File size: 1,647 Bytes
1726dba
065ecac
1726dba
fa6f424
ecb1d96
 
071265e
b8d16a0
bcfb814
5cc4f06
5767b04
 
d7e888d
e25d134
1f8b546
 
c438acc
 
bcfb814
1f8b546
 
c438acc
 
 
 
5cc4f06
1f8b546
 
 
c438acc
 
 
 
ecb1d96
 
 
5cc4f06
e25d134
 
 
5cc4f06
 
43c8625
5cc4f06
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import streamlit as st
from st_audiorec import st_audiorec

from nameder import init_model_ner, get_entity_labels
from speech2text import init_model_trans, transcribe
from translation import translate
from resources import audit_elapsedtime, set_start
import subprocess

def main ():
    print("------------------------------")
    print(f"Running main")

    #print(subprocess.Popen('pip freeze > requirements_hug.txt', shell=True))
    original = "Tenho uma proposta para a Caixa Geral de Depositos, para 3 consultores Outsystems, 300 euros por dia e um periodo de seis meses."
    st.write(f"Original: {original}")
    # traducao = get_translation(text_to_translate=text, languageCode="pt")
    # st.write(traducao)

    translation = translate(original) 
    st.write(f"Translation: {translation}")  
    print("Rendering UI...")
    start_render = set_start()
    wav_audio_data = st_audiorec()
    audit_elapsedtime(function="Rendering UI", start=start_render)

    if wav_audio_data is not None:
        s2t = init_model_trans()
        # ner = init_model_ner()
        print("Loading data...")
        start_loading = set_start()
        st.audio(wav_audio_data, format='audio/wav')
        original = transcribe(wav_audio_data, s2t)
        st.write(f"Original: {original}")
        translation = translate(original)
        st.write(f"Transcription: {translation}")

    #     if text is not None and ner is not None:    
    #         st.write('Entities: ', get_entity_labels(model=ner, text=text))
    #     audit_elapsedtime(function="Loading data", start=start_loading)

if __name__ == "__main__":
    print("IN __name__")
    main()