Spaces:
Runtime error
Runtime error
Zeimoto
commited on
Commit
·
071265e
1
Parent(s):
9d881ca
models split into files
Browse files
app.py
CHANGED
@@ -1,104 +1,31 @@
|
|
1 |
import streamlit as st
|
2 |
from st_audiorec import st_audiorec
|
3 |
|
4 |
-
from
|
5 |
-
|
6 |
-
import
|
7 |
-
from gliner import GLiNER
|
8 |
-
|
9 |
-
from resources import Lead_Labels, entity_labels, set_start, audit_elapsedtime
|
10 |
-
|
11 |
|
12 |
def main ():
|
13 |
print("------------------------------")
|
14 |
print(f"Running main")
|
15 |
|
16 |
-
|
17 |
ner = init_model_ner() #async
|
18 |
|
19 |
-
labels = entity_labels
|
20 |
-
|
21 |
-
# text = "I have a proposal from cgd where they want one outsystems junior developers and one senior for an estimate of three hundred euros a day, for six months."
|
22 |
-
# print(f"get entities from sample text: {text}")
|
23 |
-
# get_entity_labels(model=ner, text=text, labels=labels)
|
24 |
-
|
25 |
print("Rendering UI...")
|
26 |
start_render = set_start()
|
27 |
wav_audio_data = st_audiorec()
|
28 |
audit_elapsedtime(function="Rendering UI", start=start_render)
|
29 |
|
30 |
-
if wav_audio_data is not None and
|
31 |
print("Loading data...")
|
32 |
start_loading = set_start()
|
33 |
st.audio(wav_audio_data, format='audio/wav')
|
34 |
-
text = transcribe(wav_audio_data,
|
35 |
-
if text is not None:
|
36 |
-
get_entity_labels(labels=labels, model=ner, text=text)
|
37 |
-
|
38 |
-
audit_elapsedtime(function="Loading data", start=start_loading)
|
39 |
-
|
40 |
-
|
41 |
-
def init_model_trans ():
|
42 |
-
print("Initiating transcription model...")
|
43 |
-
start = set_start()
|
44 |
-
|
45 |
-
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
46 |
-
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
52 |
-
)
|
53 |
-
model.to(device)
|
54 |
-
|
55 |
-
processor = AutoProcessor.from_pretrained(model_id)
|
56 |
-
|
57 |
-
pipe = pipeline(
|
58 |
-
"automatic-speech-recognition",
|
59 |
-
model=model,
|
60 |
-
tokenizer=processor.tokenizer,
|
61 |
-
feature_extractor=processor.feature_extractor,
|
62 |
-
max_new_tokens=128,
|
63 |
-
chunk_length_s=30,
|
64 |
-
batch_size=16,
|
65 |
-
return_timestamps=True,
|
66 |
-
torch_dtype=torch_dtype,
|
67 |
-
device=device,
|
68 |
-
)
|
69 |
-
print(f'Init model successful')
|
70 |
-
audit_elapsedtime(function="Initiating transcription model", start=start)
|
71 |
-
return pipe
|
72 |
-
|
73 |
-
def init_model_ner():
|
74 |
-
print("Initiating NER model...")
|
75 |
-
start = set_start()
|
76 |
-
model = GLiNER.from_pretrained("urchade/gliner_multi")
|
77 |
-
audit_elapsedtime(function="Initiating NER model", start=start)
|
78 |
-
return model
|
79 |
-
|
80 |
-
def transcribe (audio_sample: bytes, pipe) -> str:
|
81 |
-
print("Initiating transcription...")
|
82 |
-
start = set_start()
|
83 |
-
# dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
|
84 |
-
# sample = dataset[0]["audio"]
|
85 |
-
result = pipe(audio_sample)
|
86 |
-
audit_elapsedtime(function="Transcription", start=start)
|
87 |
-
print(result)
|
88 |
-
|
89 |
-
st.write('trancription: ', result["text"])
|
90 |
-
return result["text"]
|
91 |
-
|
92 |
-
def get_entity_labels(model: GLiNER, text: str, labels: list): #-> Lead_labels:
|
93 |
-
print("Initiating entity recognition...")
|
94 |
-
start = set_start()
|
95 |
-
entities = model.predict_entities(text, labels)
|
96 |
-
audit_elapsedtime(function="Retreiving entity labels from text", start=start)
|
97 |
-
|
98 |
-
for entity in entities:
|
99 |
-
print(entity["text"], "=>", entity["label"])
|
100 |
-
st.write('Entities: ', entities)
|
101 |
-
# return Lead_Labels()
|
102 |
|
103 |
if __name__ == "__main__":
|
104 |
print("IN __name__")
|
|
|
1 |
import streamlit as st
|
2 |
from st_audiorec import st_audiorec
|
3 |
|
4 |
+
from ner import init_model_ner, get_entity_labels
|
5 |
+
from speech2text import init_model_trans, transcribe
|
6 |
+
from resources import audit_elapsedtime, set_start
|
|
|
|
|
|
|
|
|
7 |
|
8 |
def main ():
|
9 |
print("------------------------------")
|
10 |
print(f"Running main")
|
11 |
|
12 |
+
s2t = init_model_trans()
|
13 |
ner = init_model_ner() #async
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
print("Rendering UI...")
|
16 |
start_render = set_start()
|
17 |
wav_audio_data = st_audiorec()
|
18 |
audit_elapsedtime(function="Rendering UI", start=start_render)
|
19 |
|
20 |
+
if wav_audio_data is not None and s2t is not None:
|
21 |
print("Loading data...")
|
22 |
start_loading = set_start()
|
23 |
st.audio(wav_audio_data, format='audio/wav')
|
24 |
+
text = transcribe(wav_audio_data, s2t)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
if text is not None and ner is not None:
|
27 |
+
st.write('Entities: ', get_entity_labels(model=ner, text=text))
|
28 |
+
audit_elapsedtime(function="Loading data", start=start_loading)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
if __name__ == "__main__":
|
31 |
print("IN __name__")
|