Edit model card

Details: https://spacy.io/models/en#en_core_web_sm

English pipeline optimized for CPU. Components: tok2vec, tagger, parser, senter, ner, attribute_ruler, lemmatizer.

Feature Description
Name en_core_web_sm
Version 3.4.0
spaCy >=3.4.0,<3.5.0
Default Pipeline tok2vec, tagger, parser, attribute_ruler, lemmatizer, ner
Components tok2vec, tagger, parser, senter, attribute_ruler, lemmatizer, ner
Vectors 0 keys, 0 unique vectors (0 dimensions)
Sources OntoNotes 5 (Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mohammed El-Bachouti, Robert Belvin, Ann Houston)
ClearNLP Constituent-to-Dependency Conversion (Emory University)
WordNet 3.0 (Princeton University)
License MIT
Author Explosion

Label Scheme

View label scheme (113 labels for 3 components)
Component Labels
tagger $, '', ,, -LRB-, -RRB-, ., :, ADD, AFX, CC, CD, DT, EX, FW, HYPH, IN, JJ, JJR, JJS, LS, MD, NFP, NN, NNP, NNPS, NNS, PDT, POS, PRP, PRP$, RB, RBR, RBS, RP, SYM, TO, UH, VB, VBD, VBG, VBN, VBP, VBZ, WDT, WP, WP$, WRB, XX, _SP, ````
parser ROOT, acl, acomp, advcl, advmod, agent, amod, appos, attr, aux, auxpass, case, cc, ccomp, compound, conj, csubj, csubjpass, dative, dep, det, dobj, expl, intj, mark, meta, neg, nmod, npadvmod, nsubj, nsubjpass, nummod, oprd, parataxis, pcomp, pobj, poss, preconj, predet, prep, prt, punct, quantmod, relcl, xcomp
ner CARDINAL, DATE, EVENT, FAC, GPE, LANGUAGE, LAW, LOC, MONEY, NORP, ORDINAL, ORG, PERCENT, PERSON, PRODUCT, QUANTITY, TIME, WORK_OF_ART

Accuracy

Type Score
TOKEN_ACC 99.93
TOKEN_P 99.57
TOKEN_R 99.58
TOKEN_F 99.57
TAG_ACC 97.26
SENTS_P 91.92
SENTS_R 88.90
SENTS_F 90.39
DEP_UAS 91.66
DEP_LAS 89.78
ENTS_P 85.65
ENTS_R 83.49
ENTS_F 84.56
Downloads last month
878
Hosted inference API
Token Classification
Examples
Examples
This model can be loaded on the Inference API on-demand.

Spaces using spacy/en_core_web_sm 2

Evaluation results