Update diffusers format weights
#44
by
dn6
HF staff
- opened
- README.md +147 -33
- decoder/config.json +57 -48
- decoder/diffusion_pytorch_model.bf16.safetensors +3 -0
- decoder/diffusion_pytorch_model.safetensors +2 -2
- decoder_lite/config.json +83 -0
- decoder_lite/diffusion_pytorch_model.bf16.safetensors +3 -0
- decoder_lite/diffusion_pytorch_model.safetensors +3 -0
- model_index.json +3 -4
- scheduler/scheduler_config.json +1 -1
- text_encoder/config.json +2 -2
- text_encoder/model.bf16.safetensors +3 -0
- tokenizer/tokenizer.json +1 -8
- vqgan/config.json +2 -2
- vqgan/diffusion_pytorch_model.bf16.safetensors +3 -0
- vqgan/diffusion_pytorch_model.safetensors +2 -2
README.md
CHANGED
@@ -3,6 +3,8 @@ pipeline_tag: text-to-image
|
|
3 |
license: other
|
4 |
license_name: stable-cascade-nc-community
|
5 |
license_link: LICENSE
|
|
|
|
|
6 |
---
|
7 |
|
8 |
# Stable Cascade
|
@@ -10,13 +12,13 @@ license_link: LICENSE
|
|
10 |
<!-- Provide a quick summary of what the model is/does. -->
|
11 |
<img src="figures/collage_1.jpg" width="800">
|
12 |
|
13 |
-
This model is built upon the [Würstchen](https://openreview.net/forum?id=gU58d5QeGv) architecture and its main
|
14 |
-
difference to other models like Stable Diffusion is that it is working at a much smaller latent space. Why is this
|
15 |
-
important? The smaller the latent space, the **faster** you can run inference and the **cheaper** the training becomes.
|
16 |
-
How small is the latent space? Stable Diffusion uses a compression factor of 8, resulting in a 1024x1024 image being
|
17 |
-
encoded to 128x128. Stable Cascade achieves a compression factor of 42, meaning that it is possible to encode a
|
18 |
-
1024x1024 image to 24x24, while maintaining crisp reconstructions. The text-conditional model is then trained in the
|
19 |
-
highly compressed latent space. Previous versions of this architecture, achieved a 16x cost reduction over Stable
|
20 |
Diffusion 1.5. <br> <br>
|
21 |
Therefore, this kind of model is well suited for usages where efficiency is important. Furthermore, all known extensions
|
22 |
like finetuning, LoRA, ControlNet, IP-Adapter, LCM etc. are possible with this method as well.
|
@@ -41,69 +43,181 @@ For research purposes, we recommend our `StableCascade` Github repository (https
|
|
41 |
### Model Overview
|
42 |
Stable Cascade consists of three models: Stage A, Stage B and Stage C, representing a cascade to generate images,
|
43 |
hence the name "Stable Cascade".
|
44 |
-
Stage A & B are used to compress images, similar to what the job of the VAE is in Stable Diffusion.
|
45 |
-
However, with this setup, a much higher compression of images can be achieved. While the Stable Diffusion models use a
|
46 |
-
spatial compression factor of 8, encoding an image with resolution of 1024 x 1024 to 128 x 128, Stable Cascade achieves
|
47 |
-
a compression factor of 42. This encodes a 1024 x 1024 image to 24 x 24, while being able to accurately decode the
|
48 |
-
image. This comes with the great benefit of cheaper training and inference. Furthermore, Stage C is responsible
|
49 |
for generating the small 24 x 24 latents given a text prompt. The following picture shows this visually.
|
50 |
|
51 |
<img src="figures/model-overview.jpg" width="600">
|
52 |
|
53 |
-
For this release, we are providing two checkpoints for Stage C, two for Stage B and one for Stage A. Stage C comes with
|
54 |
-
a 1 billion and 3.6 billion parameter version, but we highly recommend using the 3.6 billion version, as most work was
|
55 |
-
put into its finetuning. The two versions for Stage B amount to 700 million and 1.5 billion parameters. Both achieve
|
56 |
-
great results, however the 1.5 billion excels at reconstructing small and fine details. Therefore, you will achieve the
|
57 |
-
best results if you use the larger variant of each. Lastly, Stage A contains 20 million parameters and is fixed due to
|
58 |
its small size.
|
59 |
|
60 |
## Evaluation
|
61 |
<img height="300" src="figures/comparison.png"/>
|
62 |
-
According to our evaluation, Stable Cascade performs best in both prompt alignment and aesthetic quality in almost all
|
63 |
-
comparisons. The above picture shows the results from a human evaluation using a mix of parti-prompts (link) and
|
64 |
-
aesthetic prompts. Specifically, Stable Cascade (30 inference steps) was compared against Playground v2 (50 inference
|
65 |
steps), SDXL (50 inference steps), SDXL Turbo (1 inference step) and Würstchen v2 (30 inference steps).
|
66 |
|
67 |
## Code Example
|
68 |
|
69 |
-
|
|
|
|
|
70 |
|
71 |
```shell
|
72 |
-
pip install
|
73 |
```
|
74 |
|
75 |
```python
|
76 |
import torch
|
77 |
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
|
78 |
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
-
prompt = "
|
86 |
negative_prompt = ""
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
prior_output = prior(
|
89 |
prompt=prompt,
|
90 |
height=1024,
|
91 |
width=1024,
|
92 |
negative_prompt=negative_prompt,
|
93 |
guidance_scale=4.0,
|
94 |
-
num_images_per_prompt=
|
95 |
num_inference_steps=20
|
96 |
)
|
|
|
|
|
97 |
decoder_output = decoder(
|
98 |
-
image_embeddings=prior_output.image_embeddings
|
99 |
prompt=prompt,
|
100 |
negative_prompt=negative_prompt,
|
101 |
guidance_scale=0.0,
|
102 |
output_type="pil",
|
103 |
num_inference_steps=10
|
104 |
-
).images
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
```
|
108 |
|
109 |
## Uses
|
@@ -122,7 +236,7 @@ Excluded uses are described below.
|
|
122 |
|
123 |
### Out-of-Scope Use
|
124 |
|
125 |
-
The model was not trained to be factual or true representations of people or events,
|
126 |
and therefore using the model to generate such content is out-of-scope for the abilities of this model.
|
127 |
The model should not be used in any way that violates Stability AI's [Acceptable Use Policy](https://stability.ai/use-policy).
|
128 |
|
@@ -139,4 +253,4 @@ The model is intended for research purposes only.
|
|
139 |
|
140 |
## How to Get Started with the Model
|
141 |
|
142 |
-
Check out https://github.com/Stability-AI/StableCascade
|
|
|
3 |
license: other
|
4 |
license_name: stable-cascade-nc-community
|
5 |
license_link: LICENSE
|
6 |
+
prior:
|
7 |
+
- stabilityai/stable-cascade-prior
|
8 |
---
|
9 |
|
10 |
# Stable Cascade
|
|
|
12 |
<!-- Provide a quick summary of what the model is/does. -->
|
13 |
<img src="figures/collage_1.jpg" width="800">
|
14 |
|
15 |
+
This model is built upon the [Würstchen](https://openreview.net/forum?id=gU58d5QeGv) architecture and its main
|
16 |
+
difference to other models like Stable Diffusion is that it is working at a much smaller latent space. Why is this
|
17 |
+
important? The smaller the latent space, the **faster** you can run inference and the **cheaper** the training becomes.
|
18 |
+
How small is the latent space? Stable Diffusion uses a compression factor of 8, resulting in a 1024x1024 image being
|
19 |
+
encoded to 128x128. Stable Cascade achieves a compression factor of 42, meaning that it is possible to encode a
|
20 |
+
1024x1024 image to 24x24, while maintaining crisp reconstructions. The text-conditional model is then trained in the
|
21 |
+
highly compressed latent space. Previous versions of this architecture, achieved a 16x cost reduction over Stable
|
22 |
Diffusion 1.5. <br> <br>
|
23 |
Therefore, this kind of model is well suited for usages where efficiency is important. Furthermore, all known extensions
|
24 |
like finetuning, LoRA, ControlNet, IP-Adapter, LCM etc. are possible with this method as well.
|
|
|
43 |
### Model Overview
|
44 |
Stable Cascade consists of three models: Stage A, Stage B and Stage C, representing a cascade to generate images,
|
45 |
hence the name "Stable Cascade".
|
46 |
+
Stage A & B are used to compress images, similar to what the job of the VAE is in Stable Diffusion.
|
47 |
+
However, with this setup, a much higher compression of images can be achieved. While the Stable Diffusion models use a
|
48 |
+
spatial compression factor of 8, encoding an image with resolution of 1024 x 1024 to 128 x 128, Stable Cascade achieves
|
49 |
+
a compression factor of 42. This encodes a 1024 x 1024 image to 24 x 24, while being able to accurately decode the
|
50 |
+
image. This comes with the great benefit of cheaper training and inference. Furthermore, Stage C is responsible
|
51 |
for generating the small 24 x 24 latents given a text prompt. The following picture shows this visually.
|
52 |
|
53 |
<img src="figures/model-overview.jpg" width="600">
|
54 |
|
55 |
+
For this release, we are providing two checkpoints for Stage C, two for Stage B and one for Stage A. Stage C comes with
|
56 |
+
a 1 billion and 3.6 billion parameter version, but we highly recommend using the 3.6 billion version, as most work was
|
57 |
+
put into its finetuning. The two versions for Stage B amount to 700 million and 1.5 billion parameters. Both achieve
|
58 |
+
great results, however the 1.5 billion excels at reconstructing small and fine details. Therefore, you will achieve the
|
59 |
+
best results if you use the larger variant of each. Lastly, Stage A contains 20 million parameters and is fixed due to
|
60 |
its small size.
|
61 |
|
62 |
## Evaluation
|
63 |
<img height="300" src="figures/comparison.png"/>
|
64 |
+
According to our evaluation, Stable Cascade performs best in both prompt alignment and aesthetic quality in almost all
|
65 |
+
comparisons. The above picture shows the results from a human evaluation using a mix of parti-prompts (link) and
|
66 |
+
aesthetic prompts. Specifically, Stable Cascade (30 inference steps) was compared against Playground v2 (50 inference
|
67 |
steps), SDXL (50 inference steps), SDXL Turbo (1 inference step) and Würstchen v2 (30 inference steps).
|
68 |
|
69 |
## Code Example
|
70 |
|
71 |
+
**Note:** In order to use the `torch.bfloat16` data type with the `StableCascadeDecoderPipeline` you need to have PyTorch 2.2.0 or higher installed. This also means that using the `StableCascadeCombinedPipeline` with `torch.bfloat16` requires PyTorch 2.2.0 or higher, since it calls the StableCascadeDecoderPipeline internally.
|
72 |
+
|
73 |
+
If it is not possible to install PyTorch 2.2.0 or higher in your environment, the `StableCascadeDecoderPipeline` can be used on its own with the torch.float16 data type. You can download the full precision or bf16 variant weights for the pipeline and cast the weights to torch.float16.
|
74 |
|
75 |
```shell
|
76 |
+
pip install diffusers
|
77 |
```
|
78 |
|
79 |
```python
|
80 |
import torch
|
81 |
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
|
82 |
|
83 |
+
prompt = "an image of a shiba inu, donning a spacesuit and helmet"
|
84 |
+
negative_prompt = ""
|
85 |
+
|
86 |
+
prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", variant="bf16", torch_dtype=torch.bfloat16)
|
87 |
+
decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", variant="bf16", torch_dtype=torch.float16)
|
88 |
+
|
89 |
+
prior.enable_model_cpu_offload()
|
90 |
+
prior_output = prior(
|
91 |
+
prompt=prompt,
|
92 |
+
height=1024,
|
93 |
+
width=1024,
|
94 |
+
negative_prompt=negative_prompt,
|
95 |
+
guidance_scale=4.0,
|
96 |
+
num_images_per_prompt=1,
|
97 |
+
num_inference_steps=20
|
98 |
+
)
|
99 |
+
|
100 |
+
decoder.enable_model_cpu_offload()
|
101 |
+
decoder_output = decoder(
|
102 |
+
image_embeddings=prior_output.image_embeddings.to(torch.float16),
|
103 |
+
prompt=prompt,
|
104 |
+
negative_prompt=negative_prompt,
|
105 |
+
guidance_scale=0.0,
|
106 |
+
output_type="pil",
|
107 |
+
num_inference_steps=10
|
108 |
+
).images[0]
|
109 |
+
decoder_output.save("cascade.png")
|
110 |
+
```
|
111 |
+
|
112 |
+
### Using the Lite Version of the Stage B and Stage C models
|
113 |
+
|
114 |
+
```python
|
115 |
+
import torch
|
116 |
+
from diffusers import (
|
117 |
+
StableCascadeDecoderPipeline,
|
118 |
+
StableCascadePriorPipeline,
|
119 |
+
StableCascadeUNet,
|
120 |
+
)
|
121 |
+
|
122 |
+
prompt = "an image of a shiba inu, donning a spacesuit and helmet"
|
123 |
+
negative_prompt = ""
|
124 |
+
|
125 |
+
prior_unet = StableCascadeUNet.from_pretrained("stabilityai/stable-cascade-prior", subfolder="prior_lite")
|
126 |
+
decoder_unet = StableCascadeUNet.from_pretrained("stabilityai/stable-cascade", subfolder="decoder_lite")
|
127 |
+
|
128 |
+
prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", prior=prior_unet)
|
129 |
+
decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", decoder=decoder_unet)
|
130 |
+
|
131 |
+
prior.enable_model_cpu_offload()
|
132 |
+
prior_output = prior(
|
133 |
+
prompt=prompt,
|
134 |
+
height=1024,
|
135 |
+
width=1024,
|
136 |
+
negative_prompt=negative_prompt,
|
137 |
+
guidance_scale=4.0,
|
138 |
+
num_images_per_prompt=1,
|
139 |
+
num_inference_steps=20
|
140 |
+
)
|
141 |
+
|
142 |
+
decoder.enable_model_cpu_offload()
|
143 |
+
decoder_output = decoder(
|
144 |
+
image_embeddings=prior_output.image_embeddings,
|
145 |
+
prompt=prompt,
|
146 |
+
negative_prompt=negative_prompt,
|
147 |
+
guidance_scale=0.0,
|
148 |
+
output_type="pil",
|
149 |
+
num_inference_steps=10
|
150 |
+
).images[0]
|
151 |
+
decoder_output.save("cascade.png")
|
152 |
+
```
|
153 |
+
|
154 |
+
### Loading original checkpoints with `from_single_file`
|
155 |
+
|
156 |
+
Loading the original format checkpoints is supported via `from_single_file` method in the StableCascadeUNet.
|
157 |
|
158 |
+
```python
|
159 |
+
import torch
|
160 |
+
from diffusers import (
|
161 |
+
StableCascadeDecoderPipeline,
|
162 |
+
StableCascadePriorPipeline,
|
163 |
+
StableCascadeUNet,
|
164 |
+
)
|
165 |
|
166 |
+
prompt = "an image of a shiba inu, donning a spacesuit and helmet"
|
167 |
negative_prompt = ""
|
168 |
|
169 |
+
prior_unet = StableCascadeUNet.from_single_file(
|
170 |
+
"https://huggingface.co/stabilityai/stable-cascade/resolve/main/stage_c_bf16.safetensors",
|
171 |
+
torch_dtype=torch.bfloat16
|
172 |
+
)
|
173 |
+
decoder_unet = StableCascadeUNet.from_single_file(
|
174 |
+
"https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_b_bf16.safetensors",
|
175 |
+
torch_dtype=torch.bfloat16
|
176 |
+
)
|
177 |
+
|
178 |
+
prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", prior=prior_unet, torch_dtype=torch.bfloat16)
|
179 |
+
decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", decoder=decoder_unet, torch_dtype=torch.bfloat16)
|
180 |
+
|
181 |
+
prior.enable_model_cpu_offload()
|
182 |
prior_output = prior(
|
183 |
prompt=prompt,
|
184 |
height=1024,
|
185 |
width=1024,
|
186 |
negative_prompt=negative_prompt,
|
187 |
guidance_scale=4.0,
|
188 |
+
num_images_per_prompt=1,
|
189 |
num_inference_steps=20
|
190 |
)
|
191 |
+
|
192 |
+
decoder.enable_model_cpu_offload()
|
193 |
decoder_output = decoder(
|
194 |
+
image_embeddings=prior_output.image_embeddings,
|
195 |
prompt=prompt,
|
196 |
negative_prompt=negative_prompt,
|
197 |
guidance_scale=0.0,
|
198 |
output_type="pil",
|
199 |
num_inference_steps=10
|
200 |
+
).images[0]
|
201 |
+
decoder_output.save("cascade-single-file.png")
|
202 |
+
```
|
203 |
+
|
204 |
+
### Using the `StableCascadeCombinedPipeline`
|
205 |
+
|
206 |
+
```python
|
207 |
+
from diffusers import StableCascadeCombinedPipeline
|
208 |
|
209 |
+
pipe = StableCascadeCombinedPipeline.from_pretrained("stabilityai/stable-cascade", variant="bf16", torch_dtype=torch.bfloat16)
|
210 |
+
|
211 |
+
prompt = "an image of a shiba inu, donning a spacesuit and helmet"
|
212 |
+
pipe(
|
213 |
+
prompt=prompt,
|
214 |
+
negative_prompt="",
|
215 |
+
num_inference_steps=10,
|
216 |
+
prior_num_inference_steps=20,
|
217 |
+
prior_guidance_scale=3.0,
|
218 |
+
width=1024,
|
219 |
+
height=1024,
|
220 |
+
).images[0].save("cascade-combined.png")
|
221 |
```
|
222 |
|
223 |
## Uses
|
|
|
236 |
|
237 |
### Out-of-Scope Use
|
238 |
|
239 |
+
The model was not trained to be factual or true representations of people or events,
|
240 |
and therefore using the model to generate such content is out-of-scope for the abilities of this model.
|
241 |
The model should not be used in any way that violates Stability AI's [Acceptable Use Policy](https://stability.ai/use-policy).
|
242 |
|
|
|
253 |
|
254 |
## How to Get Started with the Model
|
255 |
|
256 |
+
Check out https://github.com/Stability-AI/StableCascade
|
decoder/config.json
CHANGED
@@ -1,74 +1,83 @@
|
|
1 |
{
|
2 |
-
"_class_name": "
|
3 |
-
"_diffusers_version": "0.
|
4 |
-
"
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
6 |
[
|
7 |
-
|
8 |
-
|
9 |
-
1,
|
10 |
-
1
|
11 |
],
|
12 |
[
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
2
|
17 |
-
]
|
18 |
-
],
|
19 |
-
"blocks": [
|
20 |
[
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
6
|
25 |
],
|
26 |
[
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
2
|
31 |
]
|
32 |
],
|
33 |
-
"
|
34 |
-
"
|
35 |
-
"
|
36 |
-
"
|
37 |
-
"
|
38 |
-
"
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
44 |
],
|
45 |
-
"c_in": 4,
|
46 |
-
"c_out": 4,
|
47 |
-
"c_pixels": 3,
|
48 |
-
"c_r": 64,
|
49 |
"dropout": [
|
50 |
0,
|
51 |
0,
|
52 |
0.1,
|
53 |
0.1
|
54 |
],
|
|
|
|
|
55 |
"kernel_size": 3,
|
56 |
-
"
|
57 |
-
|
58 |
-
|
59 |
-
"CTA",
|
60 |
-
"CTA"
|
61 |
-
],
|
62 |
-
"nhead": [
|
63 |
-
-1,
|
64 |
-
-1,
|
65 |
20,
|
66 |
20
|
67 |
],
|
|
|
68 |
"patch_size": 2,
|
|
|
69 |
"self_attn": true,
|
70 |
"switch_level": null,
|
71 |
-
"
|
72 |
"sca"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
]
|
74 |
}
|
|
|
1 |
{
|
2 |
+
"_class_name": "StableCascadeUNet",
|
3 |
+
"_diffusers_version": "0.27.0.dev0",
|
4 |
+
"block_out_channels": [
|
5 |
+
320,
|
6 |
+
640,
|
7 |
+
1280,
|
8 |
+
1280
|
9 |
+
],
|
10 |
+
"block_types_per_layer": [
|
11 |
[
|
12 |
+
"SDCascadeResBlock",
|
13 |
+
"SDCascadeTimestepBlock"
|
|
|
|
|
14 |
],
|
15 |
[
|
16 |
+
"SDCascadeResBlock",
|
17 |
+
"SDCascadeTimestepBlock"
|
18 |
+
],
|
|
|
|
|
|
|
|
|
19 |
[
|
20 |
+
"SDCascadeResBlock",
|
21 |
+
"SDCascadeTimestepBlock",
|
22 |
+
"SDCascadeAttnBlock"
|
|
|
23 |
],
|
24 |
[
|
25 |
+
"SDCascadeResBlock",
|
26 |
+
"SDCascadeTimestepBlock",
|
27 |
+
"SDCascadeAttnBlock"
|
|
|
28 |
]
|
29 |
],
|
30 |
+
"clip_image_in_channels": null,
|
31 |
+
"clip_seq": 4,
|
32 |
+
"clip_text_in_channels": null,
|
33 |
+
"clip_text_pooled_in_channels": 1280,
|
34 |
+
"conditioning_dim": 1280,
|
35 |
+
"down_blocks_repeat_mappers": [
|
36 |
+
1,
|
37 |
+
1,
|
38 |
+
1,
|
39 |
+
1
|
40 |
+
],
|
41 |
+
"down_num_layers_per_block": [
|
42 |
+
2,
|
43 |
+
6,
|
44 |
+
28,
|
45 |
+
6
|
46 |
],
|
|
|
|
|
|
|
|
|
47 |
"dropout": [
|
48 |
0,
|
49 |
0,
|
50 |
0.1,
|
51 |
0.1
|
52 |
],
|
53 |
+
"effnet_in_channels": 16,
|
54 |
+
"in_channels": 4,
|
55 |
"kernel_size": 3,
|
56 |
+
"num_attention_heads": [
|
57 |
+
0,
|
58 |
+
0,
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
20,
|
60 |
20
|
61 |
],
|
62 |
+
"out_channels": 4,
|
63 |
"patch_size": 2,
|
64 |
+
"pixel_mapper_in_channels": 3,
|
65 |
"self_attn": true,
|
66 |
"switch_level": null,
|
67 |
+
"timestep_conditioning_type": [
|
68 |
"sca"
|
69 |
+
],
|
70 |
+
"timestep_ratio_embedding_dim": 64,
|
71 |
+
"up_blocks_repeat_mappers": [
|
72 |
+
3,
|
73 |
+
3,
|
74 |
+
2,
|
75 |
+
2
|
76 |
+
],
|
77 |
+
"up_num_layers_per_block": [
|
78 |
+
6,
|
79 |
+
28,
|
80 |
+
6,
|
81 |
+
2
|
82 |
]
|
83 |
}
|
decoder/diffusion_pytorch_model.bf16.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eaa05a862e2d50008426d7c5ffd08fb462cbf06f50098eea951d5a1e97ba0350
|
3 |
+
size 3126071088
|
decoder/diffusion_pytorch_model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e428508e8c3654e778a1062836253a1794c775a68b75b3679743e9f20dbcef52
|
3 |
+
size 6251952232
|
decoder_lite/config.json
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "StableCascadeUNet",
|
3 |
+
"_diffusers_version": "0.27.0.dev0",
|
4 |
+
"block_out_channels": [
|
5 |
+
320,
|
6 |
+
576,
|
7 |
+
1152,
|
8 |
+
1152
|
9 |
+
],
|
10 |
+
"block_types_per_layer": [
|
11 |
+
[
|
12 |
+
"SDCascadeResBlock",
|
13 |
+
"SDCascadeTimestepBlock"
|
14 |
+
],
|
15 |
+
[
|
16 |
+
"SDCascadeResBlock",
|
17 |
+
"SDCascadeTimestepBlock"
|
18 |
+
],
|
19 |
+
[
|
20 |
+
"SDCascadeResBlock",
|
21 |
+
"SDCascadeTimestepBlock",
|
22 |
+
"SDCascadeAttnBlock"
|
23 |
+
],
|
24 |
+
[
|
25 |
+
"SDCascadeResBlock",
|
26 |
+
"SDCascadeTimestepBlock",
|
27 |
+
"SDCascadeAttnBlock"
|
28 |
+
]
|
29 |
+
],
|
30 |
+
"clip_image_in_channels": null,
|
31 |
+
"clip_seq": 4,
|
32 |
+
"clip_text_in_channels": null,
|
33 |
+
"clip_text_pooled_in_channels": 1280,
|
34 |
+
"conditioning_dim": 1280,
|
35 |
+
"down_blocks_repeat_mappers": [
|
36 |
+
1,
|
37 |
+
1,
|
38 |
+
1,
|
39 |
+
1
|
40 |
+
],
|
41 |
+
"down_num_layers_per_block": [
|
42 |
+
2,
|
43 |
+
4,
|
44 |
+
14,
|
45 |
+
4
|
46 |
+
],
|
47 |
+
"dropout": [
|
48 |
+
0,
|
49 |
+
0,
|
50 |
+
0.1,
|
51 |
+
0.1
|
52 |
+
],
|
53 |
+
"effnet_in_channels": 16,
|
54 |
+
"in_channels": 4,
|
55 |
+
"kernel_size": 3,
|
56 |
+
"num_attention_heads": [
|
57 |
+
0,
|
58 |
+
9,
|
59 |
+
18,
|
60 |
+
18
|
61 |
+
],
|
62 |
+
"out_channels": 4,
|
63 |
+
"patch_size": 2,
|
64 |
+
"pixel_mapper_in_channels": 3,
|
65 |
+
"self_attn": true,
|
66 |
+
"switch_level": null,
|
67 |
+
"timestep_conditioning_type": [
|
68 |
+
"sca"
|
69 |
+
],
|
70 |
+
"timestep_ratio_embedding_dim": 64,
|
71 |
+
"up_blocks_repeat_mappers": [
|
72 |
+
2,
|
73 |
+
2,
|
74 |
+
2,
|
75 |
+
2
|
76 |
+
],
|
77 |
+
"up_num_layers_per_block": [
|
78 |
+
4,
|
79 |
+
14,
|
80 |
+
4,
|
81 |
+
2
|
82 |
+
]
|
83 |
+
}
|
decoder_lite/diffusion_pytorch_model.bf16.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cdf99f9972e67abfbffcd9146be83ae0fd7307789619cefa4cf4a54cd62181e6
|
3 |
+
size 1399047416
|
decoder_lite/diffusion_pytorch_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7dcb3fc8b1e3f2a1756503472043a7d6810003a418b60b08674633b20b452ffb
|
3 |
+
size 2797989648
|
model_index.json
CHANGED
@@ -1,10 +1,9 @@
|
|
1 |
{
|
2 |
"_class_name": "StableCascadeDecoderPipeline",
|
3 |
-
"_diffusers_version": "0.
|
4 |
-
"_name_or_path": "StableCascade/",
|
5 |
"decoder": [
|
6 |
-
"
|
7 |
-
"
|
8 |
],
|
9 |
"latent_dim_scale": 10.67,
|
10 |
"scheduler": [
|
|
|
1 |
{
|
2 |
"_class_name": "StableCascadeDecoderPipeline",
|
3 |
+
"_diffusers_version": "0.27.0.dev0",
|
|
|
4 |
"decoder": [
|
5 |
+
"diffusers",
|
6 |
+
"StableCascadeUNet"
|
7 |
],
|
8 |
"latent_dim_scale": 10.67,
|
9 |
"scheduler": [
|
scheduler/scheduler_config.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"_class_name": "DDPMWuerstchenScheduler",
|
3 |
-
"_diffusers_version": "0.
|
4 |
"s": 0.008,
|
5 |
"scaler": 1.0
|
6 |
}
|
|
|
1 |
{
|
2 |
"_class_name": "DDPMWuerstchenScheduler",
|
3 |
+
"_diffusers_version": "0.27.0.dev0",
|
4 |
"s": 0.008,
|
5 |
"scaler": 1.0
|
6 |
}
|
text_encoder/config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"architectures": [
|
4 |
"CLIPTextModelWithProjection"
|
5 |
],
|
@@ -20,6 +20,6 @@
|
|
20 |
"pad_token_id": 1,
|
21 |
"projection_dim": 1280,
|
22 |
"torch_dtype": "bfloat16",
|
23 |
-
"transformers_version": "4.38.
|
24 |
"vocab_size": 49408
|
25 |
}
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k",
|
3 |
"architectures": [
|
4 |
"CLIPTextModelWithProjection"
|
5 |
],
|
|
|
20 |
"pad_token_id": 1,
|
21 |
"projection_dim": 1280,
|
22 |
"torch_dtype": "bfloat16",
|
23 |
+
"transformers_version": "4.38.2",
|
24 |
"vocab_size": 49408
|
25 |
}
|
text_encoder/model.bf16.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:260e0127aca3c89db813637ae659ebb822cb07af71fedc16cbd980e9518dfdcd
|
3 |
+
size 1389382688
|
tokenizer/tokenizer.json
CHANGED
@@ -1,14 +1,7 @@
|
|
1 |
{
|
2 |
"version": "1.0",
|
3 |
"truncation": null,
|
4 |
-
"padding":
|
5 |
-
"strategy": "BatchLongest",
|
6 |
-
"direction": "Right",
|
7 |
-
"pad_to_multiple_of": null,
|
8 |
-
"pad_id": 49407,
|
9 |
-
"pad_type_id": 0,
|
10 |
-
"pad_token": "<|endoftext|>"
|
11 |
-
},
|
12 |
"added_tokens": [
|
13 |
{
|
14 |
"id": 49406,
|
|
|
1 |
{
|
2 |
"version": "1.0",
|
3 |
"truncation": null,
|
4 |
+
"padding": null,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
"added_tokens": [
|
6 |
{
|
7 |
"id": 49406,
|
vqgan/config.json
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
{
|
2 |
"_class_name": "PaellaVQModel",
|
3 |
-
"_diffusers_version": "0.
|
4 |
-
"_name_or_path": "
|
5 |
"bottleneck_blocks": 12,
|
6 |
"embed_dim": 384,
|
7 |
"in_channels": 3,
|
|
|
1 |
{
|
2 |
"_class_name": "PaellaVQModel",
|
3 |
+
"_diffusers_version": "0.27.0.dev0",
|
4 |
+
"_name_or_path": "warp-ai/wuerstchen",
|
5 |
"bottleneck_blocks": 12,
|
6 |
"embed_dim": 384,
|
7 |
"in_channels": 3,
|
vqgan/diffusion_pytorch_model.bf16.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ac32fab5177329dac907b2480c8c00aeefc712dfd92c2d52263a9c64b426b26
|
3 |
+
size 36825828
|
vqgan/diffusion_pytorch_model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:052db8852c0d8b117e6d2a59ae3e0c7d7aaae3d00f247e392ef8e9837e11d6c4
|
3 |
+
size 73639568
|