Spaces:
Runtime error
Runtime error
Zeimoto
commited on
Commit
•
fa6f424
1
Parent(s):
071265e
add model specific files
Browse files- app.py +1 -1
- nameder.py +23 -0
- speech2text.py +49 -0
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import streamlit as st
|
2 |
from st_audiorec import st_audiorec
|
3 |
|
4 |
-
from
|
5 |
from speech2text import init_model_trans, transcribe
|
6 |
from resources import audit_elapsedtime, set_start
|
7 |
|
|
|
1 |
import streamlit as st
|
2 |
from st_audiorec import st_audiorec
|
3 |
|
4 |
+
from nameder import init_model_ner, get_entity_labels
|
5 |
from speech2text import init_model_trans, transcribe
|
6 |
from resources import audit_elapsedtime, set_start
|
7 |
|
nameder.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from gliner import GLiNER
|
2 |
+
from resources import set_start, audit_elapsedtime, entity_labels
|
3 |
+
|
4 |
+
#Named-Entity Recognition model
|
5 |
+
|
6 |
+
def init_model_ner():
|
7 |
+
print("Initiating NER model...")
|
8 |
+
start = set_start()
|
9 |
+
model = GLiNER.from_pretrained("urchade/gliner_multi")
|
10 |
+
audit_elapsedtime(function="Initiating NER model", start=start)
|
11 |
+
return model
|
12 |
+
|
13 |
+
def get_entity_labels(model: GLiNER, text: str): #-> Lead_labels:
|
14 |
+
print("Initiating entity recognition...")
|
15 |
+
start = set_start()
|
16 |
+
|
17 |
+
labels = entity_labels
|
18 |
+
entities = model.predict_entities(text, labels)
|
19 |
+
audit_elapsedtime(function="Retreiving entity labels from text", start=start)
|
20 |
+
|
21 |
+
for entity in entities:
|
22 |
+
print(entity["text"], "=>", entity["label"])
|
23 |
+
return entities
|
speech2text.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
2 |
+
import torch
|
3 |
+
from resources import set_start, audit_elapsedtime
|
4 |
+
|
5 |
+
#Speech to text transcription model
|
6 |
+
|
7 |
+
def init_model_trans ():
|
8 |
+
print("Initiating transcription model...")
|
9 |
+
start = set_start()
|
10 |
+
|
11 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
12 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
13 |
+
|
14 |
+
model_id = "openai/whisper-large-v3"
|
15 |
+
|
16 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
17 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
18 |
+
)
|
19 |
+
model.to(device)
|
20 |
+
|
21 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
22 |
+
|
23 |
+
pipe = pipeline(
|
24 |
+
"automatic-speech-recognition",
|
25 |
+
model=model,
|
26 |
+
tokenizer=processor.tokenizer,
|
27 |
+
feature_extractor=processor.feature_extractor,
|
28 |
+
max_new_tokens=128,
|
29 |
+
chunk_length_s=30,
|
30 |
+
batch_size=16,
|
31 |
+
return_timestamps=True,
|
32 |
+
torch_dtype=torch_dtype,
|
33 |
+
device=device,
|
34 |
+
)
|
35 |
+
print(f'Init model successful')
|
36 |
+
audit_elapsedtime(function="Initiating transcription model", start=start)
|
37 |
+
return pipe
|
38 |
+
|
39 |
+
def transcribe (audio_sample: bytes, pipe) -> str:
|
40 |
+
print("Initiating transcription...")
|
41 |
+
start = set_start()
|
42 |
+
# dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
|
43 |
+
# sample = dataset[0]["audio"]
|
44 |
+
result = pipe(audio_sample)
|
45 |
+
audit_elapsedtime(function="Transcription", start=start)
|
46 |
+
print(result)
|
47 |
+
|
48 |
+
st.write('trancription: ', result["text"])
|
49 |
+
return result["text"]
|