File size: 3,810 Bytes
1ac0125
 
 
 
 
 
b7db18e
1ac0125
 
 
 
 
 
 
 
 
e283fce
1ac0125
 
e283fce
1ac0125
 
e283fce
1ac0125
f8cf61b
1ac0125
 
f8cf61b
1ac0125
e283fce
1ac0125
f8cf61b
1ac0125
 
f8cf61b
1ac0125
e283fce
1ac0125
f8cf61b
1ac0125
 
f8cf61b
 
e283fce
1ac0125
f8cf61b
1ac0125
 
f8cf61b
 
e283fce
1ac0125
ffff120
 
 
 
 
 
 
e283fce
 
ffff120
 
15db25f
 
ffff120
 
 
1d33edc
 
 
 
15db25f
1d33edc
 
 
15db25f
1d33edc
 
 
 
 
dd26cba
1d33edc
dd26cba
 
e283fce
1d33edc
 
 
e283fce
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
---
tags:
- spacy
- token-classification
language:
- en
license: mit
model-index:
- name: en_core_web_md
  results:
  - task:
      name: NER
      type: token-classification
    metrics:
    - name: NER Precision
      type: precision
      value: 0.8494302632
    - name: NER Recall
      type: recall
      value: 0.8549178686
    - name: NER F Score
      type: f_score
      value: 0.8521652315
  - task:
      name: TAG
      type: token-classification
    metrics:
    - name: TAG (XPOS) Accuracy
      type: accuracy
      value: 0.9732581964
  - task:
      name: UNLABELED_DEPENDENCIES
      type: token-classification
    metrics:
    - name: Unlabeled Attachment Score (UAS)
      type: f_score
      value: 0.9205112068
  - task:
      name: LABELED_DEPENDENCIES
      type: token-classification
    metrics:
    - name: Labeled Attachment Score (LAS)
      type: f_score
      value: 0.9022890411
  - task:
      name: SENTS
      type: token-classification
    metrics:
    - name: Sentences F-Score
      type: f_score
      value: 0.9076778775
---
### Details: https://spacy.io/models/en#en_core_web_md

English pipeline optimized for CPU. Components: tok2vec, tagger, parser, senter, ner, attribute_ruler, lemmatizer.

| Feature | Description |
| --- | --- |
| **Name** | `en_core_web_md` |
| **Version** | `3.5.0` |
| **spaCy** | `>=3.5.0,<3.6.0` |
| **Default Pipeline** | `tok2vec`, `tagger`, `parser`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Components** | `tok2vec`, `tagger`, `parser`, `senter`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Vectors** | 514157 keys, 20000 unique vectors (300 dimensions) |
| **Sources** | [OntoNotes 5](https://catalog.ldc.upenn.edu/LDC2013T19) (Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mohammed El-Bachouti, Robert Belvin, Ann Houston)<br />[ClearNLP Constituent-to-Dependency Conversion](https://github.com/clir/clearnlp-guidelines/blob/master/md/components/dependency_conversion.md) (Emory University)<br />[WordNet 3.0](https://wordnet.princeton.edu/) (Princeton University)<br />[Explosion Vectors (OSCAR 2109 + Wikipedia + OpenSubtitles + WMT News Crawl)](https://github.com/explosion/spacy-vectors-builder) (Explosion) |
| **License** | `MIT` |
| **Author** | [Explosion](https://explosion.ai) |

### Label Scheme

<details>

<summary>View label scheme (113 labels for 3 components)</summary>

| Component | Labels |
| --- | --- |
| **`tagger`** | `$`, `''`, `,`, `-LRB-`, `-RRB-`, `.`, `:`, `ADD`, `AFX`, `CC`, `CD`, `DT`, `EX`, `FW`, `HYPH`, `IN`, `JJ`, `JJR`, `JJS`, `LS`, `MD`, `NFP`, `NN`, `NNP`, `NNPS`, `NNS`, `PDT`, `POS`, `PRP`, `PRP$`, `RB`, `RBR`, `RBS`, `RP`, `SYM`, `TO`, `UH`, `VB`, `VBD`, `VBG`, `VBN`, `VBP`, `VBZ`, `WDT`, `WP`, `WP$`, `WRB`, `XX`, `_SP`, ```` |
| **`parser`** | `ROOT`, `acl`, `acomp`, `advcl`, `advmod`, `agent`, `amod`, `appos`, `attr`, `aux`, `auxpass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `csubj`, `csubjpass`, `dative`, `dep`, `det`, `dobj`, `expl`, `intj`, `mark`, `meta`, `neg`, `nmod`, `npadvmod`, `nsubj`, `nsubjpass`, `nummod`, `oprd`, `parataxis`, `pcomp`, `pobj`, `poss`, `preconj`, `predet`, `prep`, `prt`, `punct`, `quantmod`, `relcl`, `xcomp` |
| **`ner`** | `CARDINAL`, `DATE`, `EVENT`, `FAC`, `GPE`, `LANGUAGE`, `LAW`, `LOC`, `MONEY`, `NORP`, `ORDINAL`, `ORG`, `PERCENT`, `PERSON`, `PRODUCT`, `QUANTITY`, `TIME`, `WORK_OF_ART` |

</details>

### Accuracy

| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 99.86 |
| `TOKEN_P` | 99.57 |
| `TOKEN_R` | 99.58 |
| `TOKEN_F` | 99.57 |
| `TAG_ACC` | 97.33 |
| `SENTS_P` | 92.21 |
| `SENTS_R` | 89.37 |
| `SENTS_F` | 90.77 |
| `DEP_UAS` | 92.05 |
| `DEP_LAS` | 90.23 |
| `ENTS_P` | 84.94 |
| `ENTS_R` | 85.49 |
| `ENTS_F` | 85.22 |