Edit model card

Details: https://spacy.io/models/zh#zh_core_web_lg

Chinese pipeline optimized for CPU. Components: tok2vec, tagger, parser, senter, ner, attribute_ruler.

Feature Description
Name zh_core_web_lg
Version 3.7.0
spaCy >=3.7.0,<3.8.0
Default Pipeline tok2vec, tagger, parser, attribute_ruler, ner
Components tok2vec, tagger, parser, senter, attribute_ruler, ner
Vectors 500000 keys, 500000 unique vectors (300 dimensions)
Sources OntoNotes 5 (Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mohammed El-Bachouti, Robert Belvin, Ann Houston)
CoreNLP Universal Dependencies Converter (Stanford NLP Group)
Explosion fastText Vectors (cbow, OSCAR Common Crawl + Wikipedia) (Explosion)
License MIT
Author Explosion

Label Scheme

View label scheme (100 labels for 3 components)
Component Labels
tagger AD, AS, BA, CC, CD, CS, DEC, DEG, DER, DEV, DT, ETC, FW, IJ, INF, JJ, LB, LC, M, MSP, NN, NR, NT, OD, ON, P, PN, PU, SB, SP, URL, VA, VC, VE, VV, X, _SP
parser ROOT, acl, advcl:loc, advmod, advmod:dvp, advmod:loc, advmod:rcomp, amod, amod:ordmod, appos, aux:asp, aux:ba, aux:modal, aux:prtmod, auxpass, case, cc, ccomp, compound:nn, compound:vc, conj, cop, dep, det, discourse, dobj, etc, mark, mark:clf, name, neg, nmod, nmod:assmod, nmod:poss, nmod:prep, nmod:range, nmod:tmod, nmod:topic, nsubj, nsubj:xsubj, nsubjpass, nummod, parataxis:prnmod, punct, xcomp
ner CARDINAL, DATE, EVENT, FAC, GPE, LANGUAGE, LAW, LOC, MONEY, NORP, ORDINAL, ORG, PERCENT, PERSON, PRODUCT, QUANTITY, TIME, WORK_OF_ART

Accuracy

Type Score
TOKEN_ACC 95.85
TOKEN_P 94.58
TOKEN_R 91.36
TOKEN_F 92.94
TAG_ACC 90.33
SENTS_P 78.05
SENTS_R 72.63
SENTS_F 75.24
DEP_UAS 70.86
DEP_LAS 65.71
ENTS_P 73.55
ENTS_R 69.25
ENTS_F 71.34
Downloads last month
12
Inference Examples
Inference API (serverless) is not available, repository is disabled.

Evaluation results