File size: 26,693 Bytes
ec3e9d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
2024-03-26 09:59:31,395 ----------------------------------------------------------------------------------------------------
2024-03-26 09:59:31,395 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(31103, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=17, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2024-03-26 09:59:31,395 ----------------------------------------------------------------------------------------------------
2024-03-26 09:59:31,395 Corpus: 758 train + 94 dev + 96 test sentences
2024-03-26 09:59:31,395 ----------------------------------------------------------------------------------------------------
2024-03-26 09:59:31,395 Train:  758 sentences
2024-03-26 09:59:31,395         (train_with_dev=False, train_with_test=False)
2024-03-26 09:59:31,396 ----------------------------------------------------------------------------------------------------
2024-03-26 09:59:31,396 Training Params:
2024-03-26 09:59:31,396  - learning_rate: "3e-05" 
2024-03-26 09:59:31,396  - mini_batch_size: "16"
2024-03-26 09:59:31,396  - max_epochs: "10"
2024-03-26 09:59:31,396  - shuffle: "True"
2024-03-26 09:59:31,396 ----------------------------------------------------------------------------------------------------
2024-03-26 09:59:31,396 Plugins:
2024-03-26 09:59:31,396  - TensorboardLogger
2024-03-26 09:59:31,396  - LinearScheduler | warmup_fraction: '0.1'
2024-03-26 09:59:31,396 ----------------------------------------------------------------------------------------------------
2024-03-26 09:59:31,396 Final evaluation on model from best epoch (best-model.pt)
2024-03-26 09:59:31,396  - metric: "('micro avg', 'f1-score')"
2024-03-26 09:59:31,396 ----------------------------------------------------------------------------------------------------
2024-03-26 09:59:31,396 Computation:
2024-03-26 09:59:31,396  - compute on device: cuda:0
2024-03-26 09:59:31,396  - embedding storage: none
2024-03-26 09:59:31,396 ----------------------------------------------------------------------------------------------------
2024-03-26 09:59:31,396 Model training base path: "flair-co-funer-gbert_base-bs16-e10-lr3e-05-3"
2024-03-26 09:59:31,396 ----------------------------------------------------------------------------------------------------
2024-03-26 09:59:31,396 ----------------------------------------------------------------------------------------------------
2024-03-26 09:59:31,396 Logging anything other than scalars to TensorBoard is currently not supported.
2024-03-26 09:59:32,643 epoch 1 - iter 4/48 - loss 3.43646522 - time (sec): 1.25 - samples/sec: 2208.74 - lr: 0.000002 - momentum: 0.000000
2024-03-26 09:59:34,614 epoch 1 - iter 8/48 - loss 3.36082406 - time (sec): 3.22 - samples/sec: 1810.00 - lr: 0.000004 - momentum: 0.000000
2024-03-26 09:59:36,149 epoch 1 - iter 12/48 - loss 3.27049571 - time (sec): 4.75 - samples/sec: 1761.72 - lr: 0.000007 - momentum: 0.000000
2024-03-26 09:59:39,034 epoch 1 - iter 16/48 - loss 3.11812662 - time (sec): 7.64 - samples/sec: 1518.44 - lr: 0.000009 - momentum: 0.000000
2024-03-26 09:59:40,677 epoch 1 - iter 20/48 - loss 2.96663653 - time (sec): 9.28 - samples/sec: 1551.98 - lr: 0.000012 - momentum: 0.000000
2024-03-26 09:59:42,103 epoch 1 - iter 24/48 - loss 2.83877052 - time (sec): 10.71 - samples/sec: 1603.40 - lr: 0.000014 - momentum: 0.000000
2024-03-26 09:59:43,412 epoch 1 - iter 28/48 - loss 2.71878471 - time (sec): 12.02 - samples/sec: 1625.16 - lr: 0.000017 - momentum: 0.000000
2024-03-26 09:59:45,484 epoch 1 - iter 32/48 - loss 2.59293993 - time (sec): 14.09 - samples/sec: 1613.37 - lr: 0.000019 - momentum: 0.000000
2024-03-26 09:59:47,021 epoch 1 - iter 36/48 - loss 2.47846593 - time (sec): 15.63 - samples/sec: 1633.21 - lr: 0.000022 - momentum: 0.000000
2024-03-26 09:59:49,236 epoch 1 - iter 40/48 - loss 2.36097982 - time (sec): 17.84 - samples/sec: 1624.25 - lr: 0.000024 - momentum: 0.000000
2024-03-26 09:59:51,141 epoch 1 - iter 44/48 - loss 2.25907270 - time (sec): 19.75 - samples/sec: 1624.00 - lr: 0.000027 - momentum: 0.000000
2024-03-26 09:59:52,744 epoch 1 - iter 48/48 - loss 2.17647950 - time (sec): 21.35 - samples/sec: 1614.77 - lr: 0.000029 - momentum: 0.000000
2024-03-26 09:59:52,744 ----------------------------------------------------------------------------------------------------
2024-03-26 09:59:52,744 EPOCH 1 done: loss 2.1765 - lr: 0.000029
2024-03-26 09:59:53,553 DEV : loss 0.7939577102661133 - f1-score (micro avg)  0.4569
2024-03-26 09:59:53,554 saving best model
2024-03-26 09:59:53,834 ----------------------------------------------------------------------------------------------------
2024-03-26 09:59:55,240 epoch 2 - iter 4/48 - loss 0.98641542 - time (sec): 1.41 - samples/sec: 1775.70 - lr: 0.000030 - momentum: 0.000000
2024-03-26 09:59:56,693 epoch 2 - iter 8/48 - loss 0.85278575 - time (sec): 2.86 - samples/sec: 1707.91 - lr: 0.000030 - momentum: 0.000000
2024-03-26 09:59:58,106 epoch 2 - iter 12/48 - loss 0.81842829 - time (sec): 4.27 - samples/sec: 1799.84 - lr: 0.000029 - momentum: 0.000000
2024-03-26 09:59:59,970 epoch 2 - iter 16/48 - loss 0.75652823 - time (sec): 6.14 - samples/sec: 1753.35 - lr: 0.000029 - momentum: 0.000000
2024-03-26 10:00:02,304 epoch 2 - iter 20/48 - loss 0.72523901 - time (sec): 8.47 - samples/sec: 1674.24 - lr: 0.000029 - momentum: 0.000000
2024-03-26 10:00:04,313 epoch 2 - iter 24/48 - loss 0.67602021 - time (sec): 10.48 - samples/sec: 1655.27 - lr: 0.000028 - momentum: 0.000000
2024-03-26 10:00:07,019 epoch 2 - iter 28/48 - loss 0.65009793 - time (sec): 13.18 - samples/sec: 1587.16 - lr: 0.000028 - momentum: 0.000000
2024-03-26 10:00:09,208 epoch 2 - iter 32/48 - loss 0.62484745 - time (sec): 15.37 - samples/sec: 1552.58 - lr: 0.000028 - momentum: 0.000000
2024-03-26 10:00:10,913 epoch 2 - iter 36/48 - loss 0.61261076 - time (sec): 17.08 - samples/sec: 1546.83 - lr: 0.000028 - momentum: 0.000000
2024-03-26 10:00:12,600 epoch 2 - iter 40/48 - loss 0.60825046 - time (sec): 18.77 - samples/sec: 1554.54 - lr: 0.000027 - momentum: 0.000000
2024-03-26 10:00:14,733 epoch 2 - iter 44/48 - loss 0.59375280 - time (sec): 20.90 - samples/sec: 1550.50 - lr: 0.000027 - momentum: 0.000000
2024-03-26 10:00:16,229 epoch 2 - iter 48/48 - loss 0.57760153 - time (sec): 22.39 - samples/sec: 1539.34 - lr: 0.000027 - momentum: 0.000000
2024-03-26 10:00:16,229 ----------------------------------------------------------------------------------------------------
2024-03-26 10:00:16,229 EPOCH 2 done: loss 0.5776 - lr: 0.000027
2024-03-26 10:00:17,119 DEV : loss 0.32868492603302 - f1-score (micro avg)  0.7997
2024-03-26 10:00:17,120 saving best model
2024-03-26 10:00:17,588 ----------------------------------------------------------------------------------------------------
2024-03-26 10:00:19,074 epoch 3 - iter 4/48 - loss 0.38161214 - time (sec): 1.48 - samples/sec: 1650.47 - lr: 0.000026 - momentum: 0.000000
2024-03-26 10:00:21,853 epoch 3 - iter 8/48 - loss 0.33926201 - time (sec): 4.26 - samples/sec: 1343.95 - lr: 0.000026 - momentum: 0.000000
2024-03-26 10:00:23,088 epoch 3 - iter 12/48 - loss 0.34656835 - time (sec): 5.50 - samples/sec: 1481.70 - lr: 0.000026 - momentum: 0.000000
2024-03-26 10:00:24,439 epoch 3 - iter 16/48 - loss 0.31664455 - time (sec): 6.85 - samples/sec: 1611.63 - lr: 0.000026 - momentum: 0.000000
2024-03-26 10:00:25,877 epoch 3 - iter 20/48 - loss 0.32091794 - time (sec): 8.29 - samples/sec: 1630.39 - lr: 0.000025 - momentum: 0.000000
2024-03-26 10:00:28,556 epoch 3 - iter 24/48 - loss 0.31277796 - time (sec): 10.97 - samples/sec: 1523.16 - lr: 0.000025 - momentum: 0.000000
2024-03-26 10:00:30,448 epoch 3 - iter 28/48 - loss 0.30764724 - time (sec): 12.86 - samples/sec: 1541.44 - lr: 0.000025 - momentum: 0.000000
2024-03-26 10:00:32,937 epoch 3 - iter 32/48 - loss 0.29367022 - time (sec): 15.35 - samples/sec: 1485.72 - lr: 0.000025 - momentum: 0.000000
2024-03-26 10:00:34,844 epoch 3 - iter 36/48 - loss 0.29104830 - time (sec): 17.25 - samples/sec: 1482.42 - lr: 0.000024 - momentum: 0.000000
2024-03-26 10:00:37,177 epoch 3 - iter 40/48 - loss 0.28398890 - time (sec): 19.59 - samples/sec: 1458.33 - lr: 0.000024 - momentum: 0.000000
2024-03-26 10:00:39,592 epoch 3 - iter 44/48 - loss 0.29123866 - time (sec): 22.00 - samples/sec: 1446.29 - lr: 0.000024 - momentum: 0.000000
2024-03-26 10:00:41,895 epoch 3 - iter 48/48 - loss 0.28152527 - time (sec): 24.31 - samples/sec: 1418.30 - lr: 0.000023 - momentum: 0.000000
2024-03-26 10:00:41,895 ----------------------------------------------------------------------------------------------------
2024-03-26 10:00:41,895 EPOCH 3 done: loss 0.2815 - lr: 0.000023
2024-03-26 10:00:42,794 DEV : loss 0.25886547565460205 - f1-score (micro avg)  0.8309
2024-03-26 10:00:42,796 saving best model
2024-03-26 10:00:43,250 ----------------------------------------------------------------------------------------------------
2024-03-26 10:00:44,615 epoch 4 - iter 4/48 - loss 0.22042310 - time (sec): 1.36 - samples/sec: 1839.59 - lr: 0.000023 - momentum: 0.000000
2024-03-26 10:00:46,517 epoch 4 - iter 8/48 - loss 0.20257439 - time (sec): 3.26 - samples/sec: 1641.50 - lr: 0.000023 - momentum: 0.000000
2024-03-26 10:00:49,029 epoch 4 - iter 12/48 - loss 0.18510721 - time (sec): 5.78 - samples/sec: 1461.04 - lr: 0.000023 - momentum: 0.000000
2024-03-26 10:00:50,904 epoch 4 - iter 16/48 - loss 0.18860193 - time (sec): 7.65 - samples/sec: 1479.96 - lr: 0.000022 - momentum: 0.000000
2024-03-26 10:00:53,270 epoch 4 - iter 20/48 - loss 0.17922849 - time (sec): 10.02 - samples/sec: 1466.72 - lr: 0.000022 - momentum: 0.000000
2024-03-26 10:00:56,134 epoch 4 - iter 24/48 - loss 0.16967835 - time (sec): 12.88 - samples/sec: 1415.56 - lr: 0.000022 - momentum: 0.000000
2024-03-26 10:00:57,249 epoch 4 - iter 28/48 - loss 0.16942022 - time (sec): 14.00 - samples/sec: 1451.42 - lr: 0.000022 - momentum: 0.000000
2024-03-26 10:01:00,237 epoch 4 - iter 32/48 - loss 0.16567032 - time (sec): 16.98 - samples/sec: 1390.60 - lr: 0.000021 - momentum: 0.000000
2024-03-26 10:01:01,951 epoch 4 - iter 36/48 - loss 0.17214452 - time (sec): 18.70 - samples/sec: 1422.89 - lr: 0.000021 - momentum: 0.000000
2024-03-26 10:01:04,761 epoch 4 - iter 40/48 - loss 0.17727138 - time (sec): 21.51 - samples/sec: 1389.46 - lr: 0.000021 - momentum: 0.000000
2024-03-26 10:01:05,665 epoch 4 - iter 44/48 - loss 0.18046888 - time (sec): 22.41 - samples/sec: 1435.74 - lr: 0.000020 - momentum: 0.000000
2024-03-26 10:01:07,142 epoch 4 - iter 48/48 - loss 0.18200329 - time (sec): 23.89 - samples/sec: 1443.02 - lr: 0.000020 - momentum: 0.000000
2024-03-26 10:01:07,142 ----------------------------------------------------------------------------------------------------
2024-03-26 10:01:07,142 EPOCH 4 done: loss 0.1820 - lr: 0.000020
2024-03-26 10:01:08,036 DEV : loss 0.1913670003414154 - f1-score (micro avg)  0.8849
2024-03-26 10:01:08,037 saving best model
2024-03-26 10:01:08,487 ----------------------------------------------------------------------------------------------------
2024-03-26 10:01:10,926 epoch 5 - iter 4/48 - loss 0.12163748 - time (sec): 2.44 - samples/sec: 1304.60 - lr: 0.000020 - momentum: 0.000000
2024-03-26 10:01:12,343 epoch 5 - iter 8/48 - loss 0.14118800 - time (sec): 3.85 - samples/sec: 1477.15 - lr: 0.000020 - momentum: 0.000000
2024-03-26 10:01:13,798 epoch 5 - iter 12/48 - loss 0.14109407 - time (sec): 5.31 - samples/sec: 1552.37 - lr: 0.000019 - momentum: 0.000000
2024-03-26 10:01:15,969 epoch 5 - iter 16/48 - loss 0.13294762 - time (sec): 7.48 - samples/sec: 1470.95 - lr: 0.000019 - momentum: 0.000000
2024-03-26 10:01:18,018 epoch 5 - iter 20/48 - loss 0.14325906 - time (sec): 9.53 - samples/sec: 1477.67 - lr: 0.000019 - momentum: 0.000000
2024-03-26 10:01:20,481 epoch 5 - iter 24/48 - loss 0.13499390 - time (sec): 11.99 - samples/sec: 1468.01 - lr: 0.000018 - momentum: 0.000000
2024-03-26 10:01:23,022 epoch 5 - iter 28/48 - loss 0.12862412 - time (sec): 14.53 - samples/sec: 1448.39 - lr: 0.000018 - momentum: 0.000000
2024-03-26 10:01:24,885 epoch 5 - iter 32/48 - loss 0.13148701 - time (sec): 16.40 - samples/sec: 1452.41 - lr: 0.000018 - momentum: 0.000000
2024-03-26 10:01:26,694 epoch 5 - iter 36/48 - loss 0.12883528 - time (sec): 18.20 - samples/sec: 1452.72 - lr: 0.000018 - momentum: 0.000000
2024-03-26 10:01:28,975 epoch 5 - iter 40/48 - loss 0.12796493 - time (sec): 20.49 - samples/sec: 1441.69 - lr: 0.000017 - momentum: 0.000000
2024-03-26 10:01:30,915 epoch 5 - iter 44/48 - loss 0.13048640 - time (sec): 22.43 - samples/sec: 1440.37 - lr: 0.000017 - momentum: 0.000000
2024-03-26 10:01:31,959 epoch 5 - iter 48/48 - loss 0.12997086 - time (sec): 23.47 - samples/sec: 1468.75 - lr: 0.000017 - momentum: 0.000000
2024-03-26 10:01:31,960 ----------------------------------------------------------------------------------------------------
2024-03-26 10:01:31,960 EPOCH 5 done: loss 0.1300 - lr: 0.000017
2024-03-26 10:01:32,853 DEV : loss 0.17436812818050385 - f1-score (micro avg)  0.8919
2024-03-26 10:01:32,854 saving best model
2024-03-26 10:01:33,303 ----------------------------------------------------------------------------------------------------
2024-03-26 10:01:35,888 epoch 6 - iter 4/48 - loss 0.09782980 - time (sec): 2.58 - samples/sec: 1230.90 - lr: 0.000017 - momentum: 0.000000
2024-03-26 10:01:37,873 epoch 6 - iter 8/48 - loss 0.09889715 - time (sec): 4.57 - samples/sec: 1285.37 - lr: 0.000016 - momentum: 0.000000
2024-03-26 10:01:39,433 epoch 6 - iter 12/48 - loss 0.10167303 - time (sec): 6.13 - samples/sec: 1439.69 - lr: 0.000016 - momentum: 0.000000
2024-03-26 10:01:41,380 epoch 6 - iter 16/48 - loss 0.09465287 - time (sec): 8.07 - samples/sec: 1440.18 - lr: 0.000016 - momentum: 0.000000
2024-03-26 10:01:42,448 epoch 6 - iter 20/48 - loss 0.09812166 - time (sec): 9.14 - samples/sec: 1528.27 - lr: 0.000015 - momentum: 0.000000
2024-03-26 10:01:44,365 epoch 6 - iter 24/48 - loss 0.09748869 - time (sec): 11.06 - samples/sec: 1511.24 - lr: 0.000015 - momentum: 0.000000
2024-03-26 10:01:45,502 epoch 6 - iter 28/48 - loss 0.09823753 - time (sec): 12.20 - samples/sec: 1559.55 - lr: 0.000015 - momentum: 0.000000
2024-03-26 10:01:47,264 epoch 6 - iter 32/48 - loss 0.09442643 - time (sec): 13.96 - samples/sec: 1578.15 - lr: 0.000015 - momentum: 0.000000
2024-03-26 10:01:49,666 epoch 6 - iter 36/48 - loss 0.10523613 - time (sec): 16.36 - samples/sec: 1552.08 - lr: 0.000014 - momentum: 0.000000
2024-03-26 10:01:51,714 epoch 6 - iter 40/48 - loss 0.10211317 - time (sec): 18.41 - samples/sec: 1543.49 - lr: 0.000014 - momentum: 0.000000
2024-03-26 10:01:53,581 epoch 6 - iter 44/48 - loss 0.10480042 - time (sec): 20.28 - samples/sec: 1551.43 - lr: 0.000014 - momentum: 0.000000
2024-03-26 10:01:55,114 epoch 6 - iter 48/48 - loss 0.10675454 - time (sec): 21.81 - samples/sec: 1580.61 - lr: 0.000014 - momentum: 0.000000
2024-03-26 10:01:55,115 ----------------------------------------------------------------------------------------------------
2024-03-26 10:01:55,115 EPOCH 6 done: loss 0.1068 - lr: 0.000014
2024-03-26 10:01:56,016 DEV : loss 0.16683053970336914 - f1-score (micro avg)  0.9087
2024-03-26 10:01:56,017 saving best model
2024-03-26 10:01:56,467 ----------------------------------------------------------------------------------------------------
2024-03-26 10:01:58,637 epoch 7 - iter 4/48 - loss 0.09254774 - time (sec): 2.17 - samples/sec: 1274.49 - lr: 0.000013 - momentum: 0.000000
2024-03-26 10:02:00,336 epoch 7 - iter 8/48 - loss 0.08838913 - time (sec): 3.87 - samples/sec: 1485.65 - lr: 0.000013 - momentum: 0.000000
2024-03-26 10:02:02,391 epoch 7 - iter 12/48 - loss 0.07238019 - time (sec): 5.92 - samples/sec: 1446.76 - lr: 0.000013 - momentum: 0.000000
2024-03-26 10:02:04,944 epoch 7 - iter 16/48 - loss 0.07196467 - time (sec): 8.48 - samples/sec: 1394.49 - lr: 0.000012 - momentum: 0.000000
2024-03-26 10:02:07,622 epoch 7 - iter 20/48 - loss 0.07551862 - time (sec): 11.15 - samples/sec: 1401.35 - lr: 0.000012 - momentum: 0.000000
2024-03-26 10:02:09,130 epoch 7 - iter 24/48 - loss 0.07740105 - time (sec): 12.66 - samples/sec: 1423.50 - lr: 0.000012 - momentum: 0.000000
2024-03-26 10:02:11,213 epoch 7 - iter 28/48 - loss 0.07286143 - time (sec): 14.74 - samples/sec: 1442.91 - lr: 0.000012 - momentum: 0.000000
2024-03-26 10:02:13,347 epoch 7 - iter 32/48 - loss 0.07581369 - time (sec): 16.88 - samples/sec: 1448.48 - lr: 0.000011 - momentum: 0.000000
2024-03-26 10:02:15,550 epoch 7 - iter 36/48 - loss 0.08004892 - time (sec): 19.08 - samples/sec: 1434.63 - lr: 0.000011 - momentum: 0.000000
2024-03-26 10:02:17,121 epoch 7 - iter 40/48 - loss 0.07736339 - time (sec): 20.65 - samples/sec: 1443.71 - lr: 0.000011 - momentum: 0.000000
2024-03-26 10:02:18,764 epoch 7 - iter 44/48 - loss 0.08124466 - time (sec): 22.29 - samples/sec: 1463.02 - lr: 0.000010 - momentum: 0.000000
2024-03-26 10:02:20,081 epoch 7 - iter 48/48 - loss 0.08186639 - time (sec): 23.61 - samples/sec: 1459.91 - lr: 0.000010 - momentum: 0.000000
2024-03-26 10:02:20,081 ----------------------------------------------------------------------------------------------------
2024-03-26 10:02:20,081 EPOCH 7 done: loss 0.0819 - lr: 0.000010
2024-03-26 10:02:20,975 DEV : loss 0.16401655972003937 - f1-score (micro avg)  0.9157
2024-03-26 10:02:20,976 saving best model
2024-03-26 10:02:21,421 ----------------------------------------------------------------------------------------------------
2024-03-26 10:02:23,755 epoch 8 - iter 4/48 - loss 0.06079097 - time (sec): 2.33 - samples/sec: 1260.57 - lr: 0.000010 - momentum: 0.000000
2024-03-26 10:02:26,287 epoch 8 - iter 8/48 - loss 0.05516021 - time (sec): 4.86 - samples/sec: 1359.71 - lr: 0.000010 - momentum: 0.000000
2024-03-26 10:02:28,279 epoch 8 - iter 12/48 - loss 0.05565549 - time (sec): 6.86 - samples/sec: 1342.24 - lr: 0.000009 - momentum: 0.000000
2024-03-26 10:02:30,262 epoch 8 - iter 16/48 - loss 0.05522776 - time (sec): 8.84 - samples/sec: 1356.58 - lr: 0.000009 - momentum: 0.000000
2024-03-26 10:02:31,782 epoch 8 - iter 20/48 - loss 0.05660406 - time (sec): 10.36 - samples/sec: 1380.14 - lr: 0.000009 - momentum: 0.000000
2024-03-26 10:02:34,115 epoch 8 - iter 24/48 - loss 0.05700863 - time (sec): 12.69 - samples/sec: 1366.34 - lr: 0.000009 - momentum: 0.000000
2024-03-26 10:02:36,248 epoch 8 - iter 28/48 - loss 0.05738097 - time (sec): 14.82 - samples/sec: 1359.64 - lr: 0.000008 - momentum: 0.000000
2024-03-26 10:02:38,546 epoch 8 - iter 32/48 - loss 0.06585629 - time (sec): 17.12 - samples/sec: 1371.04 - lr: 0.000008 - momentum: 0.000000
2024-03-26 10:02:41,710 epoch 8 - iter 36/48 - loss 0.06769677 - time (sec): 20.29 - samples/sec: 1322.88 - lr: 0.000008 - momentum: 0.000000
2024-03-26 10:02:43,685 epoch 8 - iter 40/48 - loss 0.07192573 - time (sec): 22.26 - samples/sec: 1329.43 - lr: 0.000007 - momentum: 0.000000
2024-03-26 10:02:44,478 epoch 8 - iter 44/48 - loss 0.07055192 - time (sec): 23.06 - samples/sec: 1378.00 - lr: 0.000007 - momentum: 0.000000
2024-03-26 10:02:46,279 epoch 8 - iter 48/48 - loss 0.07020865 - time (sec): 24.86 - samples/sec: 1386.85 - lr: 0.000007 - momentum: 0.000000
2024-03-26 10:02:46,280 ----------------------------------------------------------------------------------------------------
2024-03-26 10:02:46,280 EPOCH 8 done: loss 0.0702 - lr: 0.000007
2024-03-26 10:02:47,182 DEV : loss 0.15253271162509918 - f1-score (micro avg)  0.9208
2024-03-26 10:02:47,183 saving best model
2024-03-26 10:02:47,629 ----------------------------------------------------------------------------------------------------
2024-03-26 10:02:50,314 epoch 9 - iter 4/48 - loss 0.04359022 - time (sec): 2.68 - samples/sec: 1228.92 - lr: 0.000007 - momentum: 0.000000
2024-03-26 10:02:51,983 epoch 9 - iter 8/48 - loss 0.05473787 - time (sec): 4.35 - samples/sec: 1318.52 - lr: 0.000006 - momentum: 0.000000
2024-03-26 10:02:54,086 epoch 9 - iter 12/48 - loss 0.06362136 - time (sec): 6.46 - samples/sec: 1390.53 - lr: 0.000006 - momentum: 0.000000
2024-03-26 10:02:56,156 epoch 9 - iter 16/48 - loss 0.06414554 - time (sec): 8.52 - samples/sec: 1420.55 - lr: 0.000006 - momentum: 0.000000
2024-03-26 10:02:58,469 epoch 9 - iter 20/48 - loss 0.05654201 - time (sec): 10.84 - samples/sec: 1395.91 - lr: 0.000006 - momentum: 0.000000
2024-03-26 10:03:00,379 epoch 9 - iter 24/48 - loss 0.05696336 - time (sec): 12.75 - samples/sec: 1389.10 - lr: 0.000005 - momentum: 0.000000
2024-03-26 10:03:03,558 epoch 9 - iter 28/48 - loss 0.05821121 - time (sec): 15.93 - samples/sec: 1341.28 - lr: 0.000005 - momentum: 0.000000
2024-03-26 10:03:04,910 epoch 9 - iter 32/48 - loss 0.05796211 - time (sec): 17.28 - samples/sec: 1382.56 - lr: 0.000005 - momentum: 0.000000
2024-03-26 10:03:07,265 epoch 9 - iter 36/48 - loss 0.05834651 - time (sec): 19.63 - samples/sec: 1372.55 - lr: 0.000004 - momentum: 0.000000
2024-03-26 10:03:08,719 epoch 9 - iter 40/48 - loss 0.05878344 - time (sec): 21.09 - samples/sec: 1390.36 - lr: 0.000004 - momentum: 0.000000
2024-03-26 10:03:10,215 epoch 9 - iter 44/48 - loss 0.06224717 - time (sec): 22.58 - samples/sec: 1408.57 - lr: 0.000004 - momentum: 0.000000
2024-03-26 10:03:11,606 epoch 9 - iter 48/48 - loss 0.06229583 - time (sec): 23.98 - samples/sec: 1437.80 - lr: 0.000004 - momentum: 0.000000
2024-03-26 10:03:11,606 ----------------------------------------------------------------------------------------------------
2024-03-26 10:03:11,606 EPOCH 9 done: loss 0.0623 - lr: 0.000004
2024-03-26 10:03:12,500 DEV : loss 0.15111036598682404 - f1-score (micro avg)  0.9286
2024-03-26 10:03:12,501 saving best model
2024-03-26 10:03:12,953 ----------------------------------------------------------------------------------------------------
2024-03-26 10:03:15,317 epoch 10 - iter 4/48 - loss 0.03673501 - time (sec): 2.36 - samples/sec: 1393.43 - lr: 0.000003 - momentum: 0.000000
2024-03-26 10:03:17,222 epoch 10 - iter 8/48 - loss 0.03572186 - time (sec): 4.27 - samples/sec: 1369.74 - lr: 0.000003 - momentum: 0.000000
2024-03-26 10:03:18,396 epoch 10 - iter 12/48 - loss 0.05193565 - time (sec): 5.44 - samples/sec: 1533.06 - lr: 0.000003 - momentum: 0.000000
2024-03-26 10:03:19,907 epoch 10 - iter 16/48 - loss 0.05828219 - time (sec): 6.95 - samples/sec: 1613.93 - lr: 0.000002 - momentum: 0.000000
2024-03-26 10:03:21,592 epoch 10 - iter 20/48 - loss 0.05891099 - time (sec): 8.64 - samples/sec: 1652.86 - lr: 0.000002 - momentum: 0.000000
2024-03-26 10:03:23,599 epoch 10 - iter 24/48 - loss 0.05669250 - time (sec): 10.64 - samples/sec: 1601.21 - lr: 0.000002 - momentum: 0.000000
2024-03-26 10:03:25,706 epoch 10 - iter 28/48 - loss 0.05313062 - time (sec): 12.75 - samples/sec: 1564.46 - lr: 0.000002 - momentum: 0.000000
2024-03-26 10:03:27,803 epoch 10 - iter 32/48 - loss 0.05458190 - time (sec): 14.85 - samples/sec: 1571.27 - lr: 0.000001 - momentum: 0.000000
2024-03-26 10:03:29,185 epoch 10 - iter 36/48 - loss 0.05515192 - time (sec): 16.23 - samples/sec: 1571.16 - lr: 0.000001 - momentum: 0.000000
2024-03-26 10:03:31,786 epoch 10 - iter 40/48 - loss 0.05263161 - time (sec): 18.83 - samples/sec: 1532.43 - lr: 0.000001 - momentum: 0.000000
2024-03-26 10:03:34,283 epoch 10 - iter 44/48 - loss 0.05567045 - time (sec): 21.33 - samples/sec: 1507.63 - lr: 0.000001 - momentum: 0.000000
2024-03-26 10:03:35,860 epoch 10 - iter 48/48 - loss 0.05630277 - time (sec): 22.91 - samples/sec: 1504.98 - lr: 0.000000 - momentum: 0.000000
2024-03-26 10:03:35,860 ----------------------------------------------------------------------------------------------------
2024-03-26 10:03:35,860 EPOCH 10 done: loss 0.0563 - lr: 0.000000
2024-03-26 10:03:36,754 DEV : loss 0.1511855125427246 - f1-score (micro avg)  0.9331
2024-03-26 10:03:36,755 saving best model
2024-03-26 10:03:37,466 ----------------------------------------------------------------------------------------------------
2024-03-26 10:03:37,466 Loading model from best epoch ...
2024-03-26 10:03:38,398 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
2024-03-26 10:03:39,146 
Results:
- F-score (micro) 0.8995
- F-score (macro) 0.6833
- Accuracy 0.8219

By class:
              precision    recall  f1-score   support

 Unternehmen     0.9137    0.8759    0.8944       266
 Auslagerung     0.8566    0.8876    0.8718       249
         Ort     0.9496    0.9851    0.9670       134
    Software     0.0000    0.0000    0.0000         0

   micro avg     0.8960    0.9029    0.8995       649
   macro avg     0.6800    0.6871    0.6833       649
weighted avg     0.8992    0.9029    0.9007       649

2024-03-26 10:03:39,146 ----------------------------------------------------------------------------------------------------