1393.96 - lr: 0.000024 - momentum: 0.000000
2024-03-26 09:33:55,591 epoch 6 - iter 36/48 - loss 0.07669859 - time (sec): 19.76 - samples/sec: 1349.74 - lr: 0.000024 - momentum: 0.000000
2024-03-26 09:33:57,177 epoch 6 - iter 40/48 - loss 0.07499192 - time (sec): 21.34 - samples/sec: 1384.54 - lr: 0.000023 - momentum: 0.000000
2024-03-26 09:33:58,970 epoch 6 - iter 44/48 - loss 0.07360792 - time (sec): 23.14 - samples/sec: 1388.05 - lr: 0.000023 - momentum: 0.000000
2024-03-26 09:34:00,234 epoch 6 - iter 48/48 - loss 0.07617279 - time (sec): 24.40 - samples/sec: 1412.75 - lr: 0.000023 - momentum: 0.000000
2024-03-26 09:34:00,235 ----------------------------------------------------------------------------------------------------
2024-03-26 09:34:00,235 EPOCH 6 done: loss 0.0762 - lr: 0.000023
2024-03-26 09:34:01,134 DEV : loss 0.16763538122177124 - f1-score (micro avg) 0.9099
2024-03-26 09:34:01,134 saving best model
2024-03-26 09:34:01,569 ----------------------------------------------------------------------------------------------------
2024-03-26 09:34:03,193 epoch 7 - iter 4/48 - loss 0.09393644 - time (sec): 1.62 - samples/sec: 1694.32 - lr: 0.000022 - momentum: 0.000000
2024-03-26 09:34:05,334 epoch 7 - iter 8/48 - loss 0.07306259 - time (sec): 3.76 - samples/sec: 1429.27 - lr: 0.000022 - momentum: 0.000000
2024-03-26 09:34:07,604 epoch 7 - iter 12/48 - loss 0.07212888 - time (sec): 6.03 - samples/sec: 1376.15 - lr: 0.000021 - momentum: 0.000000
2024-03-26 09:34:10,146 epoch 7 - iter 16/48 - loss 0.06332659 - time (sec): 8.58 - samples/sec: 1345.98 - lr: 0.000021 - momentum: 0.000000
2024-03-26 09:34:12,382 epoch 7 - iter 20/48 - loss 0.06418990 - time (sec): 10.81 - samples/sec: 1351.94 - lr: 0.000020 - momentum: 0.000000
2024-03-26 09:34:13,717 epoch 7 - iter 24/48 - loss 0.06067116 - time (sec): 12.15 - samples/sec: 1408.53 - lr: 0.000020 - momentum: 0.000000
2024-03-26 09:34:15,098 epoch 7 - iter 28/48 - loss 0.06052551 - time (sec): 13.53 - samples/sec: 1474.63 - lr: 0.000019 - momentum: 0.000000
2024-03-26 09:34:17,052 epoch 7 - iter 32/48 - loss 0.05922220 - time (sec): 15.48 - samples/sec: 1465.11 - lr: 0.000019 - momentum: 0.000000
2024-03-26 09:34:19,180 epoch 7 - iter 36/48 - loss 0.05681445 - time (sec): 17.61 - samples/sec: 1454.57 - lr: 0.000018 - momentum: 0.000000
2024-03-26 09:34:21,604 epoch 7 - iter 40/48 - loss 0.05828898 - time (sec): 20.03 - samples/sec: 1434.70 - lr: 0.000018 - momentum: 0.000000
2024-03-26 09:34:23,409 epoch 7 - iter 44/48 - loss 0.05798258 - time (sec): 21.84 - samples/sec: 1451.65 - lr: 0.000017 - momentum: 0.000000
2024-03-26 09:34:25,294 epoch 7 - iter 48/48 - loss 0.05651592 - time (sec): 23.72 - samples/sec: 1453.11 - lr: 0.000017 - momentum: 0.000000
2024-03-26 09:34:25,294 ----------------------------------------------------------------------------------------------------
2024-03-26 09:34:25,294 EPOCH 7 done: loss 0.0565 - lr: 0.000017
2024-03-26 09:34:26,192 DEV : loss 0.16629981994628906 - f1-score (micro avg) 0.9159
2024-03-26 09:34:26,193 saving best model
2024-03-26 09:34:26,624 ----------------------------------------------------------------------------------------------------
2024-03-26 09:34:28,581 epoch 8 - iter 4/48 - loss 0.05104273 - time (sec): 1.95 - samples/sec: 1383.16 - lr: 0.000017 - momentum: 0.000000
2024-03-26 09:34:31,363 epoch 8 - iter 8/48 - loss 0.03876510 - time (sec): 4.74 - samples/sec: 1172.92 - lr: 0.000016 - momentum: 0.000000
2024-03-26 09:34:32,635 epoch 8 - iter 12/48 - loss 0.04249942 - time (sec): 6.01 - samples/sec: 1328.57 - lr: 0.000016 - momentum: 0.000000
2024-03-26 09:34:35,040 epoch 8 - iter 16/48 - loss 0.05026022 - time (sec): 8.41 - samples/sec: 1337.94 - lr: 0.000015 - momentum: 0.000000
2024-03-26 09:34:37,549 epoch 8 - iter 20/48 - loss 0.04212980 - time (sec): 10.92 - samples/sec: 1379.56 - lr: 0.000015 - momentum: 0.000000
2024-03-26 09:34:38,829 epoch 8 - iter 24/48 - loss 0.04271362 - time (sec): 12.20 - samples/sec: 1458.44 - lr: 0.000014 - momentum: 0.000000
2024-03-26 09:34:42,077 epoch 8 - iter 28/48 - loss 0.04376621 - time (sec): 15.45 - samples/sec: 1412.35 - lr: 0.000014 - momentum: 0.000000
2024-03-26 09:34:44,069 epoch 8 - iter 32/48 - loss 0.04516094 - time (sec): 17.44 - samples/sec: 1413.41 - lr: 0.000013 - momentum: 0.000000
2024-03-26 09:34:45,121 epoch 8 - iter 36/48 - loss 0.04602552 - time (sec): 18.49 - samples/sec: 1451.86 - lr: 0.000013 - momentum: 0.000000
2024-03-26 09:34:46,782 epoch 8 - iter 40/48 - loss 0.04504686 - time (sec): 20.16 - samples/sec: 1450.07 - lr: 0.000012 - momentum: 0.000000
2024-03-26 09:34:48,353 epoch 8 - iter 44/48 - loss 0.04621049 - time (sec): 21.73 - samples/sec: 1470.63 - lr: 0.000012 - momentum: 0.000000
2024-03-26 09:34:50,296 epoch 8 - iter 48/48 - loss 0.04680647 - time (sec): 23.67 - samples/sec: 1456.41 - lr: 0.000011 - momentum: 0.000000
2024-03-26 09:34:50,296 ----------------------------------------------------------------------------------------------------
2024-03-26 09:34:50,296 EPOCH 8 done: loss 0.0468 - lr: 0.000011
2024-03-26 09:34:51,194 DEV : loss 0.1683352291584015 - f1-score (micro avg) 0.9131
2024-03-26 09:34:51,196 ----------------------------------------------------------------------------------------------------
2024-03-26 09:34:53,032 epoch 9 - iter 4/48 - loss 0.03239823 - time (sec): 1.84 - samples/sec: 1458.83 - lr: 0.000011 - momentum: 0.000000
2024-03-26 09:34:56,183 epoch 9 - iter 8/48 - loss 0.02376028 - time (sec): 4.99 - samples/sec: 1252.19 - lr: 0.000011 - momentum: 0.000000
2024-03-26 09:34:57,833 epoch 9 - iter 12/48 - loss 0.02807453 - time (sec): 6.64 - samples/sec: 1309.51 - lr: 0.000010 - momentum: 0.000000
2024-03-26 09:35:00,070 epoch 9 - iter 16/48 - loss 0.02893077 - time (sec): 8.87 - samples/sec: 1298.35 - lr: 0.000010 - momentum: 0.000000
2024-03-26 09:35:02,333 epoch 9 - iter 20/48 - loss 0.03399391 - time (sec): 11.14 - samples/sec: 1328.52 - lr: 0.000009 - momentum: 0.000000
2024-03-26 09:35:04,499 epoch 9 - iter 24/48 - loss 0.03527515 - time (sec): 13.30 - samples/sec: 1344.48 - lr: 0.000009 - momentum: 0.000000
2024-03-26 09:35:06,861 epoch 9 - iter 28/48 - loss 0.03279158 - time (sec): 15.66 - samples/sec: 1337.95 - lr: 0.000008 - momentum: 0.000000
2024-03-26 09:35:09,187 epoch 9 - iter 32/48 - loss 0.03328617 - time (sec): 17.99 - samples/sec: 1334.74 - lr: 0.000008 - momentum: 0.000000
2024-03-26 09:35:10,978 epoch 9 - iter 36/48 - loss 0.03552305 - time (sec): 19.78 - samples/sec: 1353.32 - lr: 0.000007 - momentum: 0.000000
2024-03-26 09:35:13,150 epoch 9 - iter 40/48 - loss 0.03717142 - time (sec): 21.95 - samples/sec: 1343.11 - lr: 0.000007 - momentum: 0.000000
2024-03-26 09:35:15,278 epoch 9 - iter 44/48 - loss 0.03618859 - time (sec): 24.08 - samples/sec: 1353.80 - lr: 0.000006 - momentum: 0.000000
2024-03-26 09:35:16,026 epoch 9 - iter 48/48 - loss 0.03659229 - time (sec): 24.83 - samples/sec: 1388.29 - lr: 0.000006 - momentum: 0.000000
2024-03-26 09:35:16,027 ----------------------------------------------------------------------------------------------------
2024-03-26 09:35:16,027 EPOCH 9 done: loss 0.0366 - lr: 0.000006
2024-03-26 09:35:16,937 DEV : loss 0.16806438565254211 - f1-score (micro avg) 0.9207
2024-03-26 09:35:16,938 saving best model
2024-03-26 09:35:17,369 ----------------------------------------------------------------------------------------------------
2024-03-26 09:35:19,113 epoch 10 - iter 4/48 - loss 0.01938598 - time (sec): 1.74 - samples/sec: 1508.81 - lr: 0.000006 - momentum: 0.000000
2024-03-26 09:35:21,045 epoch 10 - iter 8/48 - loss 0.02258557 - time (sec): 3.67 - samples/sec: 1507.88 - lr: 0.000005 - momentum: 0.000000
2024-03-26 09:35:23,658 epoch 10 - iter 12/48 - loss 0.02730836 - time (sec): 6.29 - samples/sec: 1387.97 - lr: 0.000005 - momentum: 0.000000
2024-03-26 09:35:25,570 epoch 10 - iter 16/48 - loss 0.03125997 - time (sec): 8.20 - samples/sec: 1399.21 - lr: 0.000004 - momentum: 0.000000
2024-03-26 09:35:27,402 epoch 10 - iter 20/48 - loss 0.03153887 - time (sec): 10.03 - samples/sec: 1442.05 - lr: 0.000004 - momentum: 0.000000
2024-03-26 09:35:29,043 epoch 10 - iter 24/48 - loss 0.03612120 - time (sec): 11.67 - samples/sec: 1452.94 - lr: 0.000003 - momentum: 0.000000
2024-03-26 09:35:30,786 epoch 10 - iter 28/48 - loss 0.03445545 - time (sec): 13.42 - samples/sec: 1474.83 - lr: 0.000003 - momentum: 0.000000
2024-03-26 09:35:31,976 epoch 10 - iter 32/48 - loss 0.03355325 - time (sec): 14.61 - samples/sec: 1507.95 - lr: 0.000002 - momentum: 0.000000
2024-03-26 09:35:34,947 epoch 10 - iter 36/48 - loss 0.03055986 - time (sec): 17.58 - samples/sec: 1457.31 - lr: 0.000002 - momentum: 0.000000
2024-03-26 09:35:37,702 epoch 10 - iter 40/48 - loss 0.03283648 - time (sec): 20.33 - samples/sec: 1430.36 - lr: 0.000001 - momentum: 0.000000
2024-03-26 09:35:40,457 epoch 10 - iter 44/48 - loss 0.03091020 - time (sec): 23.09 - samples/sec: 1398.36 - lr: 0.000001 - momentum: 0.000000
2024-03-26 09:35:42,052 epoch 10 - iter 48/48 - loss 0.03004462 - time (sec): 24.68 - samples/sec: 1396.65 - lr: 0.000000 - momentum: 0.000000
2024-03-26 09:35:42,053 ----------------------------------------------------------------------------------------------------
2024-03-26 09:35:42,053 EPOCH 10 done: loss 0.0300 - lr: 0.000000
2024-03-26 09:35:42,972 DEV : loss 0.1705980747938156 - f1-score (micro avg) 0.9214
2024-03-26 09:35:42,974 saving best model
2024-03-26 09:35:43,689 ----------------------------------------------------------------------------------------------------
2024-03-26 09:35:43,689 Loading model from best epoch ...
2024-03-26 09:35:44,576 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
2024-03-26 09:35:45,419
Results:
- F-score (micro) 0.9
- F-score (macro) 0.6847
- Accuracy 0.8239
By class:
precision recall f1-score support
Unternehmen 0.9046 0.8910 0.8977 266
Auslagerung 0.8333 0.9036 0.8671 249
Ort 0.9635 0.9851 0.9742 134
Software 0.0000 0.0000 0.0000 0
micro avg 0.8852 0.9153 0.9000 649
macro avg 0.6754 0.6949 0.6847 649
weighted avg 0.8894 0.9153 0.9017 649
2024-03-26 09:35:45,419 ----------------------------------------------------------------------------------------------------
|