File size: 26,693 Bytes
ec3e9d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
2024-03-26 09:59:31,395 ----------------------------------------------------------------------------------------------------
2024-03-26 09:59:31,395 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(31103, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=17, bias=True)
(loss_function): CrossEntropyLoss()
)"
2024-03-26 09:59:31,395 ----------------------------------------------------------------------------------------------------
2024-03-26 09:59:31,395 Corpus: 758 train + 94 dev + 96 test sentences
2024-03-26 09:59:31,395 ----------------------------------------------------------------------------------------------------
2024-03-26 09:59:31,395 Train: 758 sentences
2024-03-26 09:59:31,395 (train_with_dev=False, train_with_test=False)
2024-03-26 09:59:31,396 ----------------------------------------------------------------------------------------------------
2024-03-26 09:59:31,396 Training Params:
2024-03-26 09:59:31,396 - learning_rate: "3e-05"
2024-03-26 09:59:31,396 - mini_batch_size: "16"
2024-03-26 09:59:31,396 - max_epochs: "10"
2024-03-26 09:59:31,396 - shuffle: "True"
2024-03-26 09:59:31,396 ----------------------------------------------------------------------------------------------------
2024-03-26 09:59:31,396 Plugins:
2024-03-26 09:59:31,396 - TensorboardLogger
2024-03-26 09:59:31,396 - LinearScheduler | warmup_fraction: '0.1'
2024-03-26 09:59:31,396 ----------------------------------------------------------------------------------------------------
2024-03-26 09:59:31,396 Final evaluation on model from best epoch (best-model.pt)
2024-03-26 09:59:31,396 - metric: "('micro avg', 'f1-score')"
2024-03-26 09:59:31,396 ----------------------------------------------------------------------------------------------------
2024-03-26 09:59:31,396 Computation:
2024-03-26 09:59:31,396 - compute on device: cuda:0
2024-03-26 09:59:31,396 - embedding storage: none
2024-03-26 09:59:31,396 ----------------------------------------------------------------------------------------------------
2024-03-26 09:59:31,396 Model training base path: "flair-co-funer-gbert_base-bs16-e10-lr3e-05-3"
2024-03-26 09:59:31,396 ----------------------------------------------------------------------------------------------------
2024-03-26 09:59:31,396 ----------------------------------------------------------------------------------------------------
2024-03-26 09:59:31,396 Logging anything other than scalars to TensorBoard is currently not supported.
2024-03-26 09:59:32,643 epoch 1 - iter 4/48 - loss 3.43646522 - time (sec): 1.25 - samples/sec: 2208.74 - lr: 0.000002 - momentum: 0.000000
2024-03-26 09:59:34,614 epoch 1 - iter 8/48 - loss 3.36082406 - time (sec): 3.22 - samples/sec: 1810.00 - lr: 0.000004 - momentum: 0.000000
2024-03-26 09:59:36,149 epoch 1 - iter 12/48 - loss 3.27049571 - time (sec): 4.75 - samples/sec: 1761.72 - lr: 0.000007 - momentum: 0.000000
2024-03-26 09:59:39,034 epoch 1 - iter 16/48 - loss 3.11812662 - time (sec): 7.64 - samples/sec: 1518.44 - lr: 0.000009 - momentum: 0.000000
2024-03-26 09:59:40,677 epoch 1 - iter 20/48 - loss 2.96663653 - time (sec): 9.28 - samples/sec: 1551.98 - lr: 0.000012 - momentum: 0.000000
2024-03-26 09:59:42,103 epoch 1 - iter 24/48 - loss 2.83877052 - time (sec): 10.71 - samples/sec: 1603.40 - lr: 0.000014 - momentum: 0.000000
2024-03-26 09:59:43,412 epoch 1 - iter 28/48 - loss 2.71878471 - time (sec): 12.02 - samples/sec: 1625.16 - lr: 0.000017 - momentum: 0.000000
2024-03-26 09:59:45,484 epoch 1 - iter 32/48 - loss 2.59293993 - time (sec): 14.09 - samples/sec: 1613.37 - lr: 0.000019 - momentum: 0.000000
2024-03-26 09:59:47,021 epoch 1 - iter 36/48 - loss 2.47846593 - time (sec): 15.63 - samples/sec: 1633.21 - lr: 0.000022 - momentum: 0.000000
2024-03-26 09:59:49,236 epoch 1 - iter 40/48 - loss 2.36097982 - time (sec): 17.84 - samples/sec: 1624.25 - lr: 0.000024 - momentum: 0.000000
2024-03-26 09:59:51,141 epoch 1 - iter 44/48 - loss 2.25907270 - time (sec): 19.75 - samples/sec: 1624.00 - lr: 0.000027 - momentum: 0.000000
2024-03-26 09:59:52,744 epoch 1 - iter 48/48 - loss 2.17647950 - time (sec): 21.35 - samples/sec: 1614.77 - lr: 0.000029 - momentum: 0.000000
2024-03-26 09:59:52,744 ----------------------------------------------------------------------------------------------------
2024-03-26 09:59:52,744 EPOCH 1 done: loss 2.1765 - lr: 0.000029
2024-03-26 09:59:53,553 DEV : loss 0.7939577102661133 - f1-score (micro avg) 0.4569
2024-03-26 09:59:53,554 saving best model
2024-03-26 09:59:53,834 ----------------------------------------------------------------------------------------------------
2024-03-26 09:59:55,240 epoch 2 - iter 4/48 - loss 0.98641542 - time (sec): 1.41 - samples/sec: 1775.70 - lr: 0.000030 - momentum: 0.000000
2024-03-26 09:59:56,693 epoch 2 - iter 8/48 - loss 0.85278575 - time (sec): 2.86 - samples/sec: 1707.91 - lr: 0.000030 - momentum: 0.000000
2024-03-26 09:59:58,106 epoch 2 - iter 12/48 - loss 0.81842829 - time (sec): 4.27 - samples/sec: 1799.84 - lr: 0.000029 - momentum: 0.000000
2024-03-26 09:59:59,970 epoch 2 - iter 16/48 - loss 0.75652823 - time (sec): 6.14 - samples/sec: 1753.35 - lr: 0.000029 - momentum: 0.000000
2024-03-26 10:00:02,304 epoch 2 - iter 20/48 - loss 0.72523901 - time (sec): 8.47 - samples/sec: 1674.24 - lr: 0.000029 - momentum: 0.000000
2024-03-26 10:00:04,313 epoch 2 - iter 24/48 - loss 0.67602021 - time (sec): 10.48 - samples/sec: 1655.27 - lr: 0.000028 - momentum: 0.000000
2024-03-26 10:00:07,019 epoch 2 - iter 28/48 - loss 0.65009793 - time (sec): 13.18 - samples/sec: 1587.16 - lr: 0.000028 - momentum: 0.000000
2024-03-26 10:00:09,208 epoch 2 - iter 32/48 - loss 0.62484745 - time (sec): 15.37 - samples/sec: 1552.58 - lr: 0.000028 - momentum: 0.000000
2024-03-26 10:00:10,913 epoch 2 - iter 36/48 - loss 0.61261076 - time (sec): 17.08 - samples/sec: 1546.83 - lr: 0.000028 - momentum: 0.000000
2024-03-26 10:00:12,600 epoch 2 - iter 40/48 - loss 0.60825046 - time (sec): 18.77 - samples/sec: 1554.54 - lr: 0.000027 - momentum: 0.000000
2024-03-26 10:00:14,733 epoch 2 - iter 44/48 - loss 0.59375280 - time (sec): 20.90 - samples/sec: 1550.50 - lr: 0.000027 - momentum: 0.000000
2024-03-26 10:00:16,229 epoch 2 - iter 48/48 - loss 0.57760153 - time (sec): 22.39 - samples/sec: 1539.34 - lr: 0.000027 - momentum: 0.000000
2024-03-26 10:00:16,229 ----------------------------------------------------------------------------------------------------
2024-03-26 10:00:16,229 EPOCH 2 done: loss 0.5776 - lr: 0.000027
2024-03-26 10:00:17,119 DEV : loss 0.32868492603302 - f1-score (micro avg) 0.7997
2024-03-26 10:00:17,120 saving best model
2024-03-26 10:00:17,588 ----------------------------------------------------------------------------------------------------
2024-03-26 10:00:19,074 epoch 3 - iter 4/48 - loss 0.38161214 - time (sec): 1.48 - samples/sec: 1650.47 - lr: 0.000026 - momentum: 0.000000
2024-03-26 10:00:21,853 epoch 3 - iter 8/48 - loss 0.33926201 - time (sec): 4.26 - samples/sec: 1343.95 - lr: 0.000026 - momentum: 0.000000
2024-03-26 10:00:23,088 epoch 3 - iter 12/48 - loss 0.34656835 - time (sec): 5.50 - samples/sec: 1481.70 - lr: 0.000026 - momentum: 0.000000
2024-03-26 10:00:24,439 epoch 3 - iter 16/48 - loss 0.31664455 - time (sec): 6.85 - samples/sec: 1611.63 - lr: 0.000026 - momentum: 0.000000
2024-03-26 10:00:25,877 epoch 3 - iter 20/48 - loss 0.32091794 - time (sec): 8.29 - samples/sec: 1630.39 - lr: 0.000025 - momentum: 0.000000
2024-03-26 10:00:28,556 epoch 3 - iter 24/48 - loss 0.31277796 - time (sec): 10.97 - samples/sec: 1523.16 - lr: 0.000025 - momentum: 0.000000
2024-03-26 10:00:30,448 epoch 3 - iter 28/48 - loss 0.30764724 - time (sec): 12.86 - samples/sec: 1541.44 - lr: 0.000025 - momentum: 0.000000
2024-03-26 10:00:32,937 epoch 3 - iter 32/48 - loss 0.29367022 - time (sec): 15.35 - samples/sec: 1485.72 - lr: 0.000025 - momentum: 0.000000
2024-03-26 10:00:34,844 epoch 3 - iter 36/48 - loss 0.29104830 - time (sec): 17.25 - samples/sec: 1482.42 - lr: 0.000024 - momentum: 0.000000
2024-03-26 10:00:37,177 epoch 3 - iter 40/48 - loss 0.28398890 - time (sec): 19.59 - samples/sec: 1458.33 - lr: 0.000024 - momentum: 0.000000
2024-03-26 10:00:39,592 epoch 3 - iter 44/48 - loss 0.29123866 - time (sec): 22.00 - samples/sec: 1446.29 - lr: 0.000024 - momentum: 0.000000
2024-03-26 10:00:41,895 epoch 3 - iter 48/48 - loss 0.28152527 - time (sec): 24.31 - samples/sec: 1418.30 - lr: 0.000023 - momentum: 0.000000
2024-03-26 10:00:41,895 ----------------------------------------------------------------------------------------------------
2024-03-26 10:00:41,895 EPOCH 3 done: loss 0.2815 - lr: 0.000023
2024-03-26 10:00:42,794 DEV : loss 0.25886547565460205 - f1-score (micro avg) 0.8309
2024-03-26 10:00:42,796 saving best model
2024-03-26 10:00:43,250 ----------------------------------------------------------------------------------------------------
2024-03-26 10:00:44,615 epoch 4 - iter 4/48 - loss 0.22042310 - time (sec): 1.36 - samples/sec: 1839.59 - lr: 0.000023 - momentum: 0.000000
2024-03-26 10:00:46,517 epoch 4 - iter 8/48 - loss 0.20257439 - time (sec): 3.26 - samples/sec: 1641.50 - lr: 0.000023 - momentum: 0.000000
2024-03-26 10:00:49,029 epoch 4 - iter 12/48 - loss 0.18510721 - time (sec): 5.78 - samples/sec: 1461.04 - lr: 0.000023 - momentum: 0.000000
2024-03-26 10:00:50,904 epoch 4 - iter 16/48 - loss 0.18860193 - time (sec): 7.65 - samples/sec: 1479.96 - lr: 0.000022 - momentum: 0.000000
2024-03-26 10:00:53,270 epoch 4 - iter 20/48 - loss 0.17922849 - time (sec): 10.02 - samples/sec: 1466.72 - lr: 0.000022 - momentum: 0.000000
2024-03-26 10:00:56,134 epoch 4 - iter 24/48 - loss 0.16967835 - time (sec): 12.88 - samples/sec: 1415.56 - lr: 0.000022 - momentum: 0.000000
2024-03-26 10:00:57,249 epoch 4 - iter 28/48 - loss 0.16942022 - time (sec): 14.00 - samples/sec: 1451.42 - lr: 0.000022 - momentum: 0.000000
2024-03-26 10:01:00,237 epoch 4 - iter 32/48 - loss 0.16567032 - time (sec): 16.98 - samples/sec: 1390.60 - lr: 0.000021 - momentum: 0.000000
2024-03-26 10:01:01,951 epoch 4 - iter 36/48 - loss 0.17214452 - time (sec): 18.70 - samples/sec: 1422.89 - lr: 0.000021 - momentum: 0.000000
2024-03-26 10:01:04,761 epoch 4 - iter 40/48 - loss 0.17727138 - time (sec): 21.51 - samples/sec: 1389.46 - lr: 0.000021 - momentum: 0.000000
2024-03-26 10:01:05,665 epoch 4 - iter 44/48 - loss 0.18046888 - time (sec): 22.41 - samples/sec: 1435.74 - lr: 0.000020 - momentum: 0.000000
2024-03-26 10:01:07,142 epoch 4 - iter 48/48 - loss 0.18200329 - time (sec): 23.89 - samples/sec: 1443.02 - lr: 0.000020 - momentum: 0.000000
2024-03-26 10:01:07,142 ----------------------------------------------------------------------------------------------------
2024-03-26 10:01:07,142 EPOCH 4 done: loss 0.1820 - lr: 0.000020
2024-03-26 10:01:08,036 DEV : loss 0.1913670003414154 - f1-score (micro avg) 0.8849
2024-03-26 10:01:08,037 saving best model
2024-03-26 10:01:08,487 ----------------------------------------------------------------------------------------------------
2024-03-26 10:01:10,926 epoch 5 - iter 4/48 - loss 0.12163748 - time (sec): 2.44 - samples/sec: 1304.60 - lr: 0.000020 - momentum: 0.000000
2024-03-26 10:01:12,343 epoch 5 - iter 8/48 - loss 0.14118800 - time (sec): 3.85 - samples/sec: 1477.15 - lr: 0.000020 - momentum: 0.000000
2024-03-26 10:01:13,798 epoch 5 - iter 12/48 - loss 0.14109407 - time (sec): 5.31 - samples/sec: 1552.37 - lr: 0.000019 - momentum: 0.000000
2024-03-26 10:01:15,969 epoch 5 - iter 16/48 - loss 0.13294762 - time (sec): 7.48 - samples/sec: 1470.95 - lr: 0.000019 - momentum: 0.000000
2024-03-26 10:01:18,018 epoch 5 - iter 20/48 - loss 0.14325906 - time (sec): 9.53 - samples/sec: 1477.67 - lr: 0.000019 - momentum: 0.000000
2024-03-26 10:01:20,481 epoch 5 - iter 24/48 - loss 0.13499390 - time (sec): 11.99 - samples/sec: 1468.01 - lr: 0.000018 - momentum: 0.000000
2024-03-26 10:01:23,022 epoch 5 - iter 28/48 - loss 0.12862412 - time (sec): 14.53 - samples/sec: 1448.39 - lr: 0.000018 - momentum: 0.000000
2024-03-26 10:01:24,885 epoch 5 - iter 32/48 - loss 0.13148701 - time (sec): 16.40 - samples/sec: 1452.41 - lr: 0.000018 - momentum: 0.000000
2024-03-26 10:01:26,694 epoch 5 - iter 36/48 - loss 0.12883528 - time (sec): 18.20 - samples/sec: 1452.72 - lr: 0.000018 - momentum: 0.000000
2024-03-26 10:01:28,975 epoch 5 - iter 40/48 - loss 0.12796493 - time (sec): 20.49 - samples/sec: 1441.69 - lr: 0.000017 - momentum: 0.000000
2024-03-26 10:01:30,915 epoch 5 - iter 44/48 - loss 0.13048640 - time (sec): 22.43 - samples/sec: 1440.37 - lr: 0.000017 - momentum: 0.000000
2024-03-26 10:01:31,959 epoch 5 - iter 48/48 - loss 0.12997086 - time (sec): 23.47 - samples/sec: 1468.75 - lr: 0.000017 - momentum: 0.000000
2024-03-26 10:01:31,960 ----------------------------------------------------------------------------------------------------
2024-03-26 10:01:31,960 EPOCH 5 done: loss 0.1300 - lr: 0.000017
2024-03-26 10:01:32,853 DEV : loss 0.17436812818050385 - f1-score (micro avg) 0.8919
2024-03-26 10:01:32,854 saving best model
2024-03-26 10:01:33,303 ----------------------------------------------------------------------------------------------------
2024-03-26 10:01:35,888 epoch 6 - iter 4/48 - loss 0.09782980 - time (sec): 2.58 - samples/sec: 1230.90 - lr: 0.000017 - momentum: 0.000000
2024-03-26 10:01:37,873 epoch 6 - iter 8/48 - loss 0.09889715 - time (sec): 4.57 - samples/sec: 1285.37 - lr: 0.000016 - momentum: 0.000000
2024-03-26 10:01:39,433 epoch 6 - iter 12/48 - loss 0.10167303 - time (sec): 6.13 - samples/sec: 1439.69 - lr: 0.000016 - momentum: 0.000000
2024-03-26 10:01:41,380 epoch 6 - iter 16/48 - loss 0.09465287 - time (sec): 8.07 - samples/sec: 1440.18 - lr: 0.000016 - momentum: 0.000000
2024-03-26 10:01:42,448 epoch 6 - iter 20/48 - loss 0.09812166 - time (sec): 9.14 - samples/sec: 1528.27 - lr: 0.000015 - momentum: 0.000000
2024-03-26 10:01:44,365 epoch 6 - iter 24/48 - loss 0.09748869 - time (sec): 11.06 - samples/sec: 1511.24 - lr: 0.000015 - momentum: 0.000000
2024-03-26 10:01:45,502 epoch 6 - iter 28/48 - loss 0.09823753 - time (sec): 12.20 - samples/sec: 1559.55 - lr: 0.000015 - momentum: 0.000000
2024-03-26 10:01:47,264 epoch 6 - iter 32/48 - loss 0.09442643 - time (sec): 13.96 - samples/sec: 1578.15 - lr: 0.000015 - momentum: 0.000000
2024-03-26 10:01:49,666 epoch 6 - iter 36/48 - loss 0.10523613 - time (sec): 16.36 - samples/sec: 1552.08 - lr: 0.000014 - momentum: 0.000000
2024-03-26 10:01:51,714 epoch 6 - iter 40/48 - loss 0.10211317 - time (sec): 18.41 - samples/sec: 1543.49 - lr: 0.000014 - momentum: 0.000000
2024-03-26 10:01:53,581 epoch 6 - iter 44/48 - loss 0.10480042 - time (sec): 20.28 - samples/sec: 1551.43 - lr: 0.000014 - momentum: 0.000000
2024-03-26 10:01:55,114 epoch 6 - iter 48/48 - loss 0.10675454 - time (sec): 21.81 - samples/sec: 1580.61 - lr: 0.000014 - momentum: 0.000000
2024-03-26 10:01:55,115 ----------------------------------------------------------------------------------------------------
2024-03-26 10:01:55,115 EPOCH 6 done: loss 0.1068 - lr: 0.000014
2024-03-26 10:01:56,016 DEV : loss 0.16683053970336914 - f1-score (micro avg) 0.9087
2024-03-26 10:01:56,017 saving best model
2024-03-26 10:01:56,467 ----------------------------------------------------------------------------------------------------
2024-03-26 10:01:58,637 epoch 7 - iter 4/48 - loss 0.09254774 - time (sec): 2.17 - samples/sec: 1274.49 - lr: 0.000013 - momentum: 0.000000
2024-03-26 10:02:00,336 epoch 7 - iter 8/48 - loss 0.08838913 - time (sec): 3.87 - samples/sec: 1485.65 - lr: 0.000013 - momentum: 0.000000
2024-03-26 10:02:02,391 epoch 7 - iter 12/48 - loss 0.07238019 - time (sec): 5.92 - samples/sec: 1446.76 - lr: 0.000013 - momentum: 0.000000
2024-03-26 10:02:04,944 epoch 7 - iter 16/48 - loss 0.07196467 - time (sec): 8.48 - samples/sec: 1394.49 - lr: 0.000012 - momentum: 0.000000
2024-03-26 10:02:07,622 epoch 7 - iter 20/48 - loss 0.07551862 - time (sec): 11.15 - samples/sec: 1401.35 - lr: 0.000012 - momentum: 0.000000
2024-03-26 10:02:09,130 epoch 7 - iter 24/48 - loss 0.07740105 - time (sec): 12.66 - samples/sec: 1423.50 - lr: 0.000012 - momentum: 0.000000
2024-03-26 10:02:11,213 epoch 7 - iter 28/48 - loss 0.07286143 - time (sec): 14.74 - samples/sec: 1442.91 - lr: 0.000012 - momentum: 0.000000
2024-03-26 10:02:13,347 epoch 7 - iter 32/48 - loss 0.07581369 - time (sec): 16.88 - samples/sec: 1448.48 - lr: 0.000011 - momentum: 0.000000
2024-03-26 10:02:15,550 epoch 7 - iter 36/48 - loss 0.08004892 - time (sec): 19.08 - samples/sec: 1434.63 - lr: 0.000011 - momentum: 0.000000
2024-03-26 10:02:17,121 epoch 7 - iter 40/48 - loss 0.07736339 - time (sec): 20.65 - samples/sec: 1443.71 - lr: 0.000011 - momentum: 0.000000
2024-03-26 10:02:18,764 epoch 7 - iter 44/48 - loss 0.08124466 - time (sec): 22.29 - samples/sec: 1463.02 - lr: 0.000010 - momentum: 0.000000
2024-03-26 10:02:20,081 epoch 7 - iter 48/48 - loss 0.08186639 - time (sec): 23.61 - samples/sec: 1459.91 - lr: 0.000010 - momentum: 0.000000
2024-03-26 10:02:20,081 ----------------------------------------------------------------------------------------------------
2024-03-26 10:02:20,081 EPOCH 7 done: loss 0.0819 - lr: 0.000010
2024-03-26 10:02:20,975 DEV : loss 0.16401655972003937 - f1-score (micro avg) 0.9157
2024-03-26 10:02:20,976 saving best model
2024-03-26 10:02:21,421 ----------------------------------------------------------------------------------------------------
2024-03-26 10:02:23,755 epoch 8 - iter 4/48 - loss 0.06079097 - time (sec): 2.33 - samples/sec: 1260.57 - lr: 0.000010 - momentum: 0.000000
2024-03-26 10:02:26,287 epoch 8 - iter 8/48 - loss 0.05516021 - time (sec): 4.86 - samples/sec: 1359.71 - lr: 0.000010 - momentum: 0.000000
2024-03-26 10:02:28,279 epoch 8 - iter 12/48 - loss 0.05565549 - time (sec): 6.86 - samples/sec: 1342.24 - lr: 0.000009 - momentum: 0.000000
2024-03-26 10:02:30,262 epoch 8 - iter 16/48 - loss 0.05522776 - time (sec): 8.84 - samples/sec: 1356.58 - lr: 0.000009 - momentum: 0.000000
2024-03-26 10:02:31,782 epoch 8 - iter 20/48 - loss 0.05660406 - time (sec): 10.36 - samples/sec: 1380.14 - lr: 0.000009 - momentum: 0.000000
2024-03-26 10:02:34,115 epoch 8 - iter 24/48 - loss 0.05700863 - time (sec): 12.69 - samples/sec: 1366.34 - lr: 0.000009 - momentum: 0.000000
2024-03-26 10:02:36,248 epoch 8 - iter 28/48 - loss 0.05738097 - time (sec): 14.82 - samples/sec: 1359.64 - lr: 0.000008 - momentum: 0.000000
2024-03-26 10:02:38,546 epoch 8 - iter 32/48 - loss 0.06585629 - time (sec): 17.12 - samples/sec: 1371.04 - lr: 0.000008 - momentum: 0.000000
2024-03-26 10:02:41,710 epoch 8 - iter 36/48 - loss 0.06769677 - time (sec): 20.29 - samples/sec: 1322.88 - lr: 0.000008 - momentum: 0.000000
2024-03-26 10:02:43,685 epoch 8 - iter 40/48 - loss 0.07192573 - time (sec): 22.26 - samples/sec: 1329.43 - lr: 0.000007 - momentum: 0.000000
2024-03-26 10:02:44,478 epoch 8 - iter 44/48 - loss 0.07055192 - time (sec): 23.06 - samples/sec: 1378.00 - lr: 0.000007 - momentum: 0.000000
2024-03-26 10:02:46,279 epoch 8 - iter 48/48 - loss 0.07020865 - time (sec): 24.86 - samples/sec: 1386.85 - lr: 0.000007 - momentum: 0.000000
2024-03-26 10:02:46,280 ----------------------------------------------------------------------------------------------------
2024-03-26 10:02:46,280 EPOCH 8 done: loss 0.0702 - lr: 0.000007
2024-03-26 10:02:47,182 DEV : loss 0.15253271162509918 - f1-score (micro avg) 0.9208
2024-03-26 10:02:47,183 saving best model
2024-03-26 10:02:47,629 ----------------------------------------------------------------------------------------------------
2024-03-26 10:02:50,314 epoch 9 - iter 4/48 - loss 0.04359022 - time (sec): 2.68 - samples/sec: 1228.92 - lr: 0.000007 - momentum: 0.000000
2024-03-26 10:02:51,983 epoch 9 - iter 8/48 - loss 0.05473787 - time (sec): 4.35 - samples/sec: 1318.52 - lr: 0.000006 - momentum: 0.000000
2024-03-26 10:02:54,086 epoch 9 - iter 12/48 - loss 0.06362136 - time (sec): 6.46 - samples/sec: 1390.53 - lr: 0.000006 - momentum: 0.000000
2024-03-26 10:02:56,156 epoch 9 - iter 16/48 - loss 0.06414554 - time (sec): 8.52 - samples/sec: 1420.55 - lr: 0.000006 - momentum: 0.000000
2024-03-26 10:02:58,469 epoch 9 - iter 20/48 - loss 0.05654201 - time (sec): 10.84 - samples/sec: 1395.91 - lr: 0.000006 - momentum: 0.000000
2024-03-26 10:03:00,379 epoch 9 - iter 24/48 - loss 0.05696336 - time (sec): 12.75 - samples/sec: 1389.10 - lr: 0.000005 - momentum: 0.000000
2024-03-26 10:03:03,558 epoch 9 - iter 28/48 - loss 0.05821121 - time (sec): 15.93 - samples/sec: 1341.28 - lr: 0.000005 - momentum: 0.000000
2024-03-26 10:03:04,910 epoch 9 - iter 32/48 - loss 0.05796211 - time (sec): 17.28 - samples/sec: 1382.56 - lr: 0.000005 - momentum: 0.000000
2024-03-26 10:03:07,265 epoch 9 - iter 36/48 - loss 0.05834651 - time (sec): 19.63 - samples/sec: 1372.55 - lr: 0.000004 - momentum: 0.000000
2024-03-26 10:03:08,719 epoch 9 - iter 40/48 - loss 0.05878344 - time (sec): 21.09 - samples/sec: 1390.36 - lr: 0.000004 - momentum: 0.000000
2024-03-26 10:03:10,215 epoch 9 - iter 44/48 - loss 0.06224717 - time (sec): 22.58 - samples/sec: 1408.57 - lr: 0.000004 - momentum: 0.000000
2024-03-26 10:03:11,606 epoch 9 - iter 48/48 - loss 0.06229583 - time (sec): 23.98 - samples/sec: 1437.80 - lr: 0.000004 - momentum: 0.000000
2024-03-26 10:03:11,606 ----------------------------------------------------------------------------------------------------
2024-03-26 10:03:11,606 EPOCH 9 done: loss 0.0623 - lr: 0.000004
2024-03-26 10:03:12,500 DEV : loss 0.15111036598682404 - f1-score (micro avg) 0.9286
2024-03-26 10:03:12,501 saving best model
2024-03-26 10:03:12,953 ----------------------------------------------------------------------------------------------------
2024-03-26 10:03:15,317 epoch 10 - iter 4/48 - loss 0.03673501 - time (sec): 2.36 - samples/sec: 1393.43 - lr: 0.000003 - momentum: 0.000000
2024-03-26 10:03:17,222 epoch 10 - iter 8/48 - loss 0.03572186 - time (sec): 4.27 - samples/sec: 1369.74 - lr: 0.000003 - momentum: 0.000000
2024-03-26 10:03:18,396 epoch 10 - iter 12/48 - loss 0.05193565 - time (sec): 5.44 - samples/sec: 1533.06 - lr: 0.000003 - momentum: 0.000000
2024-03-26 10:03:19,907 epoch 10 - iter 16/48 - loss 0.05828219 - time (sec): 6.95 - samples/sec: 1613.93 - lr: 0.000002 - momentum: 0.000000
2024-03-26 10:03:21,592 epoch 10 - iter 20/48 - loss 0.05891099 - time (sec): 8.64 - samples/sec: 1652.86 - lr: 0.000002 - momentum: 0.000000
2024-03-26 10:03:23,599 epoch 10 - iter 24/48 - loss 0.05669250 - time (sec): 10.64 - samples/sec: 1601.21 - lr: 0.000002 - momentum: 0.000000
2024-03-26 10:03:25,706 epoch 10 - iter 28/48 - loss 0.05313062 - time (sec): 12.75 - samples/sec: 1564.46 - lr: 0.000002 - momentum: 0.000000
2024-03-26 10:03:27,803 epoch 10 - iter 32/48 - loss 0.05458190 - time (sec): 14.85 - samples/sec: 1571.27 - lr: 0.000001 - momentum: 0.000000
2024-03-26 10:03:29,185 epoch 10 - iter 36/48 - loss 0.05515192 - time (sec): 16.23 - samples/sec: 1571.16 - lr: 0.000001 - momentum: 0.000000
2024-03-26 10:03:31,786 epoch 10 - iter 40/48 - loss 0.05263161 - time (sec): 18.83 - samples/sec: 1532.43 - lr: 0.000001 - momentum: 0.000000
2024-03-26 10:03:34,283 epoch 10 - iter 44/48 - loss 0.05567045 - time (sec): 21.33 - samples/sec: 1507.63 - lr: 0.000001 - momentum: 0.000000
2024-03-26 10:03:35,860 epoch 10 - iter 48/48 - loss 0.05630277 - time (sec): 22.91 - samples/sec: 1504.98 - lr: 0.000000 - momentum: 0.000000
2024-03-26 10:03:35,860 ----------------------------------------------------------------------------------------------------
2024-03-26 10:03:35,860 EPOCH 10 done: loss 0.0563 - lr: 0.000000
2024-03-26 10:03:36,754 DEV : loss 0.1511855125427246 - f1-score (micro avg) 0.9331
2024-03-26 10:03:36,755 saving best model
2024-03-26 10:03:37,466 ----------------------------------------------------------------------------------------------------
2024-03-26 10:03:37,466 Loading model from best epoch ...
2024-03-26 10:03:38,398 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
2024-03-26 10:03:39,146
Results:
- F-score (micro) 0.8995
- F-score (macro) 0.6833
- Accuracy 0.8219
By class:
precision recall f1-score support
Unternehmen 0.9137 0.8759 0.8944 266
Auslagerung 0.8566 0.8876 0.8718 249
Ort 0.9496 0.9851 0.9670 134
Software 0.0000 0.0000 0.0000 0
micro avg 0.8960 0.9029 0.8995 649
macro avg 0.6800 0.6871 0.6833 649
weighted avg 0.8992 0.9029 0.9007 649
2024-03-26 10:03:39,146 ----------------------------------------------------------------------------------------------------
|