File size: 25,503 Bytes
b428604
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
2023-10-18 23:22:09,534 ----------------------------------------------------------------------------------------------------
2023-10-18 23:22:09,535 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(31103, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=81, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-18 23:22:09,535 ----------------------------------------------------------------------------------------------------
2023-10-18 23:22:09,536 Corpus: 6900 train + 1576 dev + 1833 test sentences
2023-10-18 23:22:09,536 ----------------------------------------------------------------------------------------------------
2023-10-18 23:22:09,536 Train:  6900 sentences
2023-10-18 23:22:09,536         (train_with_dev=False, train_with_test=False)
2023-10-18 23:22:09,536 ----------------------------------------------------------------------------------------------------
2023-10-18 23:22:09,536 Training Params:
2023-10-18 23:22:09,536  - learning_rate: "3e-05" 
2023-10-18 23:22:09,536  - mini_batch_size: "16"
2023-10-18 23:22:09,536  - max_epochs: "10"
2023-10-18 23:22:09,536  - shuffle: "True"
2023-10-18 23:22:09,536 ----------------------------------------------------------------------------------------------------
2023-10-18 23:22:09,536 Plugins:
2023-10-18 23:22:09,536  - TensorboardLogger
2023-10-18 23:22:09,536  - LinearScheduler | warmup_fraction: '0.1'
2023-10-18 23:22:09,536 ----------------------------------------------------------------------------------------------------
2023-10-18 23:22:09,537 Final evaluation on model from best epoch (best-model.pt)
2023-10-18 23:22:09,537  - metric: "('micro avg', 'f1-score')"
2023-10-18 23:22:09,537 ----------------------------------------------------------------------------------------------------
2023-10-18 23:22:09,537 Computation:
2023-10-18 23:22:09,537  - compute on device: cuda:0
2023-10-18 23:22:09,537  - embedding storage: none
2023-10-18 23:22:09,537 ----------------------------------------------------------------------------------------------------
2023-10-18 23:22:09,537 Model training base path: "autotrain-flair-mobie-gbert_base-bs16-e10-lr3e-05-1"
2023-10-18 23:22:09,537 ----------------------------------------------------------------------------------------------------
2023-10-18 23:22:09,537 ----------------------------------------------------------------------------------------------------
2023-10-18 23:22:09,537 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-18 23:22:23,535 epoch 1 - iter 43/432 - loss 4.75760576 - time (sec): 14.00 - samples/sec: 432.61 - lr: 0.000003 - momentum: 0.000000
2023-10-18 23:22:37,284 epoch 1 - iter 86/432 - loss 3.79168637 - time (sec): 27.75 - samples/sec: 437.08 - lr: 0.000006 - momentum: 0.000000
2023-10-18 23:22:51,418 epoch 1 - iter 129/432 - loss 3.15291761 - time (sec): 41.88 - samples/sec: 438.07 - lr: 0.000009 - momentum: 0.000000
2023-10-18 23:23:04,784 epoch 1 - iter 172/432 - loss 2.77724614 - time (sec): 55.25 - samples/sec: 443.10 - lr: 0.000012 - momentum: 0.000000
2023-10-18 23:23:19,237 epoch 1 - iter 215/432 - loss 2.50566279 - time (sec): 69.70 - samples/sec: 436.43 - lr: 0.000015 - momentum: 0.000000
2023-10-18 23:23:32,744 epoch 1 - iter 258/432 - loss 2.27969539 - time (sec): 83.20 - samples/sec: 440.95 - lr: 0.000018 - momentum: 0.000000
2023-10-18 23:23:46,386 epoch 1 - iter 301/432 - loss 2.08743805 - time (sec): 96.85 - samples/sec: 445.69 - lr: 0.000021 - momentum: 0.000000
2023-10-18 23:24:00,733 epoch 1 - iter 344/432 - loss 1.94157999 - time (sec): 111.19 - samples/sec: 442.51 - lr: 0.000024 - momentum: 0.000000
2023-10-18 23:24:14,915 epoch 1 - iter 387/432 - loss 1.81951311 - time (sec): 125.38 - samples/sec: 439.73 - lr: 0.000027 - momentum: 0.000000
2023-10-18 23:24:29,890 epoch 1 - iter 430/432 - loss 1.70026851 - time (sec): 140.35 - samples/sec: 439.60 - lr: 0.000030 - momentum: 0.000000
2023-10-18 23:24:30,425 ----------------------------------------------------------------------------------------------------
2023-10-18 23:24:30,425 EPOCH 1 done: loss 1.6981 - lr: 0.000030
2023-10-18 23:24:43,545 DEV : loss 0.5471832156181335 - f1-score (micro avg)  0.667
2023-10-18 23:24:43,569 saving best model
2023-10-18 23:24:44,053 ----------------------------------------------------------------------------------------------------
2023-10-18 23:24:58,280 epoch 2 - iter 43/432 - loss 0.61594785 - time (sec): 14.23 - samples/sec: 447.65 - lr: 0.000030 - momentum: 0.000000
2023-10-18 23:25:11,929 epoch 2 - iter 86/432 - loss 0.58438105 - time (sec): 27.87 - samples/sec: 445.89 - lr: 0.000029 - momentum: 0.000000
2023-10-18 23:25:25,850 epoch 2 - iter 129/432 - loss 0.57439156 - time (sec): 41.80 - samples/sec: 439.74 - lr: 0.000029 - momentum: 0.000000
2023-10-18 23:25:40,059 epoch 2 - iter 172/432 - loss 0.54614426 - time (sec): 56.00 - samples/sec: 441.70 - lr: 0.000029 - momentum: 0.000000
2023-10-18 23:25:55,802 epoch 2 - iter 215/432 - loss 0.52793380 - time (sec): 71.75 - samples/sec: 432.46 - lr: 0.000028 - momentum: 0.000000
2023-10-18 23:26:10,341 epoch 2 - iter 258/432 - loss 0.51499945 - time (sec): 86.29 - samples/sec: 434.31 - lr: 0.000028 - momentum: 0.000000
2023-10-18 23:26:25,316 epoch 2 - iter 301/432 - loss 0.49807920 - time (sec): 101.26 - samples/sec: 432.03 - lr: 0.000028 - momentum: 0.000000
2023-10-18 23:26:40,222 epoch 2 - iter 344/432 - loss 0.48644736 - time (sec): 116.17 - samples/sec: 427.66 - lr: 0.000027 - momentum: 0.000000
2023-10-18 23:26:55,249 epoch 2 - iter 387/432 - loss 0.47199609 - time (sec): 131.19 - samples/sec: 424.24 - lr: 0.000027 - momentum: 0.000000
2023-10-18 23:27:11,118 epoch 2 - iter 430/432 - loss 0.46618631 - time (sec): 147.06 - samples/sec: 419.72 - lr: 0.000027 - momentum: 0.000000
2023-10-18 23:27:11,659 ----------------------------------------------------------------------------------------------------
2023-10-18 23:27:11,660 EPOCH 2 done: loss 0.4659 - lr: 0.000027
2023-10-18 23:27:24,698 DEV : loss 0.3461967706680298 - f1-score (micro avg)  0.7729
2023-10-18 23:27:24,722 saving best model
2023-10-18 23:27:26,021 ----------------------------------------------------------------------------------------------------
2023-10-18 23:27:40,354 epoch 3 - iter 43/432 - loss 0.31214822 - time (sec): 14.33 - samples/sec: 426.90 - lr: 0.000026 - momentum: 0.000000
2023-10-18 23:27:54,896 epoch 3 - iter 86/432 - loss 0.31299760 - time (sec): 28.87 - samples/sec: 421.26 - lr: 0.000026 - momentum: 0.000000
2023-10-18 23:28:09,898 epoch 3 - iter 129/432 - loss 0.30484547 - time (sec): 43.87 - samples/sec: 413.81 - lr: 0.000026 - momentum: 0.000000
2023-10-18 23:28:24,971 epoch 3 - iter 172/432 - loss 0.29888479 - time (sec): 58.95 - samples/sec: 412.70 - lr: 0.000025 - momentum: 0.000000
2023-10-18 23:28:40,149 epoch 3 - iter 215/432 - loss 0.30051912 - time (sec): 74.13 - samples/sec: 411.07 - lr: 0.000025 - momentum: 0.000000
2023-10-18 23:28:54,889 epoch 3 - iter 258/432 - loss 0.30047825 - time (sec): 88.87 - samples/sec: 416.03 - lr: 0.000025 - momentum: 0.000000
2023-10-18 23:29:09,664 epoch 3 - iter 301/432 - loss 0.29923078 - time (sec): 103.64 - samples/sec: 415.85 - lr: 0.000024 - momentum: 0.000000
2023-10-18 23:29:23,721 epoch 3 - iter 344/432 - loss 0.29751234 - time (sec): 117.70 - samples/sec: 420.53 - lr: 0.000024 - momentum: 0.000000
2023-10-18 23:29:38,262 epoch 3 - iter 387/432 - loss 0.29353934 - time (sec): 132.24 - samples/sec: 421.84 - lr: 0.000024 - momentum: 0.000000
2023-10-18 23:29:52,819 epoch 3 - iter 430/432 - loss 0.29071211 - time (sec): 146.80 - samples/sec: 420.39 - lr: 0.000023 - momentum: 0.000000
2023-10-18 23:29:53,454 ----------------------------------------------------------------------------------------------------
2023-10-18 23:29:53,455 EPOCH 3 done: loss 0.2903 - lr: 0.000023
2023-10-18 23:30:06,931 DEV : loss 0.30047762393951416 - f1-score (micro avg)  0.8112
2023-10-18 23:30:06,955 saving best model
2023-10-18 23:30:08,235 ----------------------------------------------------------------------------------------------------
2023-10-18 23:30:21,918 epoch 4 - iter 43/432 - loss 0.21553125 - time (sec): 13.68 - samples/sec: 480.79 - lr: 0.000023 - momentum: 0.000000
2023-10-18 23:30:37,085 epoch 4 - iter 86/432 - loss 0.22053010 - time (sec): 28.85 - samples/sec: 442.52 - lr: 0.000023 - momentum: 0.000000
2023-10-18 23:30:51,506 epoch 4 - iter 129/432 - loss 0.21910439 - time (sec): 43.27 - samples/sec: 440.91 - lr: 0.000022 - momentum: 0.000000
2023-10-18 23:31:05,246 epoch 4 - iter 172/432 - loss 0.21474027 - time (sec): 57.01 - samples/sec: 440.47 - lr: 0.000022 - momentum: 0.000000
2023-10-18 23:31:20,509 epoch 4 - iter 215/432 - loss 0.21802691 - time (sec): 72.27 - samples/sec: 437.99 - lr: 0.000022 - momentum: 0.000000
2023-10-18 23:31:35,462 epoch 4 - iter 258/432 - loss 0.21679757 - time (sec): 87.23 - samples/sec: 436.00 - lr: 0.000021 - momentum: 0.000000
2023-10-18 23:31:50,145 epoch 4 - iter 301/432 - loss 0.21374962 - time (sec): 101.91 - samples/sec: 432.60 - lr: 0.000021 - momentum: 0.000000
2023-10-18 23:32:04,748 epoch 4 - iter 344/432 - loss 0.20945206 - time (sec): 116.51 - samples/sec: 425.91 - lr: 0.000021 - momentum: 0.000000
2023-10-18 23:32:19,960 epoch 4 - iter 387/432 - loss 0.20989087 - time (sec): 131.72 - samples/sec: 423.09 - lr: 0.000020 - momentum: 0.000000
2023-10-18 23:32:35,115 epoch 4 - iter 430/432 - loss 0.20942007 - time (sec): 146.88 - samples/sec: 419.77 - lr: 0.000020 - momentum: 0.000000
2023-10-18 23:32:35,716 ----------------------------------------------------------------------------------------------------
2023-10-18 23:32:35,717 EPOCH 4 done: loss 0.2089 - lr: 0.000020
2023-10-18 23:32:48,612 DEV : loss 0.305877149105072 - f1-score (micro avg)  0.8234
2023-10-18 23:32:48,636 saving best model
2023-10-18 23:32:49,920 ----------------------------------------------------------------------------------------------------
2023-10-18 23:33:03,649 epoch 5 - iter 43/432 - loss 0.16781001 - time (sec): 13.73 - samples/sec: 423.90 - lr: 0.000020 - momentum: 0.000000
2023-10-18 23:33:18,972 epoch 5 - iter 86/432 - loss 0.16626377 - time (sec): 29.05 - samples/sec: 408.16 - lr: 0.000019 - momentum: 0.000000
2023-10-18 23:33:34,071 epoch 5 - iter 129/432 - loss 0.16260592 - time (sec): 44.15 - samples/sec: 402.67 - lr: 0.000019 - momentum: 0.000000
2023-10-18 23:33:48,740 epoch 5 - iter 172/432 - loss 0.15898066 - time (sec): 58.82 - samples/sec: 408.49 - lr: 0.000019 - momentum: 0.000000
2023-10-18 23:34:02,726 epoch 5 - iter 215/432 - loss 0.16434122 - time (sec): 72.80 - samples/sec: 411.18 - lr: 0.000018 - momentum: 0.000000
2023-10-18 23:34:17,574 epoch 5 - iter 258/432 - loss 0.16206014 - time (sec): 87.65 - samples/sec: 411.29 - lr: 0.000018 - momentum: 0.000000
2023-10-18 23:34:32,583 epoch 5 - iter 301/432 - loss 0.16111024 - time (sec): 102.66 - samples/sec: 415.20 - lr: 0.000018 - momentum: 0.000000
2023-10-18 23:34:45,435 epoch 5 - iter 344/432 - loss 0.15932449 - time (sec): 115.51 - samples/sec: 425.07 - lr: 0.000017 - momentum: 0.000000
2023-10-18 23:35:00,356 epoch 5 - iter 387/432 - loss 0.15868495 - time (sec): 130.44 - samples/sec: 424.17 - lr: 0.000017 - momentum: 0.000000
2023-10-18 23:35:15,913 epoch 5 - iter 430/432 - loss 0.16100694 - time (sec): 145.99 - samples/sec: 422.70 - lr: 0.000017 - momentum: 0.000000
2023-10-18 23:35:16,398 ----------------------------------------------------------------------------------------------------
2023-10-18 23:35:16,398 EPOCH 5 done: loss 0.1609 - lr: 0.000017
2023-10-18 23:35:29,484 DEV : loss 0.3180467188358307 - f1-score (micro avg)  0.8266
2023-10-18 23:35:29,508 saving best model
2023-10-18 23:35:31,528 ----------------------------------------------------------------------------------------------------
2023-10-18 23:35:46,762 epoch 6 - iter 43/432 - loss 0.12139549 - time (sec): 15.23 - samples/sec: 407.36 - lr: 0.000016 - momentum: 0.000000
2023-10-18 23:36:00,910 epoch 6 - iter 86/432 - loss 0.11575687 - time (sec): 29.38 - samples/sec: 437.71 - lr: 0.000016 - momentum: 0.000000
2023-10-18 23:36:15,240 epoch 6 - iter 129/432 - loss 0.12824583 - time (sec): 43.71 - samples/sec: 430.95 - lr: 0.000016 - momentum: 0.000000
2023-10-18 23:36:30,980 epoch 6 - iter 172/432 - loss 0.12638379 - time (sec): 59.45 - samples/sec: 423.77 - lr: 0.000015 - momentum: 0.000000
2023-10-18 23:36:45,226 epoch 6 - iter 215/432 - loss 0.12726516 - time (sec): 73.70 - samples/sec: 418.04 - lr: 0.000015 - momentum: 0.000000
2023-10-18 23:36:59,489 epoch 6 - iter 258/432 - loss 0.12675820 - time (sec): 87.96 - samples/sec: 420.41 - lr: 0.000015 - momentum: 0.000000
2023-10-18 23:37:13,934 epoch 6 - iter 301/432 - loss 0.12721952 - time (sec): 102.40 - samples/sec: 422.27 - lr: 0.000014 - momentum: 0.000000
2023-10-18 23:37:28,404 epoch 6 - iter 344/432 - loss 0.12580091 - time (sec): 116.87 - samples/sec: 423.39 - lr: 0.000014 - momentum: 0.000000
2023-10-18 23:37:43,360 epoch 6 - iter 387/432 - loss 0.12657720 - time (sec): 131.83 - samples/sec: 420.95 - lr: 0.000014 - momentum: 0.000000
2023-10-18 23:37:59,227 epoch 6 - iter 430/432 - loss 0.12513388 - time (sec): 147.70 - samples/sec: 417.76 - lr: 0.000013 - momentum: 0.000000
2023-10-18 23:37:59,751 ----------------------------------------------------------------------------------------------------
2023-10-18 23:37:59,752 EPOCH 6 done: loss 0.1251 - lr: 0.000013
2023-10-18 23:38:12,663 DEV : loss 0.3315909206867218 - f1-score (micro avg)  0.8341
2023-10-18 23:38:12,687 saving best model
2023-10-18 23:38:14,325 ----------------------------------------------------------------------------------------------------
2023-10-18 23:38:29,359 epoch 7 - iter 43/432 - loss 0.10710781 - time (sec): 15.03 - samples/sec: 394.00 - lr: 0.000013 - momentum: 0.000000
2023-10-18 23:38:44,447 epoch 7 - iter 86/432 - loss 0.10505496 - time (sec): 30.12 - samples/sec: 392.29 - lr: 0.000013 - momentum: 0.000000
2023-10-18 23:38:58,461 epoch 7 - iter 129/432 - loss 0.10484843 - time (sec): 44.14 - samples/sec: 414.75 - lr: 0.000012 - momentum: 0.000000
2023-10-18 23:39:12,787 epoch 7 - iter 172/432 - loss 0.10096346 - time (sec): 58.46 - samples/sec: 427.77 - lr: 0.000012 - momentum: 0.000000
2023-10-18 23:39:27,646 epoch 7 - iter 215/432 - loss 0.10332899 - time (sec): 73.32 - samples/sec: 422.47 - lr: 0.000012 - momentum: 0.000000
2023-10-18 23:39:41,653 epoch 7 - iter 258/432 - loss 0.10374389 - time (sec): 87.33 - samples/sec: 426.79 - lr: 0.000011 - momentum: 0.000000
2023-10-18 23:39:56,082 epoch 7 - iter 301/432 - loss 0.10457902 - time (sec): 101.76 - samples/sec: 427.53 - lr: 0.000011 - momentum: 0.000000
2023-10-18 23:40:10,410 epoch 7 - iter 344/432 - loss 0.10312114 - time (sec): 116.08 - samples/sec: 427.08 - lr: 0.000011 - momentum: 0.000000
2023-10-18 23:40:24,795 epoch 7 - iter 387/432 - loss 0.10178810 - time (sec): 130.47 - samples/sec: 424.05 - lr: 0.000010 - momentum: 0.000000
2023-10-18 23:40:38,988 epoch 7 - iter 430/432 - loss 0.10028660 - time (sec): 144.66 - samples/sec: 425.77 - lr: 0.000010 - momentum: 0.000000
2023-10-18 23:40:39,561 ----------------------------------------------------------------------------------------------------
2023-10-18 23:40:39,561 EPOCH 7 done: loss 0.1006 - lr: 0.000010
2023-10-18 23:40:52,891 DEV : loss 0.3369572162628174 - f1-score (micro avg)  0.8346
2023-10-18 23:40:52,915 saving best model
2023-10-18 23:40:54,216 ----------------------------------------------------------------------------------------------------
2023-10-18 23:41:08,861 epoch 8 - iter 43/432 - loss 0.07187557 - time (sec): 14.64 - samples/sec: 425.38 - lr: 0.000010 - momentum: 0.000000
2023-10-18 23:41:22,173 epoch 8 - iter 86/432 - loss 0.07672505 - time (sec): 27.96 - samples/sec: 444.34 - lr: 0.000009 - momentum: 0.000000
2023-10-18 23:41:37,793 epoch 8 - iter 129/432 - loss 0.07576497 - time (sec): 43.58 - samples/sec: 422.76 - lr: 0.000009 - momentum: 0.000000
2023-10-18 23:41:52,650 epoch 8 - iter 172/432 - loss 0.07916836 - time (sec): 58.43 - samples/sec: 415.35 - lr: 0.000009 - momentum: 0.000000
2023-10-18 23:42:06,898 epoch 8 - iter 215/432 - loss 0.08050354 - time (sec): 72.68 - samples/sec: 417.26 - lr: 0.000008 - momentum: 0.000000
2023-10-18 23:42:21,388 epoch 8 - iter 258/432 - loss 0.07912664 - time (sec): 87.17 - samples/sec: 419.35 - lr: 0.000008 - momentum: 0.000000
2023-10-18 23:42:36,467 epoch 8 - iter 301/432 - loss 0.07933223 - time (sec): 102.25 - samples/sec: 417.28 - lr: 0.000008 - momentum: 0.000000
2023-10-18 23:42:51,389 epoch 8 - iter 344/432 - loss 0.08115197 - time (sec): 117.17 - samples/sec: 415.73 - lr: 0.000007 - momentum: 0.000000
2023-10-18 23:43:07,766 epoch 8 - iter 387/432 - loss 0.08121199 - time (sec): 133.55 - samples/sec: 411.15 - lr: 0.000007 - momentum: 0.000000
2023-10-18 23:43:22,779 epoch 8 - iter 430/432 - loss 0.08078528 - time (sec): 148.56 - samples/sec: 415.04 - lr: 0.000007 - momentum: 0.000000
2023-10-18 23:43:23,350 ----------------------------------------------------------------------------------------------------
2023-10-18 23:43:23,351 EPOCH 8 done: loss 0.0807 - lr: 0.000007
2023-10-18 23:43:36,626 DEV : loss 0.36578330397605896 - f1-score (micro avg)  0.8352
2023-10-18 23:43:36,651 saving best model
2023-10-18 23:43:37,939 ----------------------------------------------------------------------------------------------------
2023-10-18 23:43:51,874 epoch 9 - iter 43/432 - loss 0.06019569 - time (sec): 13.93 - samples/sec: 459.92 - lr: 0.000006 - momentum: 0.000000
2023-10-18 23:44:05,890 epoch 9 - iter 86/432 - loss 0.05939192 - time (sec): 27.95 - samples/sec: 441.92 - lr: 0.000006 - momentum: 0.000000
2023-10-18 23:44:21,211 epoch 9 - iter 129/432 - loss 0.06399840 - time (sec): 43.27 - samples/sec: 426.90 - lr: 0.000006 - momentum: 0.000000
2023-10-18 23:44:36,731 epoch 9 - iter 172/432 - loss 0.06426966 - time (sec): 58.79 - samples/sec: 421.31 - lr: 0.000005 - momentum: 0.000000
2023-10-18 23:44:51,226 epoch 9 - iter 215/432 - loss 0.06330203 - time (sec): 73.29 - samples/sec: 424.79 - lr: 0.000005 - momentum: 0.000000
2023-10-18 23:45:06,543 epoch 9 - iter 258/432 - loss 0.06371165 - time (sec): 88.60 - samples/sec: 420.93 - lr: 0.000005 - momentum: 0.000000
2023-10-18 23:45:21,139 epoch 9 - iter 301/432 - loss 0.06531644 - time (sec): 103.20 - samples/sec: 422.93 - lr: 0.000004 - momentum: 0.000000
2023-10-18 23:45:36,684 epoch 9 - iter 344/432 - loss 0.06594531 - time (sec): 118.74 - samples/sec: 416.32 - lr: 0.000004 - momentum: 0.000000
2023-10-18 23:45:51,785 epoch 9 - iter 387/432 - loss 0.06530243 - time (sec): 133.84 - samples/sec: 414.80 - lr: 0.000004 - momentum: 0.000000
2023-10-18 23:46:06,616 epoch 9 - iter 430/432 - loss 0.06528131 - time (sec): 148.67 - samples/sec: 414.55 - lr: 0.000003 - momentum: 0.000000
2023-10-18 23:46:07,145 ----------------------------------------------------------------------------------------------------
2023-10-18 23:46:07,145 EPOCH 9 done: loss 0.0652 - lr: 0.000003
2023-10-18 23:46:20,567 DEV : loss 0.36841511726379395 - f1-score (micro avg)  0.8392
2023-10-18 23:46:20,592 saving best model
2023-10-18 23:46:21,872 ----------------------------------------------------------------------------------------------------
2023-10-18 23:46:36,539 epoch 10 - iter 43/432 - loss 0.06456485 - time (sec): 14.67 - samples/sec: 408.84 - lr: 0.000003 - momentum: 0.000000
2023-10-18 23:46:50,973 epoch 10 - iter 86/432 - loss 0.05967601 - time (sec): 29.10 - samples/sec: 408.80 - lr: 0.000003 - momentum: 0.000000
2023-10-18 23:47:04,800 epoch 10 - iter 129/432 - loss 0.06175374 - time (sec): 42.93 - samples/sec: 426.06 - lr: 0.000002 - momentum: 0.000000
2023-10-18 23:47:19,977 epoch 10 - iter 172/432 - loss 0.06001026 - time (sec): 58.10 - samples/sec: 423.29 - lr: 0.000002 - momentum: 0.000000
2023-10-18 23:47:34,542 epoch 10 - iter 215/432 - loss 0.05644803 - time (sec): 72.67 - samples/sec: 424.43 - lr: 0.000002 - momentum: 0.000000
2023-10-18 23:47:50,093 epoch 10 - iter 258/432 - loss 0.05666523 - time (sec): 88.22 - samples/sec: 419.44 - lr: 0.000001 - momentum: 0.000000
2023-10-18 23:48:04,554 epoch 10 - iter 301/432 - loss 0.05586013 - time (sec): 102.68 - samples/sec: 418.50 - lr: 0.000001 - momentum: 0.000000
2023-10-18 23:48:20,545 epoch 10 - iter 344/432 - loss 0.05609200 - time (sec): 118.67 - samples/sec: 414.11 - lr: 0.000001 - momentum: 0.000000
2023-10-18 23:48:36,202 epoch 10 - iter 387/432 - loss 0.05754005 - time (sec): 134.33 - samples/sec: 412.96 - lr: 0.000000 - momentum: 0.000000
2023-10-18 23:48:51,086 epoch 10 - iter 430/432 - loss 0.05860056 - time (sec): 149.21 - samples/sec: 413.03 - lr: 0.000000 - momentum: 0.000000
2023-10-18 23:48:51,652 ----------------------------------------------------------------------------------------------------
2023-10-18 23:48:51,652 EPOCH 10 done: loss 0.0585 - lr: 0.000000
2023-10-18 23:49:05,067 DEV : loss 0.37858790159225464 - f1-score (micro avg)  0.8379
2023-10-18 23:49:05,601 ----------------------------------------------------------------------------------------------------
2023-10-18 23:49:05,602 Loading model from best epoch ...
2023-10-18 23:49:07,975 SequenceTagger predicts: Dictionary with 81 tags: O, S-location-route, B-location-route, E-location-route, I-location-route, S-location-stop, B-location-stop, E-location-stop, I-location-stop, S-trigger, B-trigger, E-trigger, I-trigger, S-organization-company, B-organization-company, E-organization-company, I-organization-company, S-location-city, B-location-city, E-location-city, I-location-city, S-location, B-location, E-location, I-location, S-event-cause, B-event-cause, E-event-cause, I-event-cause, S-location-street, B-location-street, E-location-street, I-location-street, S-time, B-time, E-time, I-time, S-date, B-date, E-date, I-date, S-number, B-number, E-number, I-number, S-duration, B-duration, E-duration, I-duration, S-organization
2023-10-18 23:49:26,029 
Results:
- F-score (micro) 0.7661
- F-score (macro) 0.5763
- Accuracy 0.6675

By class:
                      precision    recall  f1-score   support

             trigger     0.7225    0.6218    0.6684       833
       location-stop     0.8467    0.8301    0.8383       765
            location     0.8017    0.8451    0.8228       665
       location-city     0.8006    0.8728    0.8352       566
                date     0.8836    0.8477    0.8653       394
     location-street     0.9465    0.8705    0.9069       386
                time     0.7759    0.8789    0.8242       256
      location-route     0.8653    0.7465    0.8015       284
organization-company     0.7600    0.6786    0.7170       252
            distance     0.9940    1.0000    0.9970       167
              number     0.6868    0.8389    0.7553       149
            duration     0.3377    0.3190    0.3281       163
         event-cause     0.0000    0.0000    0.0000         0
       disaster-type     0.9259    0.3623    0.5208        69
        organization     0.5000    0.5357    0.5172        28
              person     0.4211    0.8000    0.5517        10
                 set     0.0000    0.0000    0.0000         0
        org-position     0.0000    0.0000    0.0000         1
               money     0.0000    0.0000    0.0000         0

           micro avg     0.7550    0.7777    0.7661      4988
           macro avg     0.5931    0.5815    0.5763      4988
        weighted avg     0.8001    0.7777    0.7852      4988

2023-10-18 23:49:26,029 ----------------------------------------------------------------------------------------------------