Spaces:
Running
Running
File size: 35,122 Bytes
3044e63 f2a0080 0529094 3044e63 f455314 3044e63 e8b53cc 6e962e9 6bd893f a1b4214 3044e63 e8b53cc 6e3fef9 0529094 3044e63 15fe46b e8b53cc 5146d8c 15fe46b 8a83a8e 15fe46b b49913f 15fe46b 8a83a8e 15fe46b f2a0080 15fe46b 3044e63 c1b7223 3044e63 6e3fef9 0529094 4059958 f2a0080 3044e63 0529094 a1b4214 3044e63 4059958 3044e63 c1b7223 4059958 3044e63 4059958 0529094 a1b4214 3044e63 a1b4214 3044e63 0529094 a1b4214 0529094 4059958 a1b4214 0529094 c1b7223 a1b4214 6bd893f c1b7223 a1b4214 4059958 0529094 3044e63 f455314 3044e63 6bd893f f455314 6bd893f f455314 6bd893f f455314 6bd893f 3044e63 a1b4214 78936ff c1b7223 78936ff 0529094 a1b4214 1291f86 0529094 1291f86 a1b4214 1291f86 e8b53cc 1291f86 a1b4214 1291f86 e8b53cc 1291f86 e8b53cc 1291f86 a1b4214 1291f86 ca3dd1e 1291f86 ca3dd1e 1291f86 a1b4214 1291f86 c1b7223 1291f86 c1b7223 6bd893f a1b4214 c1b7223 a1b4214 c1b7223 0e6b4b2 6bd893f a1b4214 c1b7223 3044e63 a1b4214 f2a0080 a1b4214 523c68d 5146d8c 3044e63 f2a0080 3044e63 acae072 3044e63 c1b7223 523c68d c1b7223 523c68d c1b7223 acae072 4059958 acae072 3044e63 523c68d f455314 523c68d 6bd893f a1b4214 d922102 523c68d 1291f86 523c68d d922102 523c68d d922102 523c68d 1291f86 d922102 523c68d d922102 523c68d d922102 523c68d d922102 523c68d d922102 523c68d d922102 523c68d d922102 523c68d d922102 523c68d d922102 523c68d d922102 523c68d d922102 6bd893f 523c68d 6bd893f 523c68d 6bd893f 523c68d 6bd893f 523c68d 6bd893f 523c68d 6bd893f 523c68d 6bd893f 523c68d 6bd893f 523c68d 6bd893f 523c68d 6bd893f 9c9d4eb 6bd893f a1b4214 6bd893f 9e07bd7 523c68d 9e07bd7 523c68d 9e07bd7 523c68d 9e07bd7 523c68d 9e07bd7 523c68d 9e07bd7 523c68d 9e07bd7 0e6b4b2 9e07bd7 a1b4214 9e07bd7 466b233 6e962e9 466b233 a1b4214 b38d470 466b233 b38d470 466b233 0529094 6e962e9 0529094 1291f86 a1b4214 1291f86 3044e63 a1b4214 d922102 a1b4214 9c9d4eb a1b4214 9c9d4eb a1b4214 9c9d4eb a1b4214 9c9d4eb a1b4214 e8b53cc a1b4214 6e962e9 a1b4214 6e962e9 a1b4214 0e6b4b2 a1b4214 6e962e9 0e6b4b2 a1b4214 7c9157c 0e6b4b2 7c9157c 0e6b4b2 c1b7223 e8b53cc 7c9157c e8b53cc c1b7223 0e6b4b2 a1b4214 c1b7223 0e6b4b2 6bd893f e8b53cc 7c9157c 9c9d4eb e8b53cc 0e6b4b2 9c9d4eb 6bd893f 0e6b4b2 9e07bd7 e8b53cc 7c9157c e8b53cc 9e07bd7 0e6b4b2 a1b4214 9e07bd7 a1b4214 9e07bd7 0e6b4b2 7c9157c 0e6b4b2 6e962e9 3044e63 e8b53cc f455314 e8b53cc 3044e63 f455314 a1b4214 1291f86 6bd893f 1291f86 3044e63 a1b4214 0e6b4b2 6e962e9 d922102 6bd893f 9e07bd7 0e6b4b2 6e962e9 d922102 a1b4214 d922102 4059958 d922102 7c9157c 3044e63 0529094 7c9157c e8b53cc acae072 e8b53cc 3044e63 e8b53cc 7c9157c e8b53cc acae072 a1b4214 acae072 a1b4214 acae072 0529094 e8b53cc 7c9157c e8b53cc a1b4214 e8b53cc ce96faa e8b53cc 0529094 e8b53cc 7c9157c e8b53cc a1b4214 e8b53cc acae072 0529094 a1b4214 acae072 3044e63 4059958 f455314 3044e63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 |
import gradio as gr
import numpy as np
from scipy.io.wavfile import read
import matplotlib.pyplot as plt
import torch
import math
import yaml
import json
import pyloudnorm as pyln
from hydra.utils import instantiate
from soxr import resample
from functools import partial, reduce
from itertools import accumulate
from torchcomp import coef2ms, ms2coef
from copy import deepcopy
from modules.utils import vec2statedict, get_chunks
from modules.fx import clip_delay_eq_Q
from plot_utils import get_log_mags_from_eq
def chain_functions(*functions):
return lambda *initial_args: reduce(
lambda xs, f: f(*xs) if isinstance(xs, tuple) else f(xs),
functions,
initial_args,
)
title_md = "# Vocal Effects Generator"
description_md = """
This is a demo of the paper [DiffVox: A Differentiable Model for Capturing and Analysing Professional Effects Distributions](https://arxiv.org/abs/2504.14735), accepted at DAFx 2025.
In this demo, you can upload a raw vocal audio file (in mono) and use our model to apply professional-quality vocal processing by tweaking generated effects settings to enhance your vocals!
The effects consist of series of EQ, compressor, delay, and reverb.
The generator is a PCA model derived from 365 vocal effects presets fitted with the same effects chain.
This interface allows you to control the principal components (PCs) of the generator, randomise them, and render the audio.
To give you some idea, we empirically found that the first PC controls the amount of reverb and the second PC controls the amount of brightness.
Note that adding these PCs together does not necessarily mean that their effects are additive in the final audio.
We found sometimes the effects of least important PCs are more perceptible.
Try to play around with the sliders and buttons and see what you can come up with!
> **_Note:_** To upload your own audio, click X on the top right corner of the input audio block.
"""
SLIDER_MAX = 3
SLIDER_MIN = -3
NUMBER_OF_PCS = 4
TEMPERATURE = 0.7
CONFIG_PATH = "presets/rt_config.yaml"
PCA_PARAM_FILE = "presets/internal/gaussian.npz"
INFO_PATH = "presets/internal/info.json"
MASK_PATH = "presets/internal/feature_mask.npy"
PRESET_PATH = "presets/internal/raw_params.npy"
TRAIN_INDEX_PATH = "presets/internal/train_index.npy"
EXAMPLE_PATH = "eleanor_erased.wav"
with open(CONFIG_PATH) as fp:
fx_config = yaml.safe_load(fp)["model"]
# Global effect
global_fx = instantiate(fx_config)
global_fx.eval()
raw_params = torch.from_numpy(np.load(PRESET_PATH))
train_index = torch.from_numpy(np.load(TRAIN_INDEX_PATH))
feature_mask = torch.from_numpy(np.load(MASK_PATH))
presets = raw_params[train_index][:, feature_mask].contiguous()
pca_params = np.load(PCA_PARAM_FILE)
mean = pca_params["mean"]
cov = pca_params["cov"]
eigvals, eigvecs = np.linalg.eigh(cov)
eigvals = np.flip(eigvals, axis=0)
eigvecs = np.flip(eigvecs, axis=1)
eigsqrt = torch.from_numpy(eigvals.copy()).float().sqrt()
U = torch.from_numpy(eigvecs.copy()).float()
mean = torch.from_numpy(mean).float()
# Global latent variable
# z = torch.zeros_like(mean)
with open(INFO_PATH) as f:
info = json.load(f)
param_keys = info["params_keys"]
original_shapes = list(
map(lambda lst: lst if len(lst) else [1], info["params_original_shapes"])
)
*vec2dict_args, _ = get_chunks(param_keys, original_shapes)
vec2dict_args = [param_keys, original_shapes] + vec2dict_args
vec2dict = partial(
vec2statedict,
**dict(
zip(
[
"keys",
"original_shapes",
"selected_chunks",
"position",
"U_matrix_shape",
],
vec2dict_args,
)
),
)
global_fx.load_state_dict(vec2dict(mean), strict=False)
meter = pyln.Meter(44100)
@torch.no_grad()
def z2x(z):
# close all figures to avoid too many open figures
plt.close("all")
x = U @ (z * eigsqrt) + mean
# # print(z)
# fx.load_state_dict(vec2dict(x), strict=False)
# fx.apply(partial(clip_delay_eq_Q, Q=0.707))
return x
@torch.no_grad()
def fx2x(fx):
plt.close("all")
state_dict = fx.state_dict()
flattened = torch.cat([state_dict[k].flatten() for k in param_keys])
x = flattened[feature_mask]
return x
@torch.no_grad()
def x2z(x):
z = U.T @ (x - mean)
return z / eigsqrt
@torch.no_grad()
def inference(audio, ratio, fx):
sr, y = audio
if sr != 44100:
y = resample(y, sr, 44100)
if y.dtype.kind != "f":
y = y / 32768.0
if y.ndim == 1:
y = y[:, None]
loudness = meter.integrated_loudness(y)
y = pyln.normalize.loudness(y, loudness, -18.0)
y = torch.from_numpy(y).float().T.unsqueeze(0)
if y.shape[1] != 1:
y = y.mean(dim=1, keepdim=True)
direct, wet = fx(y)
direct = direct.squeeze(0).T.numpy()
wet = wet.squeeze(0).T.numpy()
angle = ratio * math.pi * 0.5
test_clipping = direct + wet
# rendered = fx(y).squeeze(0).T.numpy()
if np.max(np.abs(test_clipping)) > 1:
scaler = np.max(np.abs(test_clipping))
# rendered = rendered / scaler
direct = direct / scaler
wet = wet / scaler
rendered = math.sqrt(2) * (math.cos(angle) * direct + math.sin(angle) * wet)
return (
(44100, (rendered * 32768).astype(np.int16)),
(44100, (direct * 32768).astype(np.int16)),
(
44100,
(wet * 32768).astype(np.int16),
),
)
def get_important_pcs(n=10, **kwargs):
sliders = [
gr.Slider(minimum=SLIDER_MIN, maximum=SLIDER_MAX, label=f"PC {i}", **kwargs)
for i in range(1, n + 1)
]
return sliders
def model2json(fx):
fx_names = ["PK1", "PK2", "LS", "HS", "LP", "HP", "DRC"]
results = {k: v.toJSON() for k, v in zip(fx_names, fx)} | {
"Panner": fx[7].pan.toJSON()
}
spatial_fx = {
"DLY": fx[7].effects[0].toJSON() | {"LP": fx[7].effects[0].eq.toJSON()},
"FDN": fx[7].effects[1].toJSON()
| {
"Tone correction PEQ": {
k: v.toJSON() for k, v in zip(fx_names[:4], fx[7].effects[1].eq)
}
},
"Cross Send (dB)": fx[7].params.sends_0.log10().mul(20).item(),
}
return {
"Direct": results,
"Sends": spatial_fx,
}
@torch.no_grad()
def plot_eq(fx):
fig, ax = plt.subplots(figsize=(6, 4), constrained_layout=True)
w, eq_log_mags = get_log_mags_from_eq(fx[:6])
ax.plot(w, sum(eq_log_mags), color="black", linestyle="-")
for i, eq_log_mag in enumerate(eq_log_mags):
ax.plot(w, eq_log_mag, "k-", alpha=0.3)
ax.fill_between(w, eq_log_mag, 0, facecolor="gray", edgecolor="none", alpha=0.1)
ax.set_xlabel("Frequency (Hz)")
ax.set_ylabel("Magnitude (dB)")
ax.set_xlim(20, 20000)
ax.set_ylim(-40, 20)
ax.set_xscale("log")
ax.grid()
return fig
@torch.no_grad()
def plot_comp(fx):
fig, ax = plt.subplots(figsize=(6, 5), constrained_layout=True)
comp = fx[6]
cmp_th = comp.params.cmp_th.item()
exp_th = comp.params.exp_th.item()
cmp_ratio = comp.params.cmp_ratio.item()
exp_ratio = comp.params.exp_ratio.item()
make_up = comp.params.make_up.item()
# print(cmp_ratio, cmp_th, exp_ratio, exp_th, make_up)
comp_in = np.linspace(-80, 0, 100)
comp_curve = np.where(
comp_in > cmp_th,
comp_in - (comp_in - cmp_th) * (cmp_ratio - 1) / cmp_ratio,
comp_in,
)
comp_out = (
np.where(
comp_curve < exp_th,
comp_curve - (exp_th - comp_curve) / exp_ratio,
comp_curve,
)
+ make_up
)
ax.plot(comp_in, comp_out, c="black", linestyle="-")
ax.plot(comp_in, comp_in, c="r", alpha=0.5)
ax.set_xlabel("Input Level (dB)")
ax.set_ylabel("Output Level (dB)")
ax.set_xlim(-80, 0)
ax.set_ylim(-80, 0)
ax.grid()
return fig
@torch.no_grad()
def plot_delay(fx):
fig, ax = plt.subplots(figsize=(6, 4), constrained_layout=True)
delay = fx[7].effects[0]
w, eq_log_mags = get_log_mags_from_eq([delay.eq])
log_gain = delay.params.gain.log10().item() * 20
d = delay.params.delay.item() / 1000
log_mag = sum(eq_log_mags)
ax.plot(w, log_mag + log_gain, color="black", linestyle="-")
log_feedback = delay.params.feedback.log10().item() * 20
for i in range(1, 10):
feedback_log_mag = log_mag * (i + 1) + log_feedback * i + log_gain
ax.plot(
w,
feedback_log_mag,
c="black",
alpha=max(0, (10 - i * d * 4) / 10),
linestyle="-",
)
ax.set_xscale("log")
ax.set_xlim(20, 20000)
ax.set_ylim(-80, 0)
ax.set_xlabel("Frequency (Hz)")
ax.set_ylabel("Magnitude (dB)")
ax.grid()
return fig
@torch.no_grad()
def plot_reverb(fx):
fig, ax = plt.subplots(figsize=(6, 4), constrained_layout=True)
fdn = fx[7].effects[1]
w, eq_log_mags = get_log_mags_from_eq(fdn.eq)
bc = fdn.params.c.norm() * fdn.params.b.norm()
log_bc = torch.log10(bc).item() * 20
# eq_log_mags = [x + log_bc / len(eq_log_mags) for x in eq_log_mags]
# ax.plot(w, sum(eq_log_mags), color="black", linestyle="-")
eq_log_mags = sum(eq_log_mags) + log_bc
ax.plot(w, eq_log_mags, color="black", linestyle="-")
ax.set_xlabel("Frequency (Hz)")
ax.set_ylabel("Magnitude (dB)")
ax.set_xlim(20, 20000)
ax.set_ylim(-40, 20)
ax.set_xscale("log")
ax.grid()
return fig
@torch.no_grad()
def plot_t60(fx):
fig, ax = plt.subplots(figsize=(6, 4), constrained_layout=True)
fdn = fx[7].effects[1]
gamma = fdn.params.gamma.squeeze().numpy()
delays = fdn.delays.numpy()
w = np.linspace(0, 22050, gamma.size)
t60 = -60 / (20 * np.log10(gamma + 1e-10) / np.min(delays)) / 44100
ax.plot(w, t60, color="black", linestyle="-")
ax.set_xlabel("Frequency (Hz)")
ax.set_ylabel("T60 (s)")
ax.set_xlim(20, 20000)
ax.set_ylim(0, 9)
ax.set_xscale("log")
ax.grid()
return fig
@torch.no_grad()
def update_param(m, attr_name, value):
match type(getattr(m, attr_name)):
case torch.nn.Parameter:
getattr(m, attr_name).data.copy_(value)
case _:
if getattr(m, attr_name).ndim == 0:
setattr(m, attr_name, torch.tensor(value))
else:
setattr(m, attr_name, torch.tensor([value]))
@torch.no_grad()
def update_atrt(comp, attr_name, value):
setattr(comp, attr_name, ms2coef(torch.tensor(value), 44100))
def vec2fx(x):
fx = deepcopy(global_fx)
fx.load_state_dict(vec2dict(x), strict=False)
fx.apply(partial(clip_delay_eq_Q, Q=0.707))
return fx
get_last_attribute = lambda m, attr_name: (
(m, attr_name)
if "." not in attr_name
else (lambda x, *remain: get_last_attribute(getattr(m, x), ".".join(remain)))(
*attr_name.split(".")
)
)
with gr.Blocks() as demo:
z = gr.State(torch.zeros_like(mean))
fx_params = gr.State(mean)
fx = vec2fx(fx_params.value)
sr, y = read(EXAMPLE_PATH)
default_pc_slider = partial(
gr.Slider, minimum=SLIDER_MIN, maximum=SLIDER_MAX, interactive=True, value=0
)
default_audio_block = partial(gr.Audio, type="numpy", loop=True)
default_freq_slider = partial(gr.Slider, label="Frequency (Hz)", interactive=True)
default_gain_slider = partial(gr.Slider, label="Gain (dB)", interactive=True)
default_q_slider = partial(gr.Slider, label="Q", interactive=True)
gr.Markdown(
title_md,
elem_id="title",
)
with gr.Row():
gr.Markdown(
description_md,
elem_id="description",
)
gr.Image("diffvox_diagram.png", elem_id="diagram")
with gr.Row():
with gr.Column():
audio_input = default_audio_block(
sources="upload", label="Input Audio", value=(sr, y)
)
with gr.Row():
random_button = gr.Button(
f"Randomise PCs",
elem_id="randomise-button",
)
reset_button = gr.Button(
"Reset",
elem_id="reset-button",
)
render_button = gr.Button(
"Run", elem_id="render-button", variant="primary"
)
with gr.Row():
s1 = default_pc_slider(label="PC 1")
s2 = default_pc_slider(label="PC 2")
with gr.Row():
s3 = default_pc_slider(label="PC 3")
s4 = default_pc_slider(label="PC 4")
sliders = [s1, s2, s3, s4]
with gr.Row():
with gr.Column():
extra_pc_dropdown = gr.Dropdown(
list(range(NUMBER_OF_PCS + 1, mean.numel() + 1)),
label=f"PC > {NUMBER_OF_PCS}",
info="Select which extra PC to adjust",
interactive=True,
)
extra_slider = default_pc_slider(label="Extra PC")
preset_dropdown = gr.Dropdown(
["none"] + list(range(1, presets.shape[0] + 1)),
value="none",
label=f"Select Preset (1-{presets.shape[0]})",
info="Select a preset to load (this will override the current settings)",
interactive=True,
)
with gr.Column():
audio_output = default_audio_block(label="Output Audio", interactive=False)
dry_wet_ratio = gr.Slider(
minimum=0,
maximum=1,
value=0.5,
label="Dry/Wet Ratio",
interactive=True,
)
direct_output = default_audio_block(label="Direct Audio", interactive=False)
wet_output = default_audio_block(label="Wet Audio", interactive=False)
_ = gr.Markdown("## Parametric EQ")
peq_plot = gr.Plot(plot_eq(fx), label="PEQ Frequency Response", elem_id="peq-plot")
with gr.Row():
with gr.Column(min_width=160):
_ = gr.Markdown("High Pass")
hp = fx[5]
hp_freq = default_freq_slider(
minimum=16, maximum=5300, value=hp.params.freq.item()
)
hp_q = default_q_slider(minimum=0.5, maximum=10, value=hp.params.Q.item())
with gr.Column(min_width=160):
_ = gr.Markdown("Low Shelf")
ls = fx[2]
ls_freq = default_freq_slider(
minimum=30, maximum=200, value=ls.params.freq.item()
)
ls_gain = default_gain_slider(
minimum=-12, maximum=12, value=ls.params.gain.item()
)
with gr.Column(min_width=160):
_ = gr.Markdown("Peak filter 1")
pk1 = fx[0]
pk1_freq = default_freq_slider(
minimum=33, maximum=5400, value=pk1.params.freq.item()
)
pk1_gain = default_gain_slider(
minimum=-12, maximum=12, value=pk1.params.gain.item()
)
pk1_q = default_q_slider(minimum=0.2, maximum=20, value=pk1.params.Q.item())
with gr.Column(min_width=160):
_ = gr.Markdown("Peak filter 2")
pk2 = fx[1]
pk2_freq = default_freq_slider(
minimum=200, maximum=17500, value=pk2.params.freq.item()
)
pk2_gain = default_gain_slider(
minimum=-12, maximum=12, value=pk2.params.gain.item()
)
pk2_q = default_q_slider(minimum=0.2, maximum=20, value=pk2.params.Q.item())
with gr.Column(min_width=160):
_ = gr.Markdown("High Shelf")
hs = fx[3]
hs_freq = default_freq_slider(
minimum=750, maximum=8300, value=hs.params.freq.item()
)
hs_gain = default_gain_slider(
minimum=-12, maximum=12, value=hs.params.gain.item()
)
with gr.Column(min_width=160):
_ = gr.Markdown("Low Pass")
lp = fx[4]
lp_freq = default_freq_slider(
minimum=200, maximum=18000, value=lp.params.freq.item()
)
lp_q = default_q_slider(minimum=0.5, maximum=10, value=lp.params.Q.item())
_ = gr.Markdown("## Compressor and Expander")
with gr.Row():
with gr.Column():
comp = fx[6]
cmp_th = gr.Slider(
minimum=-60,
maximum=0,
value=comp.params.cmp_th.item(),
interactive=True,
label="Threshold (dB)",
)
cmp_ratio = gr.Slider(
minimum=1,
maximum=20,
value=comp.params.cmp_ratio.item(),
interactive=True,
label="Comp. Ratio",
)
make_up = gr.Slider(
minimum=-12,
maximum=12,
value=comp.params.make_up.item(),
interactive=True,
label="Make Up (dB)",
)
attack_time = gr.Slider(
minimum=0.1,
maximum=100,
value=coef2ms(comp.params.at, 44100).item(),
interactive=True,
label="Attack Time (ms)",
)
release_time = gr.Slider(
minimum=50,
maximum=1000,
value=coef2ms(comp.params.rt, 44100).item(),
interactive=True,
label="Release Time (ms)",
)
exp_ratio = gr.Slider(
minimum=0,
maximum=1,
value=comp.params.exp_ratio.item(),
interactive=True,
label="Exp. Ratio",
)
exp_th = gr.Slider(
minimum=-80,
maximum=0,
value=comp.params.exp_th.item(),
interactive=True,
label="Exp. Threshold (dB)",
)
avg_coef = gr.Slider(
minimum=0,
maximum=1,
value=comp.params.avg_coef.item(),
interactive=True,
label="RMS Averaging Coefficient",
)
with gr.Column():
comp_plot = gr.Plot(
plot_comp(fx), label="Compressor Curve", elem_id="comp-plot"
)
_ = gr.Markdown("## Ping-Pong Delay")
with gr.Row():
with gr.Column():
delay = fx[7].effects[0]
delay_time = gr.Slider(
minimum=100,
maximum=1000,
value=delay.params.delay.item(),
interactive=True,
label="Delay Time (ms)",
)
feedback = gr.Slider(
minimum=0,
maximum=1,
value=delay.params.feedback.item(),
interactive=True,
label="Feedback",
)
delay_gain = gr.Slider(
minimum=-80,
maximum=0,
value=delay.params.gain.log10().item() * 20,
interactive=True,
label="Gain (dB)",
)
odd_pan = gr.Slider(
minimum=-100,
maximum=100,
value=delay.odd_pan.params.pan.item() * 200 - 100,
interactive=True,
label="Odd Delay Pan",
)
even_pan = gr.Slider(
minimum=-100,
maximum=100,
value=delay.even_pan.params.pan.item() * 200 - 100,
interactive=True,
label="Even Delay Pan",
)
delay_lp_freq = gr.Slider(
minimum=200,
maximum=16000,
value=delay.eq.params.freq.item(),
interactive=True,
label="Low Pass Frequency (Hz)",
)
reverb_send = gr.Slider(
minimum=-80,
maximum=0,
value=fx[7].params.sends_0.log10().item() * 20,
interactive=True,
label="Reverb Send (dB)",
)
with gr.Column():
delay_plot = gr.Plot(
plot_delay(fx), label="Delay Frequency Response", elem_id="delay-plot"
)
_ = gr.Markdown("## FDN Reverb")
with gr.Row():
reverb_plot = gr.Plot(
plot_reverb(fx),
label="Tone Correction PEQ",
elem_id="reverb-plot",
min_width=160,
)
t60_plot = gr.Plot(
plot_t60(fx), label="Decay Time", elem_id="t60-plot", min_width=160
)
with gr.Row():
fdn = fx[7].effects[1]
tone_correct_peq = fdn.eq
with gr.Column(min_width=160):
_ = gr.Markdown("Low Shelf")
tc_ls = tone_correct_peq[2]
tc_ls_freq = default_freq_slider(
minimum=30, maximum=450, value=tc_ls.params.freq.item()
)
tc_ls_gain = default_gain_slider(
minimum=-12, maximum=12, value=tc_ls.params.gain.item()
)
with gr.Column(min_width=160):
_ = gr.Markdown("Peak filter 1")
tc_pk1 = tone_correct_peq[0]
tc_pk1_freq = default_freq_slider(
minimum=200, maximum=2500, value=tc_pk1.params.freq.item()
)
tc_pk1_gain = default_gain_slider(
minimum=-12, maximum=12, value=tc_pk1.params.gain.item()
)
tc_pk1_q = default_q_slider(
minimum=0.1, maximum=3, value=tc_pk1.params.Q.item()
)
with gr.Column(min_width=160):
_ = gr.Markdown("Peak filter 2")
tc_pk2 = tone_correct_peq[1]
tc_pk2_freq = default_freq_slider(
minimum=600, maximum=7000, value=tc_pk2.params.freq.item()
)
tc_pk2_gain = default_gain_slider(
minimum=-12, maximum=12, value=tc_pk2.params.gain.item()
)
tc_pk2_q = default_q_slider(
minimum=0.1, maximum=3, value=tc_pk2.params.Q.item()
)
with gr.Column(min_width=160):
_ = gr.Markdown("High Shelf")
tc_hs = tone_correct_peq[3]
tc_hs_freq = default_freq_slider(
minimum=1500, maximum=16000, value=tc_hs.params.freq.item()
)
tc_hs_gain = default_gain_slider(
minimum=-12, maximum=12, value=tc_hs.params.gain.item()
)
with gr.Row():
json_output = gr.JSON(
model2json(fx), label="Effect Settings", max_height=800, open=True
)
update_pc = lambda z, i: z[:NUMBER_OF_PCS].tolist() + [z[i - 1].item()]
update_pc_outputs = sliders + [extra_slider]
peq_sliders = [
pk1_freq,
pk1_gain,
pk1_q,
pk2_freq,
pk2_gain,
pk2_q,
ls_freq,
ls_gain,
hs_freq,
hs_gain,
lp_freq,
lp_q,
hp_freq,
hp_q,
]
peq_attr_names = (
["freq", "gain", "Q"] * 2 + ["freq", "gain"] * 2 + ["freq", "Q"] * 2
)
peq_indices = [0] * 3 + [1] * 3 + [2] * 2 + [3] * 2 + [4] * 2 + [5] * 2
cmp_sliders = [
cmp_th,
cmp_ratio,
make_up,
exp_ratio,
exp_th,
avg_coef,
attack_time,
release_time,
]
cmp_update_funcs = [update_param] * 6 + [update_atrt] * 2
cmp_attr_names = [
"cmp_th",
"cmp_ratio",
"make_up",
"exp_ratio",
"exp_th",
"avg_coef",
"at",
"rt",
]
cmp_update_plot_flag = [True] * 5 + [False] * 3
delay_sliders = [delay_time, feedback, delay_lp_freq, delay_gain, odd_pan, even_pan]
delay_update_funcs = (
[update_param] * 3
+ [lambda m, a, v: update_param(m, a, 10 ** (v / 20))]
+ [lambda m, a, v: update_param(m, a, (v + 100) / 200)] * 2
)
delay_attr_names = [
"params.delay",
"params.feedback",
"eq.params.freq",
"params.gain",
"odd_pan.params.pan",
"even_pan.params.pan",
]
delay_update_plot_flag = [True] * 4 + [False] * 2
tc_peq_sliders = [
tc_pk1_freq,
tc_pk1_gain,
tc_pk1_q,
tc_pk2_freq,
tc_pk2_gain,
tc_pk2_q,
tc_ls_freq,
tc_ls_gain,
tc_hs_freq,
tc_hs_gain,
]
tc_peq_attr_names = ["freq", "gain", "Q"] * 2 + ["freq", "gain"] * 2
tc_peq_indices = [0] * 3 + [1] * 3 + [2] * 2 + [3] * 2
all_effect_sliders = (
peq_sliders + cmp_sliders + delay_sliders + tc_peq_sliders + [reverb_send]
)
split_sizes = [
len(peq_sliders),
len(cmp_sliders),
len(delay_sliders),
len(tc_peq_sliders),
1,
]
split_indexes = list(
accumulate(split_sizes, initial=0)
) # [0, len(peq_sliders), len(peq_sliders) + len(cmp_sliders), ...]
def assign_fx_params(fx, *args):
peq_sliders, cmp_sliders, delay_sliders, tc_peq_sliders = map(
lambda i, j: args[i:j], split_indexes[:-2], split_indexes[1:-1]
)
reverb_send_slider = args[-1]
for idx, s, attr_name in zip(peq_indices, peq_sliders, peq_attr_names):
update_param(fx[idx].params, attr_name, s)
for f, s, attr_name in zip(cmp_update_funcs, cmp_sliders, cmp_attr_names):
f(fx[6].params, attr_name, s)
for f, s, attr_name in zip(delay_update_funcs, delay_sliders, delay_attr_names):
m, name = get_last_attribute(fx[7].effects[0], attr_name)
f(m, name, s)
for idx, s, attr_name in zip(tc_peq_indices, tc_peq_sliders, tc_peq_attr_names):
update_param(fx[7].effects[1].eq[idx].params, attr_name, s)
update_param(fx[7].params, "sends_0", 10 ** (reverb_send_slider / 20))
return fx
accum_func_results = lambda init, *fs: reduce(
lambda x, f: (f(x[0]), *x), fs, (init,)
)
x2z_common_steps = chain_functions(
lambda x, *all_s: assign_fx_params(vec2fx(x), *all_s),
lambda fx: accum_func_results(fx, fx2x, x2z),
)
for s in peq_sliders:
s.input(
chain_functions(
lambda x, i, *args: x2z_common_steps(x, *args) + (i,),
lambda z, x, fx, extra_pc_idx: [z, x]
+ [model2json(fx), plot_eq(fx)]
+ update_pc(z, extra_pc_idx),
),
inputs=[fx_params, extra_pc_dropdown] + all_effect_sliders,
outputs=[z, fx_params, json_output, peq_plot] + update_pc_outputs,
)
for s, update_plot in zip(cmp_sliders, cmp_update_plot_flag):
s.input(
chain_functions(
lambda x, i, *args: x2z_common_steps(x, *args) + (i,),
lambda z, x, fx, e_pc_i, update_plot=update_plot: [z, x]
+ [model2json(fx)]
+ ([plot_comp(fx)] if update_plot else [])
+ update_pc(z, e_pc_i),
),
inputs=[fx_params, extra_pc_dropdown] + all_effect_sliders,
outputs=[z, fx_params, json_output]
+ ([comp_plot] if update_plot else [])
+ update_pc_outputs,
)
for s, update_plot in zip(delay_sliders, delay_update_plot_flag):
s.input(
chain_functions(
lambda x, i, *args: x2z_common_steps(x, *args) + (i,),
lambda z, x, fx, e_pc_i, update_plot=update_plot: (
[z, x]
+ [model2json(fx)]
+ ([plot_delay(fx)] if update_plot else [])
+ update_pc(z, e_pc_i)
),
),
inputs=[fx_params, extra_pc_dropdown] + all_effect_sliders,
outputs=[z, fx_params]
+ [json_output]
+ ([delay_plot] if update_plot else [])
+ update_pc_outputs,
)
reverb_send.input(
chain_functions(
lambda x, i, *args: x2z_common_steps(x, *args) + (i,),
lambda z, x, fx, e_pc_i: [z, x] + [model2json(fx)] + update_pc(z, e_pc_i),
),
inputs=[fx_params, extra_pc_dropdown] + all_effect_sliders,
outputs=[z, fx_params, json_output] + update_pc_outputs,
)
for s in tc_peq_sliders:
s.input(
chain_functions(
lambda x, i, *args: x2z_common_steps(x, *args) + (i,),
lambda z, x, fx, e_pc_i: [z, x]
+ [model2json(fx), plot_reverb(fx)]
+ update_pc(z, e_pc_i),
),
inputs=[fx_params, extra_pc_dropdown] + all_effect_sliders,
outputs=[z, fx_params, json_output, reverb_plot] + update_pc_outputs,
)
render_button.click(
chain_functions(
lambda audio, ratio, x, *all_s: (
audio,
ratio,
assign_fx_params(vec2fx(x), *all_s),
),
inference,
),
inputs=[
audio_input,
dry_wet_ratio,
fx_params,
]
+ all_effect_sliders,
outputs=[
audio_output,
direct_output,
wet_output,
],
)
update_fx = lambda fx: [
fx[0].params.freq.item(),
fx[0].params.gain.item(),
fx[0].params.Q.item(),
fx[1].params.freq.item(),
fx[1].params.gain.item(),
fx[1].params.Q.item(),
fx[2].params.freq.item(),
fx[2].params.gain.item(),
fx[3].params.freq.item(),
fx[3].params.gain.item(),
fx[4].params.freq.item(),
fx[4].params.Q.item(),
fx[5].params.freq.item(),
fx[5].params.Q.item(),
fx[6].params.cmp_th.item(),
fx[6].params.cmp_ratio.item(),
fx[6].params.make_up.item(),
fx[6].params.exp_th.item(),
fx[6].params.exp_ratio.item(),
coef2ms(fx[6].params.at, 44100).item(),
coef2ms(fx[6].params.rt, 44100).item(),
fx[7].effects[0].params.delay.item(),
fx[7].effects[0].params.feedback.item(),
fx[7].effects[0].params.gain.log10().item() * 20,
fx[7].effects[0].eq.params.freq.item(),
fx[7].effects[0].odd_pan.params.pan.item() * 200 - 100,
fx[7].effects[0].even_pan.params.pan.item() * 200 - 100,
fx[7].params.sends_0.log10().item() * 20,
fx[7].effects[1].eq[0].params.freq.item(),
fx[7].effects[1].eq[0].params.gain.item(),
fx[7].effects[1].eq[0].params.Q.item(),
fx[7].effects[1].eq[1].params.freq.item(),
fx[7].effects[1].eq[1].params.gain.item(),
fx[7].effects[1].eq[1].params.Q.item(),
fx[7].effects[1].eq[2].params.freq.item(),
fx[7].effects[1].eq[2].params.gain.item(),
fx[7].effects[1].eq[3].params.freq.item(),
fx[7].effects[1].eq[3].params.gain.item(),
]
update_fx_outputs = [
pk1_freq,
pk1_gain,
pk1_q,
pk2_freq,
pk2_gain,
pk2_q,
ls_freq,
ls_gain,
hs_freq,
hs_gain,
lp_freq,
lp_q,
hp_freq,
hp_q,
cmp_th,
cmp_ratio,
make_up,
exp_th,
exp_ratio,
attack_time,
release_time,
delay_time,
feedback,
delay_gain,
delay_lp_freq,
odd_pan,
even_pan,
reverb_send,
tc_pk1_freq,
tc_pk1_gain,
tc_pk1_q,
tc_pk2_freq,
tc_pk2_gain,
tc_pk2_q,
tc_ls_freq,
tc_ls_gain,
tc_hs_freq,
tc_hs_gain,
]
update_plots = lambda fx: [
plot_eq(fx),
plot_comp(fx),
plot_delay(fx),
plot_reverb(fx),
plot_t60(fx),
]
update_plots_outputs = [
peq_plot,
comp_plot,
delay_plot,
reverb_plot,
t60_plot,
]
update_all = (
lambda z, fx, i: update_pc(z, i)
+ update_fx(fx)
+ update_plots(fx)
+ [model2json(fx)]
)
update_all_outputs = (
update_pc_outputs + update_fx_outputs + update_plots_outputs + [json_output]
)
z2x_common_steps = chain_functions(
lambda z: accum_func_results(z, z2x, vec2fx),
lambda fx, x, z: (z, x, fx),
)
random_button.click(
chain_functions(
lambda i: (
*z2x_common_steps(torch.randn_like(mean).clip(SLIDER_MIN, SLIDER_MAX)),
i,
),
lambda z, x, fx, i: [z, x] + update_all(z, fx, i),
),
inputs=extra_pc_dropdown,
outputs=[z, fx_params] + update_all_outputs,
)
reset_button.click(
chain_functions(
lambda: z2x_common_steps(torch.zeros_like(mean)),
lambda z, x, fx: [z, x] + update_all(z, fx, NUMBER_OF_PCS),
),
outputs=[z, fx_params] + update_all_outputs,
)
def update_z(z, s, i):
z[i] = s
return z
for i, slider in enumerate(sliders):
slider.input(
chain_functions(
lambda z, s, i=i: update_z(z, s, i),
z2x_common_steps,
lambda z, x, fx: [z, x, model2json(fx)]
+ update_fx(fx)
+ update_plots(fx),
),
inputs=[z, slider],
outputs=[z, fx_params, json_output]
+ update_fx_outputs
+ update_plots_outputs,
)
extra_slider.input(
chain_functions(
lambda z, s, i: update_z(z, s, i - 1),
z2x_common_steps,
lambda z, x, fx: [z, x, model2json(fx)] + update_fx(fx) + update_plots(fx),
),
inputs=[z, extra_slider, extra_pc_dropdown],
outputs=[z, fx_params, json_output] + update_fx_outputs + update_plots_outputs,
)
extra_pc_dropdown.input(
lambda z, i: z[i - 1].item(),
inputs=[z, extra_pc_dropdown],
outputs=extra_slider,
)
preset_dropdown.input(
chain_functions(
lambda i, _: (mean if i == "none" else presets[i - 1], _),
lambda x, i: (x2z(x), x, vec2fx(x), i),
lambda z, x, fx, i: [z, x] + update_all(z, fx, i),
),
inputs=[preset_dropdown, extra_pc_dropdown],
outputs=[z, fx_params] + update_all_outputs,
)
dry_wet_ratio.input(
chain_functions(
lambda _, *args: (_, *map(lambda x: x[1] / 32768, args)),
lambda ratio, d, w: math.sqrt(2)
* (
math.cos(ratio * math.pi * 0.5) * d
+ math.sin(ratio * math.pi * 0.5) * w
),
lambda x: (44100, (x * 32768).astype(np.int16)),
),
inputs=[dry_wet_ratio, direct_output, wet_output],
outputs=[audio_output],
)
demo.launch()
|