Details: https://spacy.io/models/zh#zh_core_web_trf
Chinese transformer pipeline (bert-base-chinese). Components: transformer, tagger, parser, ner, attribute_ruler.
Feature | Description |
---|---|
Name | zh_core_web_trf |
Version | 3.6.1 |
spaCy | >=3.6.0,<3.7.0 |
Default Pipeline | transformer , tagger , parser , attribute_ruler , ner |
Components | transformer , tagger , parser , attribute_ruler , ner |
Vectors | 0 keys, 0 unique vectors (0 dimensions) |
Sources | OntoNotes 5 (Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mohammed El-Bachouti, Robert Belvin, Ann Houston) CoreNLP Universal Dependencies Converter (Stanford NLP Group) bert-base-chinese (Hugging Face) |
License | MIT |
Author | Explosion |
Label Scheme
View label scheme (99 labels for 3 components)
Component | Labels |
---|---|
tagger |
AD , AS , BA , CC , CD , CS , DEC , DEG , DER , DEV , DT , ETC , FW , IJ , INF , JJ , LB , LC , M , MSP , NN , NR , NT , OD , ON , P , PN , PU , SB , SP , URL , VA , VC , VE , VV , X |
parser |
ROOT , acl , advcl:loc , advmod , advmod:dvp , advmod:loc , advmod:rcomp , amod , amod:ordmod , appos , aux:asp , aux:ba , aux:modal , aux:prtmod , auxpass , case , cc , ccomp , compound:nn , compound:vc , conj , cop , dep , det , discourse , dobj , etc , mark , mark:clf , name , neg , nmod , nmod:assmod , nmod:poss , nmod:prep , nmod:range , nmod:tmod , nmod:topic , nsubj , nsubj:xsubj , nsubjpass , nummod , parataxis:prnmod , punct , xcomp |
ner |
CARDINAL , DATE , EVENT , FAC , GPE , LANGUAGE , LAW , LOC , MONEY , NORP , ORDINAL , ORG , PERCENT , PERSON , PRODUCT , QUANTITY , TIME , WORK_OF_ART |
Accuracy
Type | Score |
---|---|
TOKEN_ACC |
95.85 |
TOKEN_P |
94.58 |
TOKEN_R |
91.36 |
TOKEN_F |
92.94 |
TAG_ACC |
92.48 |
SENTS_P |
72.67 |
SENTS_R |
66.46 |
SENTS_F |
69.43 |
DEP_UAS |
77.03 |
DEP_LAS |
73.27 |
ENTS_P |
75.88 |
ENTS_R |
75.86 |
ENTS_F |
75.87 |
- Downloads last month
- 42
Evaluation results
- NER Precisionself-reported0.759
- NER Recallself-reported0.759
- NER F Scoreself-reported0.759
- TAG (XPOS) Accuracyself-reported0.925
- Unlabeled Attachment Score (UAS)self-reported0.770
- Labeled Attachment Score (LAS)self-reported0.733
- Sentences F-Scoreself-reported0.694