File size: 25,379 Bytes
1ef10b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
2023-10-19 01:39:56,601 ----------------------------------------------------------------------------------------------------
2023-10-19 01:39:56,602 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(31103, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=81, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-19 01:39:56,602 ----------------------------------------------------------------------------------------------------
2023-10-19 01:39:56,602 Corpus: 6900 train + 1576 dev + 1833 test sentences
2023-10-19 01:39:56,602 ----------------------------------------------------------------------------------------------------
2023-10-19 01:39:56,602 Train:  6900 sentences
2023-10-19 01:39:56,602         (train_with_dev=False, train_with_test=False)
2023-10-19 01:39:56,602 ----------------------------------------------------------------------------------------------------
2023-10-19 01:39:56,602 Training Params:
2023-10-19 01:39:56,603  - learning_rate: "5e-05" 
2023-10-19 01:39:56,603  - mini_batch_size: "16"
2023-10-19 01:39:56,603  - max_epochs: "10"
2023-10-19 01:39:56,603  - shuffle: "True"
2023-10-19 01:39:56,603 ----------------------------------------------------------------------------------------------------
2023-10-19 01:39:56,603 Plugins:
2023-10-19 01:39:56,603  - TensorboardLogger
2023-10-19 01:39:56,603  - LinearScheduler | warmup_fraction: '0.1'
2023-10-19 01:39:56,603 ----------------------------------------------------------------------------------------------------
2023-10-19 01:39:56,603 Final evaluation on model from best epoch (best-model.pt)
2023-10-19 01:39:56,603  - metric: "('micro avg', 'f1-score')"
2023-10-19 01:39:56,603 ----------------------------------------------------------------------------------------------------
2023-10-19 01:39:56,603 Computation:
2023-10-19 01:39:56,603  - compute on device: cuda:0
2023-10-19 01:39:56,603  - embedding storage: none
2023-10-19 01:39:56,603 ----------------------------------------------------------------------------------------------------
2023-10-19 01:39:56,603 Model training base path: "autotrain-flair-mobie-gbert_base-bs16-e10-lr5e-05-3"
2023-10-19 01:39:56,603 ----------------------------------------------------------------------------------------------------
2023-10-19 01:39:56,603 ----------------------------------------------------------------------------------------------------
2023-10-19 01:39:56,604 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-19 01:40:11,037 epoch 1 - iter 43/432 - loss 4.25713314 - time (sec): 14.43 - samples/sec: 430.01 - lr: 0.000005 - momentum: 0.000000
2023-10-19 01:40:25,630 epoch 1 - iter 86/432 - loss 3.24789196 - time (sec): 29.03 - samples/sec: 420.70 - lr: 0.000010 - momentum: 0.000000
2023-10-19 01:40:40,727 epoch 1 - iter 129/432 - loss 2.71426774 - time (sec): 44.12 - samples/sec: 420.26 - lr: 0.000015 - momentum: 0.000000
2023-10-19 01:40:55,443 epoch 1 - iter 172/432 - loss 2.40284727 - time (sec): 58.84 - samples/sec: 419.42 - lr: 0.000020 - momentum: 0.000000
2023-10-19 01:41:10,081 epoch 1 - iter 215/432 - loss 2.15479567 - time (sec): 73.48 - samples/sec: 420.02 - lr: 0.000025 - momentum: 0.000000
2023-10-19 01:41:25,394 epoch 1 - iter 258/432 - loss 1.94996109 - time (sec): 88.79 - samples/sec: 417.19 - lr: 0.000030 - momentum: 0.000000
2023-10-19 01:41:40,178 epoch 1 - iter 301/432 - loss 1.78391625 - time (sec): 103.57 - samples/sec: 418.57 - lr: 0.000035 - momentum: 0.000000
2023-10-19 01:41:55,533 epoch 1 - iter 344/432 - loss 1.65459407 - time (sec): 118.93 - samples/sec: 414.58 - lr: 0.000040 - momentum: 0.000000
2023-10-19 01:42:10,188 epoch 1 - iter 387/432 - loss 1.54328420 - time (sec): 133.58 - samples/sec: 415.90 - lr: 0.000045 - momentum: 0.000000
2023-10-19 01:42:24,418 epoch 1 - iter 430/432 - loss 1.44458615 - time (sec): 147.81 - samples/sec: 417.31 - lr: 0.000050 - momentum: 0.000000
2023-10-19 01:42:25,052 ----------------------------------------------------------------------------------------------------
2023-10-19 01:42:25,052 EPOCH 1 done: loss 1.4425 - lr: 0.000050
2023-10-19 01:42:38,766 DEV : loss 0.45496100187301636 - f1-score (micro avg)  0.7175
2023-10-19 01:42:38,790 saving best model
2023-10-19 01:42:39,214 ----------------------------------------------------------------------------------------------------
2023-10-19 01:42:54,241 epoch 2 - iter 43/432 - loss 0.45728563 - time (sec): 15.03 - samples/sec: 415.63 - lr: 0.000049 - momentum: 0.000000
2023-10-19 01:43:08,781 epoch 2 - iter 86/432 - loss 0.45661912 - time (sec): 29.57 - samples/sec: 414.74 - lr: 0.000049 - momentum: 0.000000
2023-10-19 01:43:23,811 epoch 2 - iter 129/432 - loss 0.44475303 - time (sec): 44.60 - samples/sec: 414.57 - lr: 0.000048 - momentum: 0.000000
2023-10-19 01:43:38,997 epoch 2 - iter 172/432 - loss 0.43971531 - time (sec): 59.78 - samples/sec: 418.02 - lr: 0.000048 - momentum: 0.000000
2023-10-19 01:43:54,683 epoch 2 - iter 215/432 - loss 0.43320350 - time (sec): 75.47 - samples/sec: 412.79 - lr: 0.000047 - momentum: 0.000000
2023-10-19 01:44:10,487 epoch 2 - iter 258/432 - loss 0.42523129 - time (sec): 91.27 - samples/sec: 411.43 - lr: 0.000047 - momentum: 0.000000
2023-10-19 01:44:24,503 epoch 2 - iter 301/432 - loss 0.41730337 - time (sec): 105.29 - samples/sec: 413.24 - lr: 0.000046 - momentum: 0.000000
2023-10-19 01:44:39,860 epoch 2 - iter 344/432 - loss 0.40943162 - time (sec): 120.64 - samples/sec: 412.31 - lr: 0.000046 - momentum: 0.000000
2023-10-19 01:44:55,802 epoch 2 - iter 387/432 - loss 0.40131277 - time (sec): 136.59 - samples/sec: 407.01 - lr: 0.000045 - momentum: 0.000000
2023-10-19 01:45:11,079 epoch 2 - iter 430/432 - loss 0.39353999 - time (sec): 151.86 - samples/sec: 406.04 - lr: 0.000044 - momentum: 0.000000
2023-10-19 01:45:11,757 ----------------------------------------------------------------------------------------------------
2023-10-19 01:45:11,758 EPOCH 2 done: loss 0.3936 - lr: 0.000044
2023-10-19 01:45:25,074 DEV : loss 0.34911495447158813 - f1-score (micro avg)  0.7839
2023-10-19 01:45:25,098 saving best model
2023-10-19 01:45:26,362 ----------------------------------------------------------------------------------------------------
2023-10-19 01:45:42,225 epoch 3 - iter 43/432 - loss 0.23809661 - time (sec): 15.86 - samples/sec: 384.64 - lr: 0.000044 - momentum: 0.000000
2023-10-19 01:45:56,725 epoch 3 - iter 86/432 - loss 0.25537867 - time (sec): 30.36 - samples/sec: 400.60 - lr: 0.000043 - momentum: 0.000000
2023-10-19 01:46:12,566 epoch 3 - iter 129/432 - loss 0.25249369 - time (sec): 46.20 - samples/sec: 397.89 - lr: 0.000043 - momentum: 0.000000
2023-10-19 01:46:28,424 epoch 3 - iter 172/432 - loss 0.24958478 - time (sec): 62.06 - samples/sec: 390.97 - lr: 0.000042 - momentum: 0.000000
2023-10-19 01:46:43,338 epoch 3 - iter 215/432 - loss 0.24589922 - time (sec): 76.98 - samples/sec: 394.71 - lr: 0.000042 - momentum: 0.000000
2023-10-19 01:46:57,935 epoch 3 - iter 258/432 - loss 0.24803978 - time (sec): 91.57 - samples/sec: 401.48 - lr: 0.000041 - momentum: 0.000000
2023-10-19 01:47:13,333 epoch 3 - iter 301/432 - loss 0.25300654 - time (sec): 106.97 - samples/sec: 400.09 - lr: 0.000041 - momentum: 0.000000
2023-10-19 01:47:27,657 epoch 3 - iter 344/432 - loss 0.25326885 - time (sec): 121.29 - samples/sec: 404.99 - lr: 0.000040 - momentum: 0.000000
2023-10-19 01:47:42,549 epoch 3 - iter 387/432 - loss 0.25155598 - time (sec): 136.19 - samples/sec: 405.65 - lr: 0.000039 - momentum: 0.000000
2023-10-19 01:47:58,354 epoch 3 - iter 430/432 - loss 0.24897874 - time (sec): 151.99 - samples/sec: 405.38 - lr: 0.000039 - momentum: 0.000000
2023-10-19 01:47:58,869 ----------------------------------------------------------------------------------------------------
2023-10-19 01:47:58,869 EPOCH 3 done: loss 0.2490 - lr: 0.000039
2023-10-19 01:48:12,087 DEV : loss 0.3246375322341919 - f1-score (micro avg)  0.8108
2023-10-19 01:48:12,111 saving best model
2023-10-19 01:48:13,359 ----------------------------------------------------------------------------------------------------
2023-10-19 01:48:27,749 epoch 4 - iter 43/432 - loss 0.15451661 - time (sec): 14.39 - samples/sec: 429.09 - lr: 0.000038 - momentum: 0.000000
2023-10-19 01:48:42,381 epoch 4 - iter 86/432 - loss 0.15328832 - time (sec): 29.02 - samples/sec: 427.64 - lr: 0.000038 - momentum: 0.000000
2023-10-19 01:48:57,422 epoch 4 - iter 129/432 - loss 0.16923728 - time (sec): 44.06 - samples/sec: 422.89 - lr: 0.000037 - momentum: 0.000000
2023-10-19 01:49:12,798 epoch 4 - iter 172/432 - loss 0.17532061 - time (sec): 59.44 - samples/sec: 418.25 - lr: 0.000037 - momentum: 0.000000
2023-10-19 01:49:27,957 epoch 4 - iter 215/432 - loss 0.18129161 - time (sec): 74.60 - samples/sec: 411.85 - lr: 0.000036 - momentum: 0.000000
2023-10-19 01:49:42,076 epoch 4 - iter 258/432 - loss 0.18102947 - time (sec): 88.71 - samples/sec: 414.35 - lr: 0.000036 - momentum: 0.000000
2023-10-19 01:49:56,693 epoch 4 - iter 301/432 - loss 0.17706809 - time (sec): 103.33 - samples/sec: 414.23 - lr: 0.000035 - momentum: 0.000000
2023-10-19 01:50:10,961 epoch 4 - iter 344/432 - loss 0.17600081 - time (sec): 117.60 - samples/sec: 420.72 - lr: 0.000034 - momentum: 0.000000
2023-10-19 01:50:26,404 epoch 4 - iter 387/432 - loss 0.17705983 - time (sec): 133.04 - samples/sec: 415.10 - lr: 0.000034 - momentum: 0.000000
2023-10-19 01:50:41,675 epoch 4 - iter 430/432 - loss 0.17678007 - time (sec): 148.31 - samples/sec: 415.08 - lr: 0.000033 - momentum: 0.000000
2023-10-19 01:50:42,245 ----------------------------------------------------------------------------------------------------
2023-10-19 01:50:42,245 EPOCH 4 done: loss 0.1773 - lr: 0.000033
2023-10-19 01:50:55,364 DEV : loss 0.29224464297294617 - f1-score (micro avg)  0.8349
2023-10-19 01:50:55,388 saving best model
2023-10-19 01:50:56,635 ----------------------------------------------------------------------------------------------------
2023-10-19 01:51:11,222 epoch 5 - iter 43/432 - loss 0.12751561 - time (sec): 14.59 - samples/sec: 398.73 - lr: 0.000033 - momentum: 0.000000
2023-10-19 01:51:25,804 epoch 5 - iter 86/432 - loss 0.12363292 - time (sec): 29.17 - samples/sec: 408.91 - lr: 0.000032 - momentum: 0.000000
2023-10-19 01:51:40,313 epoch 5 - iter 129/432 - loss 0.12950420 - time (sec): 43.68 - samples/sec: 420.14 - lr: 0.000032 - momentum: 0.000000
2023-10-19 01:51:54,408 epoch 5 - iter 172/432 - loss 0.12809390 - time (sec): 57.77 - samples/sec: 427.66 - lr: 0.000031 - momentum: 0.000000
2023-10-19 01:52:09,245 epoch 5 - iter 215/432 - loss 0.13394395 - time (sec): 72.61 - samples/sec: 424.89 - lr: 0.000031 - momentum: 0.000000
2023-10-19 01:52:25,088 epoch 5 - iter 258/432 - loss 0.13182392 - time (sec): 88.45 - samples/sec: 417.72 - lr: 0.000030 - momentum: 0.000000
2023-10-19 01:52:40,113 epoch 5 - iter 301/432 - loss 0.13212724 - time (sec): 103.48 - samples/sec: 416.20 - lr: 0.000029 - momentum: 0.000000
2023-10-19 01:52:55,382 epoch 5 - iter 344/432 - loss 0.13098423 - time (sec): 118.75 - samples/sec: 414.14 - lr: 0.000029 - momentum: 0.000000
2023-10-19 01:53:09,958 epoch 5 - iter 387/432 - loss 0.13216788 - time (sec): 133.32 - samples/sec: 416.82 - lr: 0.000028 - momentum: 0.000000
2023-10-19 01:53:25,239 epoch 5 - iter 430/432 - loss 0.13046149 - time (sec): 148.60 - samples/sec: 415.11 - lr: 0.000028 - momentum: 0.000000
2023-10-19 01:53:25,712 ----------------------------------------------------------------------------------------------------
2023-10-19 01:53:25,713 EPOCH 5 done: loss 0.1305 - lr: 0.000028
2023-10-19 01:53:39,313 DEV : loss 0.32371342182159424 - f1-score (micro avg)  0.8266
2023-10-19 01:53:39,360 ----------------------------------------------------------------------------------------------------
2023-10-19 01:53:55,116 epoch 6 - iter 43/432 - loss 0.08270545 - time (sec): 15.75 - samples/sec: 388.28 - lr: 0.000027 - momentum: 0.000000
2023-10-19 01:54:10,124 epoch 6 - iter 86/432 - loss 0.08062138 - time (sec): 30.76 - samples/sec: 396.33 - lr: 0.000027 - momentum: 0.000000
2023-10-19 01:54:25,180 epoch 6 - iter 129/432 - loss 0.08479993 - time (sec): 45.82 - samples/sec: 408.11 - lr: 0.000026 - momentum: 0.000000
2023-10-19 01:54:39,491 epoch 6 - iter 172/432 - loss 0.09233340 - time (sec): 60.13 - samples/sec: 414.18 - lr: 0.000026 - momentum: 0.000000
2023-10-19 01:54:54,018 epoch 6 - iter 215/432 - loss 0.09404072 - time (sec): 74.66 - samples/sec: 415.41 - lr: 0.000025 - momentum: 0.000000
2023-10-19 01:55:09,360 epoch 6 - iter 258/432 - loss 0.09241168 - time (sec): 90.00 - samples/sec: 412.03 - lr: 0.000024 - momentum: 0.000000
2023-10-19 01:55:24,823 epoch 6 - iter 301/432 - loss 0.09115702 - time (sec): 105.46 - samples/sec: 408.85 - lr: 0.000024 - momentum: 0.000000
2023-10-19 01:55:40,215 epoch 6 - iter 344/432 - loss 0.09173961 - time (sec): 120.85 - samples/sec: 410.46 - lr: 0.000023 - momentum: 0.000000
2023-10-19 01:55:55,726 epoch 6 - iter 387/432 - loss 0.09239848 - time (sec): 136.36 - samples/sec: 408.04 - lr: 0.000023 - momentum: 0.000000
2023-10-19 01:56:10,691 epoch 6 - iter 430/432 - loss 0.09560995 - time (sec): 151.33 - samples/sec: 407.44 - lr: 0.000022 - momentum: 0.000000
2023-10-19 01:56:11,371 ----------------------------------------------------------------------------------------------------
2023-10-19 01:56:11,371 EPOCH 6 done: loss 0.0956 - lr: 0.000022
2023-10-19 01:56:24,571 DEV : loss 0.33836397528648376 - f1-score (micro avg)  0.8366
2023-10-19 01:56:24,595 saving best model
2023-10-19 01:56:25,847 ----------------------------------------------------------------------------------------------------
2023-10-19 01:56:41,610 epoch 7 - iter 43/432 - loss 0.07430404 - time (sec): 15.76 - samples/sec: 395.59 - lr: 0.000022 - momentum: 0.000000
2023-10-19 01:56:56,421 epoch 7 - iter 86/432 - loss 0.07375232 - time (sec): 30.57 - samples/sec: 420.31 - lr: 0.000021 - momentum: 0.000000
2023-10-19 01:57:10,786 epoch 7 - iter 129/432 - loss 0.07598234 - time (sec): 44.94 - samples/sec: 416.57 - lr: 0.000021 - momentum: 0.000000
2023-10-19 01:57:26,303 epoch 7 - iter 172/432 - loss 0.07509303 - time (sec): 60.45 - samples/sec: 410.82 - lr: 0.000020 - momentum: 0.000000
2023-10-19 01:57:42,174 epoch 7 - iter 215/432 - loss 0.07645940 - time (sec): 76.33 - samples/sec: 406.76 - lr: 0.000019 - momentum: 0.000000
2023-10-19 01:57:57,853 epoch 7 - iter 258/432 - loss 0.07560066 - time (sec): 92.00 - samples/sec: 401.87 - lr: 0.000019 - momentum: 0.000000
2023-10-19 01:58:12,315 epoch 7 - iter 301/432 - loss 0.07564389 - time (sec): 106.47 - samples/sec: 404.02 - lr: 0.000018 - momentum: 0.000000
2023-10-19 01:58:26,427 epoch 7 - iter 344/432 - loss 0.07480741 - time (sec): 120.58 - samples/sec: 407.24 - lr: 0.000018 - momentum: 0.000000
2023-10-19 01:58:41,447 epoch 7 - iter 387/432 - loss 0.07468539 - time (sec): 135.60 - samples/sec: 408.08 - lr: 0.000017 - momentum: 0.000000
2023-10-19 01:58:57,103 epoch 7 - iter 430/432 - loss 0.07527820 - time (sec): 151.25 - samples/sec: 407.55 - lr: 0.000017 - momentum: 0.000000
2023-10-19 01:58:57,823 ----------------------------------------------------------------------------------------------------
2023-10-19 01:58:57,823 EPOCH 7 done: loss 0.0752 - lr: 0.000017
2023-10-19 01:59:11,170 DEV : loss 0.366791695356369 - f1-score (micro avg)  0.835
2023-10-19 01:59:11,195 ----------------------------------------------------------------------------------------------------
2023-10-19 01:59:26,059 epoch 8 - iter 43/432 - loss 0.05625100 - time (sec): 14.86 - samples/sec: 391.47 - lr: 0.000016 - momentum: 0.000000
2023-10-19 01:59:41,193 epoch 8 - iter 86/432 - loss 0.05428466 - time (sec): 30.00 - samples/sec: 402.91 - lr: 0.000016 - momentum: 0.000000
2023-10-19 01:59:56,249 epoch 8 - iter 129/432 - loss 0.05442877 - time (sec): 45.05 - samples/sec: 416.65 - lr: 0.000015 - momentum: 0.000000
2023-10-19 02:00:10,299 epoch 8 - iter 172/432 - loss 0.05554676 - time (sec): 59.10 - samples/sec: 418.21 - lr: 0.000014 - momentum: 0.000000
2023-10-19 02:00:26,123 epoch 8 - iter 215/432 - loss 0.05670463 - time (sec): 74.93 - samples/sec: 412.94 - lr: 0.000014 - momentum: 0.000000
2023-10-19 02:00:42,124 epoch 8 - iter 258/432 - loss 0.05639046 - time (sec): 90.93 - samples/sec: 412.58 - lr: 0.000013 - momentum: 0.000000
2023-10-19 02:00:58,560 epoch 8 - iter 301/432 - loss 0.05698070 - time (sec): 107.36 - samples/sec: 408.39 - lr: 0.000013 - momentum: 0.000000
2023-10-19 02:01:12,870 epoch 8 - iter 344/432 - loss 0.05669179 - time (sec): 121.67 - samples/sec: 410.66 - lr: 0.000012 - momentum: 0.000000
2023-10-19 02:01:27,187 epoch 8 - iter 387/432 - loss 0.05647273 - time (sec): 135.99 - samples/sec: 410.80 - lr: 0.000012 - momentum: 0.000000
2023-10-19 02:01:42,211 epoch 8 - iter 430/432 - loss 0.05599076 - time (sec): 151.01 - samples/sec: 408.03 - lr: 0.000011 - momentum: 0.000000
2023-10-19 02:01:42,730 ----------------------------------------------------------------------------------------------------
2023-10-19 02:01:42,730 EPOCH 8 done: loss 0.0559 - lr: 0.000011
2023-10-19 02:01:56,092 DEV : loss 0.3890858292579651 - f1-score (micro avg)  0.8455
2023-10-19 02:01:56,117 saving best model
2023-10-19 02:01:57,379 ----------------------------------------------------------------------------------------------------
2023-10-19 02:02:11,342 epoch 9 - iter 43/432 - loss 0.03669925 - time (sec): 13.96 - samples/sec: 437.43 - lr: 0.000011 - momentum: 0.000000
2023-10-19 02:02:25,561 epoch 9 - iter 86/432 - loss 0.03253165 - time (sec): 28.18 - samples/sec: 443.85 - lr: 0.000010 - momentum: 0.000000
2023-10-19 02:02:39,678 epoch 9 - iter 129/432 - loss 0.03230387 - time (sec): 42.30 - samples/sec: 436.34 - lr: 0.000009 - momentum: 0.000000
2023-10-19 02:02:54,485 epoch 9 - iter 172/432 - loss 0.03547786 - time (sec): 57.10 - samples/sec: 434.76 - lr: 0.000009 - momentum: 0.000000
2023-10-19 02:03:09,360 epoch 9 - iter 215/432 - loss 0.03554073 - time (sec): 71.98 - samples/sec: 431.86 - lr: 0.000008 - momentum: 0.000000
2023-10-19 02:03:24,437 epoch 9 - iter 258/432 - loss 0.03645877 - time (sec): 87.06 - samples/sec: 428.05 - lr: 0.000008 - momentum: 0.000000
2023-10-19 02:03:40,009 epoch 9 - iter 301/432 - loss 0.03894331 - time (sec): 102.63 - samples/sec: 422.18 - lr: 0.000007 - momentum: 0.000000
2023-10-19 02:03:54,976 epoch 9 - iter 344/432 - loss 0.04040420 - time (sec): 117.60 - samples/sec: 419.48 - lr: 0.000007 - momentum: 0.000000
2023-10-19 02:04:10,792 epoch 9 - iter 387/432 - loss 0.04188062 - time (sec): 133.41 - samples/sec: 414.28 - lr: 0.000006 - momentum: 0.000000
2023-10-19 02:04:25,690 epoch 9 - iter 430/432 - loss 0.04223260 - time (sec): 148.31 - samples/sec: 416.20 - lr: 0.000006 - momentum: 0.000000
2023-10-19 02:04:26,228 ----------------------------------------------------------------------------------------------------
2023-10-19 02:04:26,228 EPOCH 9 done: loss 0.0423 - lr: 0.000006
2023-10-19 02:04:39,946 DEV : loss 0.42729729413986206 - f1-score (micro avg)  0.8371
2023-10-19 02:04:39,970 ----------------------------------------------------------------------------------------------------
2023-10-19 02:04:55,624 epoch 10 - iter 43/432 - loss 0.02081255 - time (sec): 15.65 - samples/sec: 405.15 - lr: 0.000005 - momentum: 0.000000
2023-10-19 02:05:10,511 epoch 10 - iter 86/432 - loss 0.02735695 - time (sec): 30.54 - samples/sec: 415.62 - lr: 0.000004 - momentum: 0.000000
2023-10-19 02:05:24,272 epoch 10 - iter 129/432 - loss 0.03060242 - time (sec): 44.30 - samples/sec: 419.49 - lr: 0.000004 - momentum: 0.000000
2023-10-19 02:05:39,137 epoch 10 - iter 172/432 - loss 0.02883699 - time (sec): 59.17 - samples/sec: 420.60 - lr: 0.000003 - momentum: 0.000000
2023-10-19 02:05:53,697 epoch 10 - iter 215/432 - loss 0.03080710 - time (sec): 73.73 - samples/sec: 418.95 - lr: 0.000003 - momentum: 0.000000
2023-10-19 02:06:08,310 epoch 10 - iter 258/432 - loss 0.03245300 - time (sec): 88.34 - samples/sec: 417.77 - lr: 0.000002 - momentum: 0.000000
2023-10-19 02:06:23,371 epoch 10 - iter 301/432 - loss 0.03296380 - time (sec): 103.40 - samples/sec: 418.36 - lr: 0.000002 - momentum: 0.000000
2023-10-19 02:06:39,073 epoch 10 - iter 344/432 - loss 0.03338415 - time (sec): 119.10 - samples/sec: 414.26 - lr: 0.000001 - momentum: 0.000000
2023-10-19 02:06:53,055 epoch 10 - iter 387/432 - loss 0.03464620 - time (sec): 133.08 - samples/sec: 418.93 - lr: 0.000001 - momentum: 0.000000
2023-10-19 02:07:08,821 epoch 10 - iter 430/432 - loss 0.03437346 - time (sec): 148.85 - samples/sec: 413.85 - lr: 0.000000 - momentum: 0.000000
2023-10-19 02:07:09,419 ----------------------------------------------------------------------------------------------------
2023-10-19 02:07:09,420 EPOCH 10 done: loss 0.0344 - lr: 0.000000
2023-10-19 02:07:22,605 DEV : loss 0.4345364570617676 - f1-score (micro avg)  0.8397
2023-10-19 02:07:23,067 ----------------------------------------------------------------------------------------------------
2023-10-19 02:07:23,068 Loading model from best epoch ...
2023-10-19 02:07:25,281 SequenceTagger predicts: Dictionary with 81 tags: O, S-location-route, B-location-route, E-location-route, I-location-route, S-location-stop, B-location-stop, E-location-stop, I-location-stop, S-trigger, B-trigger, E-trigger, I-trigger, S-organization-company, B-organization-company, E-organization-company, I-organization-company, S-location-city, B-location-city, E-location-city, I-location-city, S-location, B-location, E-location, I-location, S-event-cause, B-event-cause, E-event-cause, I-event-cause, S-location-street, B-location-street, E-location-street, I-location-street, S-time, B-time, E-time, I-time, S-date, B-date, E-date, I-date, S-number, B-number, E-number, I-number, S-duration, B-duration, E-duration, I-duration, S-organization
2023-10-19 02:07:43,100 
Results:
- F-score (micro) 0.752
- F-score (macro) 0.5641
- Accuracy 0.6451

By class:
                      precision    recall  f1-score   support

       location-stop     0.8407    0.8484    0.8445       765
             trigger     0.6564    0.5138    0.5764       833
            location     0.7890    0.8376    0.8125       665
       location-city     0.8415    0.8534    0.8474       566
                date     0.9040    0.8604    0.8817       394
     location-street     0.9471    0.8808    0.9128       386
                time     0.7862    0.8906    0.8352       256
      location-route     0.7375    0.6725    0.7035       284
organization-company     0.8309    0.6825    0.7495       252
            distance     0.9881    0.9940    0.9910       167
              number     0.7135    0.8188    0.7625       149
            duration     0.3185    0.3067    0.3125       163
         event-cause     0.0000    0.0000    0.0000         0
       disaster-type     0.9500    0.2754    0.4270        69
        organization     0.5200    0.4643    0.4906        28
              person     0.4444    0.8000    0.5714        10
                 set     0.0000    0.0000    0.0000         0
        org-position     0.0000    0.0000    0.0000         1
               money     0.0000    0.0000    0.0000         0

           micro avg     0.7493    0.7548    0.7520      4988
           macro avg     0.5930    0.5631    0.5641      4988
        weighted avg     0.7900    0.7548    0.7673      4988

2023-10-19 02:07:43,100 ----------------------------------------------------------------------------------------------------