Edit model card

Details: https://spacy.io/models/zh#zh_core_web_trf

Chinese transformer pipeline (bert-base-chinese). Components: transformer, tagger, parser, ner, attribute_ruler.

Feature Description
Name zh_core_web_trf
Version 3.3.0
spaCy >=3.3.0.dev0,<3.4.0
Default Pipeline transformer, tagger, parser, attribute_ruler, ner
Components transformer, tagger, parser, attribute_ruler, ner
Vectors 0 keys, 0 unique vectors (0 dimensions)
Sources OntoNotes 5 (Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mohammed El-Bachouti, Robert Belvin, Ann Houston)
CoreNLP Universal Dependencies Converter (Stanford NLP Group)
bert-base-chinese (Hugging Face)
License MIT
Author Explosion

Label Scheme

View label scheme (99 labels for 3 components)
Component Labels
tagger AD, AS, BA, CC, CD, CS, DEC, DEG, DER, DEV, DT, ETC, FW, IJ, INF, JJ, LB, LC, M, MSP, NN, NR, NT, OD, ON, P, PN, PU, SB, SP, URL, VA, VC, VE, VV, X
parser ROOT, acl, advcl:loc, advmod, advmod:dvp, advmod:loc, advmod:rcomp, amod, amod:ordmod, appos, aux:asp, aux:ba, aux:modal, aux:prtmod, auxpass, case, cc, ccomp, compound:nn, compound:vc, conj, cop, dep, det, discourse, dobj, etc, mark, mark:clf, name, neg, nmod, nmod:assmod, nmod:poss, nmod:prep, nmod:range, nmod:tmod, nmod:topic, nsubj, nsubj:xsubj, nsubjpass, nummod, parataxis:prnmod, punct, xcomp
ner CARDINAL, DATE, EVENT, FAC, GPE, LANGUAGE, LAW, LOC, MONEY, NORP, ORDINAL, ORG, PERCENT, PERSON, PRODUCT, QUANTITY, TIME, WORK_OF_ART

Accuracy

Type Score
TOKEN_ACC 97.88
TOKEN_P 94.58
TOKEN_R 91.36
TOKEN_F 92.94
TAG_ACC 92.36
SENTS_P 68.37
SENTS_R 62.69
SENTS_F 65.41
DEP_UAS 76.06
DEP_LAS 72.10
ENTS_P 69.43
ENTS_R 73.57
ENTS_F 71.44
Downloads last month
13
Hosted inference API
Token Classification
Examples
Examples
This model can be loaded on the Inference API on-demand.

Evaluation results